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Abstract. We consider the problem of dictionary matching in a stream.
Given a set of strings, known as a dictionary, and a stream of charac-
ters arriving one at a time, the task is to report each time some string
in our dictionary occurs in the stream. We present a randomised al-
gorithm which takes O(log log(k +m)) time per arriving character and
uses O(k logm) words of space, where k is the number of strings in the
dictionary and m is the length of the longest string in the dictionary.

1 Introduction

We consider the problem of dictionary matching in a stream. Given a set of
strings, known as a dictionary, and a stream of characters arriving one at a
time, the task is to determine when some string in our dictionary matches a suffix
of the growing stream. The dictionary matching problem models the common
situation where we are interested in not only a single pattern that may occur
but in fact a whole set of them.

Dictionary matching is considered one of the classic and most widely stud-
ied problems within the field of combinatorial pattern matching. The original
solution of Aho and Corasick [1] has, for example, been cited over 2800 times.
The dictionary problem along with its efficient solutions also admit a very wide
range of practical applications: from searching for DNA sequences in genetic
databases [19] to intrusion detection [20] and many more. The dictionaries that
are used in these applications are often also very large as they may contain all
strings within a neighbourhood of some seed for example, or even all strings
in a language defined by a particular regular expression. As a result, there is a
pressing need for methods which are not only fast but also use as little space as
possible.

The solutions we present will be analysed under a particularly strong model
of space usage. We will account for all the space used by our algorithm and will
not, for example, even allow ourselves to store a complete version of the input.
In particular, we will neither be able to store the whole of the dictionary nor
the streaming text. We now define the problem which will be the main object of
study for this paper more formally.

Problem 1. In the dictionary-matching problem we have a set of patterns P
and a streaming text T = t1 . . . tn which arrives one character at a time. We
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must report all positions in T where there exists a pattern in P which matches
exactly. More formally, we output all the positions x such that there exists a
pattern Pi ∈ P with tx−|Pi|+1 . . . tx = Pi. We must report an occurrence of some
pattern in P as soon as it occurs and before we can process the subsequent
arriving character.

If all the patterns in the text had the same length m then we could straight-
forwardly deploy the fingerprinting method of Karp and Rabin [13] to maintain
a fingerprint of a window of length m successive characters of the text. We can
then compare this for each new character that arrives to a hash table of stored
fingerprints of the patterns in the dictionary. In our notation this approach would
require O(k +m) words of space and constant time per arrival. However if the
patterns are not all the same length this technique no longer works.

For a single pattern, Porat and Porat [17] showed that it is possible to per-
form exact matching in a stream quickly using very little space. To do this
they introduced a clever combination of the randomised fingerprinting method
of Karp and Rabin and the deterministic and classical KMP algorithm [14].
Their method uses O(logm) words of space and takes O(logm) time per arriv-
ing character where m is the length of the single pattern. Breslauer and Galil
subsequently made two improvements to this method. First, they sped up the
method to only require O(1) time per arriving character and they also showed
that it was possible to eliminate the possibility of false negatives, which could
occur using the previous approach [3].

Our solution takes the single-pattern streaming algorithm of Breslauer and
Galil [3] as its starting point. If we were to run this algorithm independently in
parallel for each separate string in the dictionary, this would take O(k) time per
arriving character and O(k logm) words of space. Our goal in this paper is to
reduce the running time to as close to constant as possible without increasing the
working space. Achieving this presents a number of technical difficulties which
we have to overcome.

The first such hurdle is how to process patterns of different lengths efficiently.
In the method of Breslauer and Galil prefixes of power of two lengths are found
until either we encounter a mismatch or a match is found for a prefix of length
at least half of the total pattern size. Exact matches for such long prefixes can
only occur rarely and so they can afford to check each one of these potential
matches to see if it can be extended to a full match of the pattern. However
when the number of patterns is large we can no longer afford to inspect each
pattern every time a new character arrives.

Our solution breaks down the patterns in the dictionary into three cases:
short patterns, long patterns with short periods, long patterns with long periods.
A key conceptual innovation that we make is a method to split the patterns into
parts in such a way that matches for all of these parts can be found and stitched
together at exactly the time they are needed. We achieve this while minimising
the total working space and taking only O(log log(k +m)) time per arriving
symbol.
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A straightforward counting argument tells us that any randomised algorithm
with inverse polynomial probability of error requires at least Ω(k logn) bits of
space, see for example [5]. Our space requirements are therefore within a log-
arithmic factor of being optimal. However, unlike the single-pattern algorithm
of Breslauer and Galil, our dictionary matching algorithm can give both false
positives and false negatives with small probability.

Throughout the rest of this paper, we will refer to the arriving text character
as the arrival. We can now give our main new result which will be proven in the
remaining parts of this paper.

Theorem 1. Consider a dictionary P of k patterns of size at most m and a
streaming text T . The streaming dictionary matching problem can be solved in
O(log log(k +m)) time per arrival and O(k logm) words of space. The probability
of error is O(1/n) where n is the length of the streaming text.

1.1 Related work

The now standard offline solution for dictionary matching is based on the Aho-
Corasick algorithm [1]. Given a dictionary P = {P1, P2, . . . , Pk}, and a text
T = t1 . . . tn, let occ denote the number of matches and M denote the sum
of the lengths of the patterns in P , that is M =

∑k

i=1 |Pi|. The Aho-Corasick
algorithm finds all occurrences of elements in P in the text T in O(M +n+occ)
time and O(M) space. Where the dictionary is large, the space required by the
Aho-Corasick approach may however be excessive.

There is now an extensive literature in the streaming model. Focusing nar-
rowly on results related to the streaming algorithm of Porat and Porat [17],
this has included a form of approximate matching called parameterised match-
ing [12], efficient algorithms for detecting periodicity in streams [11] as well as
identifying periodic trends [10]. Fast deterministic streaming algorithms have
also been given which provided guaranteed worst case performance for a num-
ber of different approximate pattern matching problems [7,8] as well as pattern
matching in multiple streams [6].

The streaming dictionary matching problem has also been considered in a
weaker model where the algorithm is allowed to store a complete read-only copy
of the pattern and text but only a constant number of extra words in working
space. Breslauer, Grossi and Mignosi [4] developed a real-time string match-
ing algorithm in this model by building on previous work of Crochemore and
Perrin [9]. The algorithm is based on the computation of periods and critical
factorisations allowing at the same time a forward and a backward scan of the
text.

1.2 Definitions

We will make extensive use of Karp-Rabin fingerprints [13] which we now define
along with some useful properties.
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Definition 1. Karp-Rabin fingerprint function φ. Let p be a prime and r a
random integer in Fp. We define the fingerprint function φ for a string S =
s1 . . . sℓ such that:

φ(S) =
∑ℓ

i=1 sir
i mod p.

The most important property is that for any two equal length strings U and
V with U 6= V , the probability that φ(U) = φ(V ) is at most 1/n2 if p > n3.
We will also exploit several well known arithmetic properties of Karp-Rabin
fingerprints which we give in Lemma 1. All operations will be performed in the
word-RAM model with word size Θ(log n).

Lemma 1. Let U be a string of size ℓ and V another string, then:

– φ(UV ) = φ(U) + rℓφ(V ) mod p,
– φ(U) = φ(UV )− rℓφ(V ) mod p,
– φ(V ) = r−ℓ(φ(UV )− φ(U)) mod p.

For a non-empty string x, an integer p with 0 < p ≤ |x| is called a period of
x if xi = xi+p for all i ∈ {1, . . . , |x| − p− 1}. The period of a non-empty string
x is simply the smallest of its periods. We will also assume that all logarithms
are base 2 and are rounded to the nearest integer.

We describe three algorithms:A1 in Section 2 which handles short patterns in
the dictionary, and A2a and A2b in Section 3 which deal with the long patterns.
Theorem 1 is obtained by running all three algorithms simultaneously.

2 Algorithm A1: Short patterns

Lemma 2. There exists an algorithm A1 which solves the streaming dictio-
nary matching problem and runs in O(log log(k+m)) time per arrival and uses
O(k logm) space on a dictionary of k patterns whose maximum length is at most
2k logm.

For very short patterns shorter than 2 logm we can straightforwardly con-
struct an Aho-Corasick automaton [1]. To make this efficient we store a static
perfect hash table at each node to navigate the automaton. The automaton oc-
cupies at most O(k logm) space and reports occurrences of short patterns in
constant time per arrival. From now on, we can assume that all patterns are
longer than 2 logm.

Our solution splits each of the patterns, which are all now guaranteed to have
length greater than 2 logm, into two parts in multiple ways. The first part of
each splitting of the pattern we call the head and the rest we call the tail. Tails
will always have length ℓ for all ℓ s.t. logm < ℓ ≤ 2 logm. We will therefore
split each pattern into at most logm head/tail pairs, making a total of at most
k logm heads overall.

The overall idea is to insert all heads into a data structure so that we can
find potential matches in the stream efficiently. We will only look for potential
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matches every logm arrivals. We use the remaining at least logm arrivals before
a full match can occur both to de-amortise the cost of finding head matches as
well as to check if the relevant tails match as well.

In order to look for matches with heads of patterns efficiently we will use a
slight modification of the probabilistic z-fast trie introduced by Djamal Bella-
zougui et al. [2] (Theorem 4.1 [2]). A z-fast trie is a randomised data structure
which compactly represents a trie on a set of strings. Our modification to the
probabilistic z-fast trie simply uses a different signature function. For a string
s = s1 . . . sk we define it to be φ(sk . . . s1), the fingerprint of the reverse of s.
Otherwise the data structure remains unchanged.

An important concept in this data structure is the exit node of a string x.
This is the deepest node labelled by a prefix of x. Given a string x and signatures
of all its prefixes, we can find the exit node of x using the z-fast trie in O(logm+
log log(k+m)) time, where m is the maximal length of the strings. Importantly,
the lookup procedure compares at most logm+log log(k+m) pairs of signatures,

and hence the probability of a false match is at most logm+log log(k+m)
n2 < 1

n
.

When there are no false positives in signatures comparison, correctness and the
time bound are guaranteed by Lemma 4.2 and Lemma 4.3 of [2].

We can now describe Algorithm A1 assuming that all patterns are longer
than 2 logm but no longer than 2k logm. As a preprocessing step, we build the
probabilistic z-fast trie for the reverse of the at most k logm heads. For regularly
spaced indices of the text, we will use the z-fast trie to find the longest head
that matches at each of these locations.

We will also augment the z-fast trie in the following way. We mark each
node labelled by a head with a colour representing the fingerprint of the cor-
responding tail. In the end, each node may be marked by several colours, and
the total number of colours will be k logm. On top of the z-fast trie we build
coloured-ancestor data structure [16]. This occupies O(k logm) space and sup-
ports Find(u, c) queries in O(log log

(

k logm
)

) = O(log log(k +m)) time, where
Find(u, c) is the lowest ancestor of a node u marked with colour c. Each pattern
consists of one head concatenated to its corresponding tail and so we will use
coloured-ancestor queries to find the longest whole pattern matches by using the
fingerprints of different tails as queries.

At all times we maintain a circular buffer of size 2k logm which holds the
fingerprints of the at most recent 2k logm prefixes of the text. Let i be an
integer multiple of logm. For each such i, we query the z-fast trie with a string
x = ti . . . ti−2k logm+1. Note that for each prefix of x we can compute its signature
in O(1) time with the help of the buffer. The query returns the exit node e(x)
of x in O(logm+ log log(k +m)) time, which is used to analyse arrivals in the
interval [i + logm, i + 2 logm]. This exit node corresponds to the longest head
that matches ending at index i. The O(logm) cost of performing the query is
de-amortised during the interval (i, i+ logm].

For each arrival tℓ, ℓ ∈ (i + logm, i + 2 logm] we compute the fingerprint φ
of ti+1 . . . tℓ. This can be done in constant time as we store the last 2k logm ≥
m > 2 logm fingerprints. If Find(e(x), φ) is defined, ℓ is an endpoint of a whole
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pattern match and we report it. Otherwise, we proceed to the next arrival.
The overall time per arrival is therefore dominated by the time to perform the
coloured-ancestor queries which is O(log log(k +m)) .

We remark that the algorithm can be applied also to patterns of maximal
length 4k logm and the time complexity will be unchanged. Moreover, if there
are several possible patterns that match for a given arrival, the algorithm reports
the longest such pattern. These two properties will be needed when we describe
Algorithm A2b in Section 3.2.

3 Long patterns

We now assume that all the patterns have length greater than 2k logm. We
distinguish two cases according to the periodicity of those patterns: those with
short period and those with long period. Hereafter, to distinguish the cases, we
use the following notation. Let mi = |Pi| and Qi be the prefix of Pi such that
|Qi| = mi − k logm. Let ρQi

be the period of Qi. The remaining patterns are
then partitioned in two disjoint groups of patterns, those with ρQi

< k logm
and those with ρQi

≥ k logm. We describe two algorithms: A2a and A2b, one
for each case respectively. Finally, the overall solution is then to run all three
algorithms A1, A2a, A2b simultaneously to obtain Theorem 1.

3.1 Algorithm A2a: Patterns with short periods

This section gives an algorithm for a dictionary of patterns P = P1, . . . , Pk such
that mi ≥ 2k logm and ρQi

< k logm. Recall that Qi is the prefix of Pi of length
mi − k logm and ρQi

is the period of Qi. The overall idea for this case is that
if we can find enough repeated occurrences of the period of a pattern then we
know we have almost found a full pattern match. As the pattern may end with
a partial copy of its period we will have to handle this part separately. The main
technical hurdle we overcome is how to process different patterns with different
length periods in an efficient manner.

We define the tail of a pattern Pi to be its suffix of length 2k logm. Observe
that a Pi match occurs if and only if there is a match of Qi followed by a match
with the tail of Pi.

Let Ki be the prefix of Qi of length k logm. Further observe that Qi can only

match if there is a sequence of
⌊

|Qi|−|Ki|
ρQi

+ 1
⌋

occurrences of Ki in the text, each

occurring exactly ρQi
characters after the last. This follows immediately from

the fact that Ki has length k logm and Qi has period ρQi
< k logm.

We now describe algorithm A2a which solves this case. At all times we main-
tain a circular buffer of size 2k logm which holds the fingerprints of the most
recent 2k logm prefixes of the text. That is, if the last arrival is tℓ, then the
buffer contains the fingerprints φ(t1 . . . tℓ−2k logm+1), . . . , φ(t1 . . . tℓ).

To find Ki matches, we store the fingerprint φ(Ki) of each distinct Ki in a
static perfect hash table. By looking up φ(tℓ−k logm+1 . . . tℓ) we can find whether
some Ki matches in O(1) time. For each distinct Ki we maintain a list of recent
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matches stored as an arithmetic progression. Each time we find a new match
with Ki we check whether it is exactly ρQi

characters from the last match. If
so we include it in the current arithmetic progression. If not, then we delete
the current progression and start a new progression containing only the latest
match. Note that Ki = Kj implies that ρQi

= ρQj
and therefore there is no

ambiguity in the description.
We store the fingerprint of each tail in another static perfect hash table.

For each arrival tℓ we use this hash table to check whether φ(tℓ−2k logm+1 . . . tℓ)
matches the fingerprint of some tail. This takes O(1) time per arrival.

Assume that the tail of some Pi matched. We will justify below that we
can assume that each tail corresponds to a unique Pi. It remains to decide
whether this is in-fact a full match with Pi. This is determined by a simple
check, that is whether the current arithmetic progression for Ki contains at

least
⌊

|Qi|−|Ki|
ρQi

+ 1
⌋

occurrences.

Lemma 3. Algorithm A2a takes O(1) time per character and uses O(k logm)
space.

Proof. The algorithm stores two hash tables, each containing O(k logm) fin-
gerprints as well as O(k) arithmetic progressions. The total space is therefore
O(k logm) as claimed. The time complexity of O(1) per character follows by the
use of static perfect hash tables (which are precomputed and depend only on P).

We first prove the claim that each tail corresponds to a unique Pi. To this
end, we assume in this section that no pattern contains another pattern as a
suffix. In particular, any such pattern can be deleted from the dictionary during
the preprocessing stage as it does not change the output. This implies the claim
that each Pi has a distinct tail because the tail contains a full period of Pi.

The correctness follows almost immediately from the algorithm description

via the observation that each Qi is formed from
⌊

|Qi|−|Ki|
ρQi

+ 1
⌋

repeats of Ki

followed by a prefix ofKi. We check explicitly whether there are sufficient repeats
of Ki in the text stream to imply a Qi match. While we do not check explicitly
that either final prefix ofKi is a match or that the full Pi matches, this is implied
by the tail match. This is because the tail has length 2k logm and hence includes
the final prefix of Ki and the last k logm characters of Pi (those in Pi but not
in Qi). ⊓⊔

3.2 Algorithm A2b: Patterns with long periods

Consider a dictionary P in which the patterns are such that mi ≥ 2k logm
and ρQi

≥ k logm. Let us define k to be number strings in this dictionary.
We can now describe Algorithm A2b. Recall that Qi is the prefix of Pi s.t.
|Qi| = mi − k logm. For each pattern Pi, we define Pi,j to be the prefix of Pi

with length 2j, 1 ≤ 2j ≤ mi − 2k logm.
We will first give an overview of an algorithm that identifies Pi,j matches in

O(logm) time per arrival. With the help of A1 and A2a we will speed it up to
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achieve an algorithm with O(log log(k+m)) time per arrival. The algorithm will
identify the matches with a small delay up to k logm arrivals. We then show how
to extend Pi,j to Qi matches. This stage will still report the matches after they
occur. Finally we show how to find whole pattern matches in the stream using
the Qi matches while also completely eliminating the delay in the reporting of
these machines. In other words, any matches for whole patterns will be reported
as soon as they occur and before the next arrival in the stream as desired.

O(logm)-time algorithm. We define a logarithmic number of levels. Level
j will represent all the matches for prefixes Pi,j . We store only active prefix
matches, that still have the potential to indicate the start of full matches of a
pattern in the dictionary. This means that any match at level j whose position
is more than 2j+1 from the current position of an arrival is simply removed. We
will use the following well-known fact.

Fact 2 (Lemma 3.2[3]). If there are at least three matches of a string U of
length 2j in a string V of length 2j+1, then positions of all matches of U in V
form an arithmetic progression. The difference of the progression is equal to the
length of the period of U .

It follows that if there are at least three active matches for the same prefix at
the same level, we can compactly store them as a progression in constant space.
Consider a set of distinct prefixes of length 2j of the patterns in P . For each of
them we store a progression that contains:

(1) The position fp of the first match;
(2) The fingerprint of t1 . . . tfp;
(3) The fingerprint of the period ρ of the prefix;
(4) The length of the period ρ of the prefix;
(5) The position lp of the last match.

With this information, we can deduce the position and the fingerprint of the
text from the start to the position of any active match of the prefix. Moreover,
we can add a new match or delete the first match in a progression in O(1) time.

We make use of a perfect hash table H that stores the fingerprints of all the
prefixes of the patterns in P . The keys of H correspond to the fingerprints of
all the prefixes and the associated value indicates whether the prefix from which
the key was obtained is a proper prefix of some pattern, a whole pattern itself,
or both. Using the construction of [18], for example, the total space needed to
store all the fingerprints and their corresponding values is O(k logm).

When a character tℓ of the text arrives, we update the current position and
the fingerprint of the current text. The algorithm then proceeds by the progres-
sions over logm levels. We start at level 0. If the fingerprint φ(tℓ) is in H, we
insert a new match to the corresponding progression at level 0.

For each level j from 0 to logm, we retrieve the position p of the first match
at level j. If p is at distance 2j+1 from tℓ, we delete the match and check if the
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fingerprint φ(tp . . . tℓ) is in H. If it is and the fingerprint is a fingerprint of one of
the patterns, we report a match (ending at tℓ, the current position of the text).
If the fingerprint is in H and if it is a fingerprint of a proper prefix, then p is
a plausible position of a match of a prefix of length 2j+1. We check if it fits in
the appropriate progression π at level j + 1. (Which might not be true if the
fingerprints collided). If it does, we insert p to π. If p does not match in π, we
discard it and proceed to the next level.

As updating progressions at each level takes O(1) time only, and there are
logm levels, the time complexity of the algorithm is O(logm) per arrival. The
space complexity is O(k logm). We deliberately omit some details (for example,
how to retrieve the position of the first match in the level) as they will not be
important for the final algorithm.

O(log log(k+m))-time algorithm. We will follow the same level-based idea.
To speed up the algorithm, we will consider prefixes Pi,j with short and long
periods separately. The number of matches of the prefixes with short periods
can be big, but we will be able to compute them fast with the help of A1 and
A2a. On the other hand, matches of the prefixes with long periods are rare, and
we will be able to compute them in a round robin fashion.

Let ρi,j be the period of Pi,j . We first build a dictionaryD1 containing at most
one prefix for each Pi. Specifically, containing the largest Pi,j with the period
ρi,j < k logm and 2k logm ≤ |Pi,j | ≤ mi − 2k logm. If no such Pi,j exists we do
not insert a prefix for Pi. This dictionary is processed using a modification of
algorithmA2a which we described in Section 3.1. The modification is that when a
text character tℓ arrives, the output of the algorithm identifies the longest pattern
in D1 which matches ending at tℓ or ‘no match’ if no pattern matches. This is in
contrast to A2a as described previously where we only outputted whether some
pattern matches. The modification takes advantage of the fact that prefixes in
D1 all have power-of-two lengths and uses a simple binary search approach over
the O(logm) distinct pattern lengths. This increases the run-time of A2a to
O(log logm) time per arrival. The details can be found in Appendix A.

Whenever a match is found with some pattern in D1, we update the match
progression of the reported pattern (but not of any of its suffixes that might be
in D1). Importantly, we will still have at most two progressions of active matches
per prefix because of the following lemma and corollary.

Lemma 4. Let Pi,j , Pi′,j′ be two prefixes in D1 and suppose that Pi,j is a suffix
of Pi′,j′ . The periods of Pi,j , Pi′,j′ are equal.

Proof. Assume the contrary. Then Pi,j has two periods: ρi,j and ρi′,j′ (because
it is a suffix of Pi′,j′ ). We have ρi,j +ρi′,j′ < 2k logm ≤ |Pi,j |. By the periodicity
lemma (see, e.g., [15]), ρi,j is a multiple of ρi′,j′ . But then Pi,j is periodic with
period ρi′,j′ < ρi,j , a contradiction. ⊓⊔

Corollary 1. Let Pi,j , Pi′,j′ , and Pi′′,j′′ be prefixes in D1. Suppose that Pi,j is
a suffix of Pi′,j′ and simultaneously is a suffix of Pi′′,j′′ . Then Pi′,j′ is a suffix
of Pi′′,j′′ (or vice versa).
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We now consider any Pi for which we did not find a suitable small period
prefix. In this case it is guaranteed that there is a prefix Pi,j with the period
longer than k logm but length at most 4k logm. We build another dictionary D2

for each of these prefixes. We apply algorithm A1 and for each arrival tℓ return
the longest prefix Pi,j inD2 that matches at it in O(log log(k+m)) time. We then
need to update the match progression of Pi,j as well as the match progressions
of all Pi′,j′ ∈ D2 that are suffixes of Pi,j . Fortunately, each of the prefixes in D2

can match at most once in every k logm arrivals, because the period of each of
them is long, meaning that we can schedule the updates in a round robin fashion
to take O(1) time per arrival.

We denote a set of all Pi,j such that ρi,j ≥ k logm by S. Any of these
prefixes can have at most one match in k logm arrivals. Because of that and
because |S| ≤ k logm, we will be able to afford to update the matches in a
round robin fashion.

We will have two update processes running in parallel. The first process
will be updating matches of prefixes Pi,j ∈ S such that Pi,j−1 ∈ S ∪ D2.
We consider one of these prefixes per arrival. If there is a match with Pi,j in
[tℓ − k logm, tℓ] then there must be a corresponding match with Pi,j−1 ending
in [tℓ−2j−1−k logm, tℓ−2j−1 ]. As Pi,j−1 ∈ S, ρi,j ≥ k logm so there is at most
one match. We can determine whether this match can be extended into a Pi,j

match using a single fingerprint comparison as described in the O(logm)-time
algorithm. This is facilitated by storing a circular buffer of the fingerprints of
the most recent k logm text prefixes.

The second process will be updating matches of prefixes Pi,j ∈ S such that
Pi,j−1 ∈ D1. Again, if there is a match with Pi,j in [tℓ − k logm, tℓ] then there
must be a corresponding match with Pi,j−1 ending in [tℓ−2j−1−k logm, tℓ−2j−1 ].
However, the second process will be more complicated for two reasons. First,
Pi,j−1 has a small period so there could be many Pi,j−1 matches ending in
this interval. Second, the information about Pi,j−1 matches can be stored not
only in the progressions corresponding to Pi,j−1, but also in the progressions
corresponding to prefixes that have Pi,j−1 as a suffix. The first difficulty can be
overcome because of the following lemma.

Lemma 5. Consider any Pi,j such that ρi,j−1 < k logm ≤ ρi,j. Given a match
progression for Pi,j−1, only one match could also correspond to a match with
Pi,j .

Proof. Let U be the prefix of Pi,j−1 of length ρi,j−1. That is, the substrings
bounded by consecutive matches in the match progression for Pi,j−1 are equal to
U . Suppose that Pi,j starts with exactly r copies of U . Then we have Pi,j = U rV
for some string V . Note that as ρi,j−1 < k logm ≤ ρi,j , the string V cannot be
a prefix of U . Then the only match in the progression which could match with
Pi,j is the r-th last one. ⊓⊔

To overcome the second difficulty, we use Corollary 1. It implies that pre-
fixes in D1 can be organized in chains based on the “being-a-suffix” relationship.
We consider prefixes in each chain in a round robin fashion again. We start at
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the longest prefix, let it be Pi,j . At each moment we store exactly one pro-
gression initialized to the progression of Pi,j . If the progression intersects with
[tℓ−2j−1−k logm, tℓ−2j−1 ], we identify the ‘interesting’ match in O(1) time with
the help of Lemma 5 and try to extend it as in the first process. We then pro-
ceed to the second longest prefix Pi′,j′ . If the stored progression intersects with
[tℓ−2j′−1−k logm, tℓ−2j′−1 ], we proceed as for Pi,j . Otherwise, we update the pro-
gression to be the progression of Pi′,j′ and repeat the previous steps for it. We
continue this process for all prefixes in the chain.

From the description of the processes it follows that the matches for each Pi,j

(in particular, for the longest Pi,j for each i) are outputted in O(log log(k+m))
time per arrival with a delay of up to k logm characters (i.e. at most k logm
characters after they occur).

Finding Qi matches. We now show how to find Qi matches using Pi,j matches.
If there is a match with Qi in [tℓ − k logm, tℓ], there must be a match with the
longest Pi,j in [tℓ−2j−k logm, tℓ−2j]. Because |Pi,j | ≤ mi−2k logm, this match
has been identified by the algorithm and it is the first match in the progressions.
We can determine whether this match can be extended into a Qi match using a
single fingerprint comparison.

Therefore theQi matches are outputted inO(log log(k+m)) time with a delay
of up to k logm characters (i.e. at most k logm characters after they occur). We
can then remove this delay using coloured ancestor queries in a similar manner
to algorithm A1 as described below.

Finding whole pattern matches and removing the delay. Up to this
point, we have shown that we can find each Qi match in O(log log(k+m)) time
per arrival with a delay of at most k logm characters. Further we only report
one Qi match at each time. We will show how to extend these Qi matches into
Pi matches using coloured ancestor queries in O(log log(k+m)) time per arrival.

Build a compacted trie of the reverse of each string Qi. The edges labels are
not stored. The space used is O(k). For each i we can find the reverse of Qi in
the trie in O(1) time (by storing an O(k) space look-up table).

The tail of each Pi is its (k logm)-length suffix, i.e. the portion of Pi which
is not in Qi. Each distinct tail is associated with a colour. As there are at most
k logm patterns, there are at most k logm colours. Computing the colour from
the tail is achieved using a standard combination of fingerprinting and static
perfect hashing. For each node in the tree which represents some Qi we colour
the node with the colour of the tail of Pi.

Whenever we find a Qi match, we identify the place in the tree where the
reverse of Qi occurs. Recall that these matches may be found after a delay of
at most k logm characters. A Qi match ending at position ℓ − k logm implies
a possible Pi match at position ℓ. We remember this potential match until tℓ
arrives.
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More specifically when tℓ arrives we determine the node u in the trie repre-
senting the reverse of the longest Qi which has a match at position ℓ− k logm.
This can be done in O(1) time by storing a circular buffer of fingerprints.

We now need to decide whether Qi implies the existence of some Pj match.
It is important to observe that as we discarded all but the longest such Qi, we
might find a Pj with j 6= i.

For each arrival tℓ, we compute the fingerprint φ of tℓ−k logm+1 . . . tℓ. This can
be done in constant time as we store the last k logm fingerprints. If Find(u, φ)
is defined, tℓ is an endpoint of a pattern match and we report it. Otherwise, we
proceed to the next arrival.

Lemma 6. Algorithm A2b takes O(log log(k+m)) time per character. The space
complexity of the algorithm is O(k logm).
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A Suffixes, powers-of-two and the longest match

In Section 3.2 we will use algorithm A2a as a black box. However, we will need
the output to determine the longest pattern that matches when each new text
character arrives rather than simply whether a pattern matches. Furthermore,
we will not be able to guarantee (as is safely assumed above) that no pattern is
a prefix of another. Fortunately the patterns will all have a power-of-two length.
We now briefly describe the required changes which increase the running time
from O(1) to O(log logm).

The changes do not affect the algorithm until the point at which some tail,
has been matched. As one pattern could be a suffix of another, Θ(logm) patterns
could have the same tail. This follows from the fact that the tail contains a full
period of any pattern Pi and that all patterns have power-of-two lengths.

Whenever a tail is matched when some tℓ arrives, we need to determine the
longest matching Pi with this tail. Assume, as a motivating special case, that
every Pi with this tail has the same Ki. As above, Pi is associated with a number
of occurrences,

ci =

⌊

|Qi| − |Ki|

ρQi

+ 1

⌋

of Ki that are required for a Pi match. The basic idea is to perform binary
search on the set of ci values (for Pis with the matching tail) using the number
of occurrences of Ki in the current arithmetic progression as the key. As there
are most O(logm) candidates, this takes O(log logm) time.

However, two patterns Pi and Pj with the same tail could have Ki 6= Kj .
Fortunately, Lemma 7 below says that using the ‘wrong’ Ki only affects the
number of required matches by at most 1. For each tail, we (arbitrarily) preselect
a single Ki among the Pi with this tail. We then perform the same binary search
using Ki. As the O(logm) candidates have power-of-two length (greater than
2k logm) for any two patterns Pi 6= Pj , we have that |ci− cj | > 4. Therefore, we
find at most one candidate, Pj is checked using its own Kj .

Lemma 7. Let Pi and Pj be two patterns with the same tail but Ki 6= Kj. Let
us also assume that the tail of Pj matches when some tℓ arrives. Pi matches
ending at tℓ if the current arithmetic progression for Kj contains at least ci +
1 occurrences. Furthermore Pi does not match at tℓ if the same progression
contains fewer than ci − 1 matches.

Proof. Let yi be the number of matches of Ki in the current progression. Anal-
ogously, for yj. The first thing to observe is that |yi − yj | < 1. This follows from
the fact that |Ki| = |Kj|, they are both periodic and contain each other’s period
string.

Assume that yj < ci − 1. Therefore, as ci < cj + 1, we have that yj < ci so
Pi does not match. Instead assume that yj ≥ ci + 1. Again, as ci > cj − 1, we
have that yj ≥ ci. ⊓⊔
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