3 research outputs found

    Constant-factor approximations for asymmetric TSP on nearly-embeddable graphs

    Get PDF
    In the Asymmetric Traveling Salesperson Problem (ATSP) the goal is to find a closed walk of minimum cost in a directed graph visiting every vertex. We consider the approximability of ATSP on topologically restricted graphs. It has been shown by [Oveis Gharan and Saberi 2011] that there exists polynomial-time constant-factor approximations on planar graphs and more generally graphs of constant orientable genus. This result was extended to non-orientable genus by [Erickson and Sidiropoulos 2014]. We show that for any class of \emph{nearly-embeddable} graphs, ATSP admits a polynomial-time constant-factor approximation. More precisely, we show that for any fixed k≥0k\geq 0, there exist α,β>0\alpha, \beta>0, such that ATSP on nn-vertex kk-nearly-embeddable graphs admits a α\alpha-approximation in time O(nβ)O(n^\beta). The class of kk-nearly-embeddable graphs contains graphs with at most kk apices, kk vortices of width at most kk, and an underlying surface of either orientable or non-orientable genus at most kk. Prior to our work, even the case of graphs with a single apex was open. Our algorithm combines tools from rounding the Held-Karp LP via thin trees with dynamic programming. We complement our upper bounds by showing that solving ATSP exactly on graphs of pathwidth kk (and hence on kk-nearly embeddable graphs) requires time nΩ(k)n^{\Omega(k)}, assuming the Exponential-Time Hypothesis (ETH). This is surprising in light of the fact that both TSP on undirected graphs and Minimum Cost Hamiltonian Cycle on directed graphs are FPT parameterized by treewidth

    On the computational tractability of a geographic clustering problem arising in redistricting

    Get PDF
    Redistricting is the problem of dividing a state into a number kk of regions, called districts. Voters in each district elect a representative. The primary criteria are: each district is connected, district populations are equal (or nearly equal), and districts are "compact". There are multiple competing definitions of compactness, usually minimizing some quantity. One measure that has been recently promoted by Duchin and others is number of cut edges. In redistricting, one is given atomic regions out of which each district must be built. The populations of the atomic regions are given. Consider the graph with one vertex per atomic region (with weight equal to the region's population) and an edge between atomic regions that share a boundary. A districting plan is a partition of vertices into kk parts, each connnected, of nearly equal weight. The districts are considered compact to the extent that the plan minimizes the number of edges crossing between different parts. Consider two problems: find the most compact districting plan, and sample districting plans under a compactness constraint uniformly at random. Both problems are NP-hard so we restrict the input graph to have branchwidth at most ww. (A planar graph's branchwidth is bounded by its diameter.) If both kk and ww are bounded by constants, the problems are solvable in polynomial time. Assume vertices have weight~1. One would like algorithms whose running times are of the form O(f(k,w)nc)O(f(k,w) n^c) for some constant cc independent of kk and ww, in which case the problems are said to be fixed-parameter tractable with respect to kk and ww). We show that, under a complexity-theoretic assumption, no such algorithms exist. However, we do give algorithms with running time O(cwnk+1)O(c^wn^{k+1}). Thus if the diameter of the graph is moderately small and the number of districts is very small, our algorithm is useable
    corecore