96,938 research outputs found

    Approximating Upper Degree-Constrained Partial Orientations

    Get PDF
    In the Upper Degree-Constrained Partial Orientation problem we are given an undirected graph G=(V,E)G=(V,E), together with two degree constraint functions d−,d+:V→Nd^-,d^+ : V \to \mathbb{N}. The goal is to orient as many edges as possible, in such a way that for each vertex v∈Vv \in V the number of arcs entering vv is at most d−(v)d^-(v), whereas the number of arcs leaving vv is at most d+(v)d^+(v). This problem was introduced by Gabow [SODA'06], who proved it to be MAXSNP-hard (and thus APX-hard). In the same paper Gabow presented an LP-based iterative rounding 4/34/3-approximation algorithm. Since the problem in question is a special case of the classic 3-Dimensional Matching, which in turn is a special case of the kk-Set Packing problem, it is reasonable to ask whether recent improvements in approximation algorithms for the latter two problems [Cygan, FOCS'13; Sviridenko & Ward, ICALP'13] allow for an improved approximation for Upper Degree-Constrained Partial Orientation. We follow this line of reasoning and present a polynomial-time local search algorithm with approximation ratio 5/4+ε5/4+\varepsilon. Our algorithm uses a combination of two types of rules: improving sets of bounded pathwidth from the recent 4/3+ε4/3+\varepsilon-approximation algorithm for 3-Set Packing [Cygan, FOCS'13], and a simple rule tailor-made for the setting of partial orientations. In particular, we exploit the fact that one can check in polynomial time whether it is possible to orient all the edges of a given graph [Gy\'arf\'as & Frank, Combinatorics'76].Comment: 12 pages, 1 figur

    Data Reductions and Combinatorial Bounds for Improved Approximation Algorithms

    Full text link
    Kernelization algorithms in the context of Parameterized Complexity are often based on a combination of reduction rules and combinatorial insights. We will expose in this paper a similar strategy for obtaining polynomial-time approximation algorithms. Our method features the use of approximation-preserving reductions, akin to the notion of parameterized reductions. We exemplify this method to obtain the currently best approximation algorithms for \textsc{Harmless Set}, \textsc{Differential} and \textsc{Multiple Nonblocker}, all of them can be considered in the context of securing networks or information propagation
    • …
    corecore