99 research outputs found

    VirtualScan: a new compressed scan technology for test cost reduction

    Get PDF
    This work describes the VirtualScan technology for scan test cost reduction. Scan chains in a VirtualScan circuit are split into shorter ones and the gap between external scan ports and internal scan chains are bridged with a broadcaster and a compactor. Test patterns for a VirtualScan circuit are generated directly by one-pass VirtualScan ATPG, in which multi-capture clocking and maximum test compaction are supported. In addition, VirtualScan ATPG avoids unknown-value and aliasing effects algorithmically without adding any additional circuitry. The VirtualScan technology has achieved successful tape-outs of industrial chips and has been proven to be an efficient and easy-to-implement solution for scan test cost reduction.2004 International Conference on Test, 26-28 October 2004, Charlotte, NC, USA, US

    Exploring the Mysteries of System-Level Test

    Full text link
    System-level test, or SLT, is an increasingly important process step in today's integrated circuit testing flows. Broadly speaking, SLT aims at executing functional workloads in operational modes. In this paper, we consolidate available knowledge about what SLT is precisely and why it is used despite its considerable costs and complexities. We discuss the types or failures covered by SLT, and outline approaches to quality assessment, test generation and root-cause diagnosis in the context of SLT. Observing that the theoretical understanding for all these questions has not yet reached the level of maturity of the more conventional structural and functional test methods, we outline new and promising directions for methodical developments leveraging on recent findings from software engineering.Comment: 7 pages, 2 figure

    Advances in Logic Locking: Past, Present, and Prospects

    Get PDF
    Logic locking is a design concealment mechanism for protecting the IPs integrated into modern System-on-Chip (SoC) architectures from a wide range of hardware security threats at the IC manufacturing supply chain. Logic locking primarily helps the designer to protect the IPs against reverse engineering, IP piracy, overproduction, and unauthorized activation. For more than a decade, the research studies that carried out on this paradigm has been immense, in which the applicability, feasibility, and efficacy of the logic locking have been investigated, including metrics to assess the efficacy, impact of locking in different levels of abstraction, threat model definition, resiliency against physical attacks, tampering, and the application of machine learning. However, the security and strength of existing logic locking techniques have been constantly questioned by sophisticated logical and physical attacks that evolve in sophistication at the same rate as logic locking countermeasure approaches. By providing a comprehensive definition regarding the metrics, assumptions, and principles of logic locking, in this survey paper, we categorize the existing defenses and attacks to capture the most benefit from the logic locking techniques for IP protection, and illuminating the need for and giving direction to future research studies in this topic. This survey paper serves as a guide to quickly navigate and identify the state-of-the-art that should be considered and investigated for further studies on logic locking techniques, helping IP vendors, SoC designers, and researchers to be informed of the principles, fundamentals, and properties of logic locking

    Design of On-Chip Self-Testing Signature Register

    Get PDF
    Over the last few years, scan test has turn out to be too expensive to implement for industry standard designs due to increasing test data volume and test time. The test cost of a chip is mainly governed by the resource utilization of Automatic Test Equipment (ATE). Also, it directly depends upon test time that includes time required to load test program, to apply test vectors and to analyze generated test response of the chip. An issue of test time and data volume is increasingly appealing designers to use on-chip test data compactors, either on input side or output side or both. Such techniques significantly address the former issues but have little hold over increasing number of input-outputs under test mode. Further, test pins on DUT are increasing over the generations. Thus, scan channels on test floor are falling short in number for placement of such ICs. To address issues discussed above, we introduce an on-chip self-testing signature register. It comprises a response compactor and a comparator. The compactor compacts large chunk of response data to a small test signature whereas the comparator compares this test signature with desired one. The overall test result for the design is generated on single output pin. Being no storage of test response is demanded, the considerable reduction in ATE memory can be observed. Also, with only single pin to be monitored for test result, the number of tester channels and compare edges on ATE side significantly reduce at the end of the test. This cuts down maintenance and usage cost of test floor and increases its life time. Furthermore reduction in test pins gives scope for DFT engineers to increase number of scan chains so as to further reduce test time

    Case Study: First-Time Success ASIC Design Methodology Applied to a Multi-Processor System-on-Chip

    Get PDF
    Achieving first-time success is crucial in the ASIC design league considering the soaring cost, tight time-to-market window, and competitive business environment. One key factor in ensuring first-time success is a well-defined ASIC design methodology. Here we propose a novel ASIC design methodology that has been proven for the RUMPS401 (Rahman University Multi-Processor System 401) Multiprocessor System-on-Chip (MPSoC) project. The MPSoC project is initiated by Universiti Tunku Abdul Rahman (UTAR) VLSI design center. The proposed methodology includes the use of Universal Verification Methodology (UVM). The use of electronic design automation (EDA) software during each step of the design methodology is also presented. The first-time success RUMPS401 demonstrates the use of the proposed ASIC design methodology and the good of using one. Especially this project is carried on in educational environment that is even more limited in budget, resources and know-how, compared to the business and industrial counterparts. Here a novel ASIC design methodology that is tailored to first-time success MPSoC is presented

    A survey of scan-capture power reduction techniques

    Get PDF
    With the advent of sub-nanometer geometries, integrated circuits (ICs) are required to be checked for newer defects. While scan-based architectures help detect these defects using newer fault models, test data inflation happens, increasing test time and test cost. An automatic test pattern generator (ATPG) exercise’s multiple fault sites simultaneously to reduce test data which causes elevated switching activity during the capture cycle. The switching activity results in an IR drop exceeding the devices under test (DUT) specification. An increase in IR-drop leads to failure of the patterns and may cause good DUTs to fail the test. The problem is severe during at-speed scan testing, which uses a functional rated clock with a high frequency for the capture operation. Researchers have proposed several techniques to reduce capture power. They used various methods, including the reduction of switching activity. This paper reviews the recently proposed techniques. The principle, algorithm, and architecture used in them are discussed, along with key advantages and limitations. In addition, it provides a classification of the techniques based on the method used and its application. The goal is to present a survey of the techniques and prepare a platform for future development in capture power reduction during scan testing

    Technology Mapping, Design for Testability, and Circuit Optimizations for NULL Convention Logic Based Architectures

    Get PDF
    Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits. This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses different CMOS implementations of NCL gates and proposes new circuit techniques to enhance their operation. The second section focuses on mapping multi-rail logic expressions to a standard NCL gate library, which is a form of technology mapping for a category of NCL design automation flows. Finally, the last section proposes design for testability techniques for a recently developed low-power variant of NCL called Sleep Convention Logic (SCL)
    corecore