46 research outputs found

    Random local algorithms

    Full text link
    Consider the problem when we want to construct some structure on a bounded degree graph, e.g. an almost maximum matching, and we want to decide about each edge depending only on its constant radius neighbourhood. We show that the information about the local statistics of the graph does not help here. Namely, if there exists a random local algorithm which can use any local statistics about the graph, and produces an almost optimal structure, then the same can be achieved by a random local algorithm using no statistics.Comment: 9 page

    Local algorithms in (weakly) coloured graphs

    Full text link
    A local algorithm is a distributed algorithm that completes after a constant number of synchronous communication rounds. We present local approximation algorithms for the minimum dominating set problem and the maximum matching problem in 2-coloured and weakly 2-coloured graphs. In a weakly 2-coloured graph, both problems admit a local algorithm with the approximation factor (Δ+1)/2(\Delta+1)/2, where Δ\Delta is the maximum degree of the graph. We also give a matching lower bound proving that there is no local algorithm with a better approximation factor for either of these problems. Furthermore, we show that the stronger assumption of a 2-colouring does not help in the case of the dominating set problem, but there is a local approximation scheme for the maximum matching problem in 2-coloured graphs.Comment: 14 pages, 3 figure

    Probabilistic Spectral Sparsification In Sublinear Time

    Full text link
    In this paper, we introduce a variant of spectral sparsification, called probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsification. Roughly speaking, it preserves the cut value of any cut (S,Sc)(S,S^{c}) with an 1±ε1\pm\varepsilon multiplicative error and a δS\delta\left|S\right| additive error. We show how to produce a probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsifier with O(nlogn/ε2)O(n\log n/\varepsilon^{2}) edges in time O~(n/ε2δ)\tilde{O}(n/\varepsilon^{2}\delta) time for unweighted undirected graph. This gives fastest known sub-linear time algorithms for different cut problems on unweighted undirected graph such as - An O~(n/OPT+n3/2+t)\tilde{O}(n/OPT+n^{3/2+t}) time O(logn/t)O(\sqrt{\log n/t})-approximation algorithm for the sparsest cut problem and the balanced separator problem. - A n1+o(1)/ε4n^{1+o(1)}/\varepsilon^{4} time approximation minimum s-t cut algorithm with an εn\varepsilon n additive error

    A Local Computation Approximation Scheme to Maximum Matching

    Full text link
    We present a polylogarithmic local computation matching algorithm which guarantees a (1-\eps)-approximation to the maximum matching in graphs of bounded degree.Comment: Appears in Approx 201

    Matching measure, Benjamini-Schramm convergence and the monomer-dimer free energy

    Get PDF
    We define the matching measure of a lattice L as the spectral measure of the tree of self-avoiding walks in L. We connect this invariant to the monomer-dimer partition function of a sequence of finite graphs converging to L. This allows us to express the monomer-dimer free energy of L in terms of the measure. Exploiting an analytic advantage of the matching measure over the Mayer series then leads to new, rigorous bounds on the monomer-dimer free energies of various Euclidean lattices. While our estimates use only the computational data given in previous papers, they improve the known bounds significantly.Comment: 18 pages, 3 figure

    Distributed Maximum Matching in Bounded Degree Graphs

    Full text link
    We present deterministic distributed algorithms for computing approximate maximum cardinality matchings and approximate maximum weight matchings. Our algorithm for the unweighted case computes a matching whose size is at least (1-\eps) times the optimal in \Delta^{O(1/\eps)} + O\left(\frac{1}{\eps^2}\right) \cdot\log^*(n) rounds where nn is the number of vertices in the graph and Δ\Delta is the maximum degree. Our algorithm for the edge-weighted case computes a matching whose weight is at least (1-\eps) times the optimal in \log(\min\{1/\wmin,n/\eps\})^{O(1/\eps)}\cdot(\Delta^{O(1/\eps)}+\log^*(n)) rounds for edge-weights in [\wmin,1]. The best previous algorithms for both the unweighted case and the weighted case are by Lotker, Patt-Shamir, and Pettie~(SPAA 2008). For the unweighted case they give a randomized (1-\eps)-approximation algorithm that runs in O((\log(n)) /\eps^3) rounds. For the weighted case they give a randomized (1/2-\eps)-approximation algorithm that runs in O(\log(\eps^{-1}) \cdot \log(n)) rounds. Hence, our results improve on the previous ones when the parameters Δ\Delta, \eps and \wmin are constants (where we reduce the number of runs from O(log(n))O(\log(n)) to O(log(n))O(\log^*(n))), and more generally when Δ\Delta, 1/\eps and 1/\wmin are sufficiently slowly increasing functions of nn. Moreover, our algorithms are deterministic rather than randomized.Comment: arXiv admin note: substantial text overlap with arXiv:1402.379

    Non-Local Probes Do Not Help with Graph Problems

    Full text link
    This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms

    Optimal Dynamic Distributed MIS

    Full text link
    Finding a maximal independent set (MIS) in a graph is a cornerstone task in distributed computing. The local nature of an MIS allows for fast solutions in a static distributed setting, which are logarithmic in the number of nodes or in their degrees. The result trivially applies for the dynamic distributed model, in which edges or nodes may be inserted or deleted. In this paper, we take a different approach which exploits locality to the extreme, and show how to update an MIS in a dynamic distributed setting, either \emph{synchronous} or \emph{asynchronous}, with only \emph{a single adjustment} and in a single round, in expectation. These strong guarantees hold for the \emph{complete fully dynamic} setting: Insertions and deletions, of edges as well as nodes, gracefully and abruptly. This strongly separates the static and dynamic distributed models, as super-constant lower bounds exist for computing an MIS in the former. Our results are obtained by a novel analysis of the surprisingly simple solution of carefully simulating the greedy \emph{sequential} MIS algorithm with a random ordering of the nodes. As such, our algorithm has a direct application as a 33-approximation algorithm for correlation clustering. This adds to the important toolbox of distributed graph decompositions, which are widely used as crucial building blocks in distributed computing. Finally, our algorithm enjoys a useful \emph{history-independence} property, meaning the output is independent of the history of topology changes that constructed that graph. This means the output cannot be chosen, or even biased, by the adversary in case its goal is to prevent us from optimizing some objective function.Comment: 19 pages including appendix and reference

    Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems

    Get PDF
    Friedland's Lower Matching Conjecture asserts that if GG is a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices, and mk(G)m_k(G) denotes the number of matchings of size kk, then mk(G)(nk)2(dpd)n(dp)(dp)np,m_k(G)\geq {n \choose k}^2\left(\frac{d-p}{d}\right)^{n(d-p)}(dp)^{np}, where p=knp=\frac{k}{n}. When p=1p=1, this conjecture reduces to a theorem of Schrijver which says that a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices has at least ((d1)d1dd2)n\left(\frac{(d-1)^{d-1}}{d^{d-2}}\right)^n perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching Conjecture, namely he proved that lnmk(G)v(G)12(pln(dp)+(dp)ln(1pd)2(1p)ln(1p))+ov(G)(1).\frac{\ln m_k(G)}{v(G)}\geq \frac{1}{2}\left(p\ln \left(\frac{d}{p}\right)+(d-p)\ln \left(1-\frac{p}{d}\right)-2(1-p)\ln (1-p)\right)+o_{v(G)}(1). In this paper, we prove the Lower Matching Conjecture. In fact, we will prove a slightly stronger statement which gives an extra cpnc_p\sqrt{n} factor compared to the conjecture if pp is separated away from 00 and 11, and is tight up to a constant factor if pp is separated away from 11. We will also give a new proof of Gurvits's and Schrijver's theorems, and we extend these theorems to (a,b)(a,b)--biregular bipartite graphs
    corecore