28 research outputs found

    Finding the Leftmost Critical Factorization on Unordered Alphabet

    Full text link
    We present a linear time and space algorithm computing the leftmost critical factorization of a given string on an unordered alphabet.Comment: 13 pages, 13 figures (accepted to Theor. Comp. Sci.

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Full-fledged Real-Time Indexing for Constant Size Alphabets

    Full text link
    In this paper we describe a data structure that supports pattern matching queries on a dynamically arriving text over an alphabet ofconstant size. Each new symbol can be prepended to TT in O(1) worst-case time. At any moment, we can report all occurrences of a pattern PP in the current text in O(P+k)O(|P|+k) time, where P|P| is the length of PP and kk is the number of occurrences. This resolves, under assumption of constant-size alphabet, a long-standing open problem of existence of a real-time indexing method for string matching (see \cite{AmirN08})

    Sublinear Space Algorithms for the Longest Common Substring Problem

    Full text link
    Given mm documents of total length nn, we consider the problem of finding a longest string common to at least d2d \geq 2 of the documents. This problem is known as the \emph{longest common substring (LCS) problem} and has a classic O(n)O(n) space and O(n)O(n) time solution (Weiner [FOCS'73], Hui [CPM'92]). However, the use of linear space is impractical in many applications. In this paper we show that for any trade-off parameter 1τn1 \leq \tau \leq n, the LCS problem can be solved in O(τ)O(\tau) space and O(n2/τ)O(n^2/\tau) time, thus providing the first smooth deterministic time-space trade-off from constant to linear space. The result uses a new and very simple algorithm, which computes a τ\tau-additive approximation to the LCS in O(n2/τ)O(n^2/\tau) time and O(1)O(1) space. We also show a time-space trade-off lower bound for deterministic branching programs, which implies that any deterministic RAM algorithm solving the LCS problem on documents from a sufficiently large alphabet in O(τ)O(\tau) space must use Ω(nlog(n/(τlogn))/loglog(n/(τlogn))\Omega(n\sqrt{\log(n/(\tau\log n))/\log\log(n/(\tau\log n)}) time.Comment: Accepted to 22nd European Symposium on Algorithm

    Longest Common Extensions in Sublinear Space

    Get PDF
    The longest common extension problem (LCE problem) is to construct a data structure for an input string TT of length nn that supports LCE(i,j)(i,j) queries. Such a query returns the length of the longest common prefix of the suffixes starting at positions ii and jj in TT. This classic problem has a well-known solution that uses O(n)O(n) space and O(1)O(1) query time. In this paper we show that for any trade-off parameter 1τn1 \leq \tau \leq n, the problem can be solved in O(nτ)O(\frac{n}{\tau}) space and O(τ)O(\tau) query time. This significantly improves the previously best known time-space trade-offs, and almost matches the best known time-space product lower bound.Comment: An extended abstract of this paper has been accepted to CPM 201

    Dictionary matching in a stream

    Get PDF
    We consider the problem of dictionary matching in a stream. Given a set of strings, known as a dictionary, and a stream of characters arriving one at a time, the task is to report each time some string in our dictionary occurs in the stream. We present a randomised algorithm which takes O(log log(k + m)) time per arriving character and uses O(k log m) words of space, where k is the number of strings in the dictionary and m is the length of the longest string in the dictionary

    Online Detection of Repetitions with Backtracking

    Full text link
    In this paper we present two algorithms for the following problem: given a string and a rational e>1e > 1, detect in the online fashion the earliest occurrence of a repetition of exponent e\ge e in the string. 1. The first algorithm supports the backtrack operation removing the last letter of the input string. This solution runs in O(nlogm)O(n\log m) time and O(m)O(m) space, where mm is the maximal length of a string generated during the execution of a given sequence of nn read and backtrack operations. 2. The second algorithm works in O(nlogσ)O(n\log\sigma) time and O(n)O(n) space, where nn is the length of the input string and σ\sigma is the number of distinct letters. This algorithm is relatively simple and requires much less memory than the previously known solution with the same working time and space. a string generated during the execution of a given sequence of nn read and backtrack operations.Comment: 12 pages, 5 figures, accepted to CPM 201

    Book announcements

    Get PDF
    Podeu consultar la versió en castellà a: http://hdl.handle.net/11703/10236
    corecore