6 research outputs found

    A Comparison of ICF and Companding for Impulsive Noise Mitigation in Powerline Communication Systems

    Get PDF
    In future smart cities, smart grid technologies which are usually enabled by Powerline Communication (PLC) techniques are required. However, data transmission over powerline channel traverses a non-Gaussian media due to the presence of Impulsive Noise (IN) operating at the frequencies of PLC system which can be deployed using the IEEE 1901, that uses Orthogonal Frequency Division Multiplexing (OFDM). These OFDM signals have asymmetric amplitude distribution, which makes it difficult to identify and mitigate the IN presence. Converting the amplitude distribution to a uniform distribution can enhance the ability to mitigate IN when nonlinear IN mitigation techniques such as blanking is applied. In this study, we apply Iterative Clipping and Filtering (ICF) and companding schemes which are Peak-to-Average Power Ratio (PAPR) reduction techniques to enable symmetric amplitude distribution of the OFDM signals. With an optimization search for the optimal blanking amplitude for the two PAPR reduction schemes. Results show that companding scheme achieves 4dB gain in terms of received signal-to-noise ratio better than ICF after the blanking was used to remove the IN

    Investigation of non-binary trellis codes designed for impulsive noise environments

    Get PDF
    PhD ThesisIt is well known that binary codes with iterative decoders can achieve near Shannon limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wired or wireless channels can become degraded due to the presence of burst errors or impulsive noise. In such extreme environments, error correction alone cannot combat the serious e ect of the channel and must be combined with the signal processing techniques such as channel estimation, channel equalisation and orthogonal frequency division multiplexing (OFDM). However, even after the received signal has been processed, it can still contain burst errors, or the noise present in the signal maybe non Gaussian. In these cases, popular binary coding schemes such as Low-Density Parity-Check (LDPC) or turbo codes may not perform optimally, resulting in the degradation of performance. Nevertheless, there is still scope for the design of new non-binary codes that are more suitable for these environments, allowing us to achieve further gains in performance. In this thesis, an investigation into good non-binary trellis error-correcting codes and advanced noise reduction techniques has been carried out with the aim of enhancing the performance of wired and wireless communication networks in di erent extreme environments. These environments include, urban, indoor, pedestrian, underwater, and powerline communication (PLC). This work includes an examination of the performance of non-binary trellis codes in harsh scenarios such as underwater communications when the noise channel is additive S S noise. Similar work was also conducted for single input single output (SISO) power line communication systems for single carrier (SC) and multi carrier (MC) over realistic multi-path frequency selective channels. A further examination of multi-input multi-output (MIMO) wired and wireless systems on Middleton class A noise channel was carried out. The main focus of the project was non-binary coding schemes as it is well-known that they outperform their binary counterparts when the channel is bursty. However, few studies have investigated non-binary codes for other environments. The major novelty of this work is the comparison of the performance of non-binary trellis codes with binary trellis codes in various scenarios, leading to the conclusion that non-binary codes are, in most cases, superior in performance to binary codes. Furthermore, the theoretical bounds of SISO and MIMO binary and non-binary convolutional coded OFDM-PLC systems have been investigated for the rst time. In order to validate our results, the implementation of simulated and theoretical results have been obtained for di erent values of noise parameters and on di erent PLC channels. The results show a strong agreement between the simulated and theoretical analysis for all cases.University of Thi-Qar for choosing me for their PhD scholarship and the Iraqi Ministry of Higher Education and Scienti c Research (MOHESR) for granting me the funds to study in UK. In addition, there was ample support towards my stay in the UK from the Iraqi Cultural Attach e in Londo

    Esquemas de pré-codificação e equalização para arquiteturas híbridas sub-conectadas na banda de ondas milimétricas

    Get PDF
    In the last years, the demand for high data rates increased substantially and the mobile communications are currently a necessity for our society. Thus, the number of users to access interactive services and applications has increased. The next generation of wireless communications (5G) is expected to be released in 2020 and it is projected to provide extremely high data rates for the users. The millimeter wave communications band and the massive MIMO are two promising keys technologies to achieve the multi Gbps for the future generations of mobile communications, in particular the 5G. The conjugation of these two technologies, allows packing a large number of antennas in the same volume than in the current frequencies and increase the spectral efficiency. However, when we have a large number of antennas, it is not reasonable to have a fully digital architecture due to the hardware constrains. On the other hand, it is not feasible to have a system that works only in the analog domain by employing a full analog beamforming since the performance is poor. Therefore, it is required a design of hybrid analog/digital architectures to reduce the complexity and achieve a good performance. Fully connected and sub-connected schemes are two examples of hybrid architectures. In the fully connected one, all RF chain connect to all antenna elements while in the sub-connected architecture, each RF chain is connected to a group of antennas. Consequently, the sub-connected architecture is more attractive due to the low complexity when compared to the fully connected one. Also, it is expected that millimeter waves be wideband, however, most of the works developed in last years for hybrid architectures are mainly focused in narrowband channels. Therefore, in this dissertation it is designed a low complex analog precoder at the user terminals and a hybrid analog-digital multi-user linear equalizer for broadband sub-connected millimeter wave massive MIMO at the base station. The analog precoder at the transmitter considers a quantized version of the average angle of departure of each cluster for its computation. In order to remove the multi-user interference, it is considered a hybrid sub-connected approach that minimizes the bit error rate (BER). The performance results show that the proposed hybrid sub-connected scheme is close to the hybrid full-connected design. However, due to the large number of connections, the full-connected scheme is slightly better than the proposed sub-connected scheme but with higher complexity. Therefore, the proposed analog precoder and hybrid sub-connected equalizer are more feasible to practical applications due to the good trade-off between performance and complexity.Nos últimos anos, a necessidade por elevadas taxas de transmissão de dados tem vindo a aumentar substancialmente uma vez que as comunicações móveis assumem cada vez mais um papel fundamental na sociedade atual. Por isso, o número de utilizadores que acedem a serviços e aplicações interativas tem vindo a aumentar. A próxima geração de comunicações móveis (5G) é esperada que seja lançada em 2020 e é projetada para fornecer elevadas taxas de transmissão de dados aos seus utilizadores. A comunicação na banda das ondas milimétricas e o MIMO massivo são duas tecnologias promissoras para alcançar os multi Gb/s para as comunicações móveis futuras, em particular o 5G. Conjugando essas duas tecnologias, permite-nos colocar um maior número de antenas no mesmo volume comparativamente às frequências atuais, aumentando assim a eficiência espectral. No entanto, quanto se tem um grande número de antenas, não é viável ter uma arquitetura totalmente digital devido às restrições de hardware. Por outro lado, não é viável ter um sistema que trabalhe apenas no domínio analógico. Assim sendo, é necessária uma arquitetura híbrida analógica-digital de modo a remover a complexidade geral do sistema. É esperado que os sistemas de comunicação baseados em ondas milimétricas sejam de banda larga, no entanto, a maioria dos trabalhos feitos para arquiteturas híbridas são focados em canais de banda estreita. Dois exemplos de soluções híbridas são as arquiteturas completamente conectada e sub-conectada. Na primeira, todas as cadeias RF estão ligadas a todas as antenas enquanto na arquitetura sub-conectada cada cadeia RF é ligada apenas a um grupo de antenas. Consequentemente, a arquitetura sub-conectada é mais interessante do ponto de vista prático devido à sua menor complexidade quando comparada à arquitetura completamente conectada. Nesta dissertação é projetado um pré-codificador analógico de baixa complexidade no terminal móvel, combinado com um equalizador multiutilizador desenhado para uma arquitetura híbrida sub-conectada, implementado na estação base. O pré-codificador no transmissor assume um conhecimento parcial da informação do canal e, de modo a remover eficientemente a interferência multiutilizador, é proposta também uma arquitetura híbrida sub-conectada que minimiza a taxa média de erro. Os resultados de desempenho mostram que o esquema híbrido sub-conectado proposto está próximo da arquitetura híbrida completamente conectada. No entanto, devido ao grande número de conexões, a arquitetura híbrida completamente conectada é ligeiramente melhor que a arquitetura sub-conectada proposta à custa de uma maior complexidade. Assim sendo, o pré-codificador analógico e o equalizador sub-conectado híbrido proposto são mais viáveis para aplicações práticas devido ao compromisso entre o desempenho e a complexidade.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Mitigation of impulsive noise for SISO and MIMO G.fast system

    Get PDF
    To address the demand for high bandwidth data transmission over telephone transmission lines, International Telecommunication Union (ITU) has recently completed the fourth generation broadband (4GBB) copper access network technology, known as G.fast. Throughout this thesis, extensively investigates the wired broadband G.fast coding system and the novel impulsive noise reduction technique has been proposed to improve the performance of wired communications network in three different scenarios: single-line Discrete Multiple Tone (DMT)- G.fast system; a multiple input multiple-output (MIMO) DMTG.fast system, and MIMO G.fast system with different crosstalk cancellation methods. For each of these scenarios, however, Impulsive Noise (IN) is considered as the main limiting factor of performance system. In order to improve the performance of such systems, which use higher order QAM constellation such as G.fast system, this thesis examines the performance of DMT G.fast system over copper channel for six different higher signal constellations of M = 32, 128, 512, 2048, 8192 and 32768 in presence of IN modelled as the Middleton Class A (MCA) noise source. In contrast to existing work, this thesis presents and derives a novel equation of Optimal Threshold (OT) to improve the IN frequency domain mitigation methods applied to the G.fast standard over copper channel with higher QAM signal constellations. The second scenario, Multi-Line Copper Wire (MLCW) G.fast is adopted utilizing the proposed MLCW Chen model and is compared to a single line G-fast system by a comparative analysis in terms of Bit-Error-Rate(BER) performance of implementation of MLCW-DMT G.fast system. The third scenario, linear and non-linear crosstalk crosstalk interference cancellation methods are applied to MLCW G.fas and compared by a comparative analysis in terms of BER performance and the complexity of implementation.University of Technology for choosing me for their PhD scholarship and The Higher Committee For Education Development in Iraq(HCED

    Classification and modeling of power line noise using machine learning techniques

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering Faculty of Engineering and Built Environment June 2017The realization of robust, reliable and e cient data transmission have been the theme of recent research, most importantly in real channel such as the noisy, fading prone power line communication (PLC) channel. The focus is to exploit old techniques or create new techniques capable of improving the transmission reliability and also increasing the transmission capacity of the real communication channels. Multi-carrier modulation scheme such as Orthogonal Frequency Division Multiplexing (OFDM) utilizing conventional single-carrier modulation is developed to facilitate a robust data transmission, increasing transmission capacity (e cient bandwidth usage) and further reducing design complexity in PLC systems. On the contrary, the reliability of data transmission is subjected to several inhibiting factors as a result of the varying nature of the PLC channel. These inhibiting factors include noise, perturbation and disturbances. Contrary to the Additive White Gaussian noise (AWGN) model often assumed in several communication systems, this noise model fails to capture the attributes of noise encountered on the PLC channel. This is because periodic noise or random noise pulses injected by power electronic appliances on the network is a deviation from the AWGN. The nature of the noise is categorized as non-white non-Gaussian and unstable due to its impulsive attributes, thus, it is labeled as Non-additive White Gaussian Noise (NAWGN). These noise and disturbances results into long burst errors that corrupts signals being transmitted, thus, the PLC is labeled as a horrible or burst error channel. The e cient and optimal performance of a conventional linear receiver in the white Gaussian noise environment can therefore be made to drastically degrade in this NAWGN environment. Therefore, transmission reliability in such environment can be greatly enhanced if we know and exploit the knowledge of the channel's statistical attributes, thus, the need for developing statistical channel model based on empirical data. In this thesis, attention is focused on developing a recon gurable software de ned un-coded single-carrier and multicarrier PLC transceiver as a tool for realizing an optimized channel model for the narrowband PLC (NB-PLC) channel. First, a novel recon gurable software de ned un-coded single-carrier and multi-carrier PLC transceiver is developed for real-time NB-PLC transmission. The transceivers can be adapted to implement di erent waveforms for several real-time scenarios and performance evaluation. Due to the varying noise parameters obtained from country to country as a result of the dependence of noise impairment on mains voltages, topology of power line, place and time, the developed transceivers is capable of facilitating constant measurement campaigns to capture these varying noise parameters before statistical and mathematically inclined channel models are derived. Furthermore, the single-carrier (Binary Phase Shift Keying (BPSK), Di erential BPSK (DBPSK), Quadrature Phase Shift Keying (QPSK) and Di erential QPSK (DQPSK)) PLC transceiver system developed is used to facilitate a First-Order semi-hidden Fritchman Markov modeling (SHFMM) of the NB-PLC channel utilizing the e cient iterative Baum- Welch algorithm (BWA) for parameter estimation. The performance of each modulation scheme is evaluated in a mildly and heavily disturbed scenarios for both residential and laboratory site considered. The First-Order estimated error statistics of the realized First- Order SHFMM have been analytically validated in terms of performance metrics such as: log-likelihood ratio (LLR), error-free run distribution (EFRD), error probabilities, mean square error (MSE) and Chi-square ( 2) test. The reliability of the model results is also con rmed by an excellent match between the empirically obtained error sequence and the SHFMM regenerated error sequence as shown by the error-free run distribution plot. This thesis also reports a novel development of a low cost, low complexity Frequency-shift keying (FSK) - On-o keying (OOK) in-house hybrid PLC and VLC system. The functionality of this hybrid PLC-VLC transceiver system was ascertained at both residential and laboratory site at three di erent times of the day: morning, afternoon and evening. A First and Second-Order SHFMM of the hybrid system is realized. The error statistics of the realized First and Second-Order SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2). The Second-Order SHFMMs have also been analytically validated to be superior to the First-Order SHFMMs although at the expense of added computational complexity. The reliability of both First and Second-Order SHFMM results is con rmed by an excellent match between the empirical error sequences and SHFMM re-generated error sequences as shown by the EFRD plot. In addition, the multi-carrier (QPSK-OFDM, Di erential QPSK (DQPSK)-OFDM) and Di erential 8-PSK (D8PSK)-OFDM) PLC transceiver system developed is used to facilitate a First and Second-Order modeling of the NB-PLC system using the SHFMM and BWA for parameter estimation. The performance of each OFDM modulation scheme in evaluated and compared taking into consideration the mildly and heavily disturbed noise scenarios for the two measurement sites considered. The estimated error statistics of the realized SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2) test. The estimated Second-Order SHFMMs have been analytically validated to be outperform the First-Order SHFMMs although with added computational complexity. The reliability of the models is con rmed by an excellent match between the empirical data and SHFMM generated data as shown by the EFRD plot. The statistical models obtained using Baum-Welch to adjust the parameters of the adopted SHFMM are often locally maximized. To solve this problem, a novel Metropolis-Hastings algorithm, a Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) is developed to optimize the parameters of the adopted SHFMM. The algorithm is used to optimize the model results obtained from the single-carrier and multi-carrier PLC systems as well as that of the hybrid PLC-VLC system. Consequently, as deduced from the results, the models obtained utilizing the novel Metropolis-Hastings algorithm are more precise, near optimal model with parameter sets that are closer to the global maxima. Generally, the model results obtained in this thesis are relevant in enhancing transmission reliability on the PLC channel through the use of the models to improve the adopted modulation schemes, create adaptive modulation techniques, develop and evaluate forward error correction (FEC) codes such as a concatenation of Reed-Solomon and Permutation codes and other robust codes suitable for exploiting and mitigating noise impairments encountered on the low voltage NB-PLC channel. Furthermore, the recon gurable software de ned NB-PLC transceiver test-bed developed can be utilized for future measurement campaign as well as adapted for multiple-input and multiple-output (MIMO) PLC applications.MT201

    Classification and modeling of power line noise using machine learning techniques

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering Faculty of Engineering and Built Environment June 2017The realization of robust, reliable and e cient data transmission have been the theme of recent research, most importantly in real channel such as the noisy, fading prone power line communication (PLC) channel. The focus is to exploit old techniques or create new techniques capable of improving the transmission reliability and also increasing the transmission capacity of the real communication channels. Multi-carrier modulation scheme such as Orthogonal Frequency Division Multiplexing (OFDM) utilizing conventional single-carrier modulation is developed to facilitate a robust data transmission, increasing transmission capacity (e cient bandwidth usage) and further reducing design complexity in PLC systems. On the contrary, the reliability of data transmission is subjected to several inhibiting factors as a result of the varying nature of the PLC channel. These inhibiting factors include noise, perturbation and disturbances. Contrary to the Additive White Gaussian noise (AWGN) model often assumed in several communication systems, this noise model fails to capture the attributes of noise encountered on the PLC channel. This is because periodic noise or random noise pulses injected by power electronic appliances on the network is a deviation from the AWGN. The nature of the noise is categorized as non-white non-Gaussian and unstable due to its impulsive attributes, thus, it is labeled as Non-additive White Gaussian Noise (NAWGN). These noise and disturbances results into long burst errors that corrupts signals being transmitted, thus, the PLC is labeled as a horrible or burst error channel. The e cient and optimal performance of a conventional linear receiver in the white Gaussian noise environment can therefore be made to drastically degrade in this NAWGN environment. Therefore, transmission reliability in such environment can be greatly enhanced if we know and exploit the knowledge of the channel's statistical attributes, thus, the need for developing statistical channel model based on empirical data. In this thesis, attention is focused on developing a recon gurable software de ned un-coded single-carrier and multicarrier PLC transceiver as a tool for realizing an optimized channel model for the narrowband PLC (NB-PLC) channel. First, a novel recon gurable software de ned un-coded single-carrier and multi-carrier PLC transceiver is developed for real-time NB-PLC transmission. The transceivers can be adapted to implement di erent waveforms for several real-time scenarios and performance evaluation. Due to the varying noise parameters obtained from country to country as a result of the dependence of noise impairment on mains voltages, topology of power line, place and time, the developed transceivers is capable of facilitating constant measurement campaigns to capture these varying noise parameters before statistical and mathematically inclined channel models are derived. Furthermore, the single-carrier (Binary Phase Shift Keying (BPSK), Di erential BPSK (DBPSK), Quadrature Phase Shift Keying (QPSK) and Di erential QPSK (DQPSK)) PLC transceiver system developed is used to facilitate a First-Order semi-hidden Fritchman Markov modeling (SHFMM) of the NB-PLC channel utilizing the e cient iterative Baum- Welch algorithm (BWA) for parameter estimation. The performance of each modulation scheme is evaluated in a mildly and heavily disturbed scenarios for both residential and laboratory site considered. The First-Order estimated error statistics of the realized First- Order SHFMM have been analytically validated in terms of performance metrics such as: log-likelihood ratio (LLR), error-free run distribution (EFRD), error probabilities, mean square error (MSE) and Chi-square ( 2) test. The reliability of the model results is also con rmed by an excellent match between the empirically obtained error sequence and the SHFMM regenerated error sequence as shown by the error-free run distribution plot. This thesis also reports a novel development of a low cost, low complexity Frequency-shift keying (FSK) - On-o keying (OOK) in-house hybrid PLC and VLC system. The functionality of this hybrid PLC-VLC transceiver system was ascertained at both residential and laboratory site at three di erent times of the day: morning, afternoon and evening. A First and Second-Order SHFMM of the hybrid system is realized. The error statistics of the realized First and Second-Order SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2). The Second-Order SHFMMs have also been analytically validated to be superior to the First-Order SHFMMs although at the expense of added computational complexity. The reliability of both First and Second-Order SHFMM results is con rmed by an excellent match between the empirical error sequences and SHFMM re-generated error sequences as shown by the EFRD plot. In addition, the multi-carrier (QPSK-OFDM, Di erential QPSK (DQPSK)-OFDM) and Di erential 8-PSK (D8PSK)-OFDM) PLC transceiver system developed is used to facilitate a First and Second-Order modeling of the NB-PLC system using the SHFMM and BWA for parameter estimation. The performance of each OFDM modulation scheme in evaluated and compared taking into consideration the mildly and heavily disturbed noise scenarios for the two measurement sites considered. The estimated error statistics of the realized SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2) test. The estimated Second-Order SHFMMs have been analytically validated to be outperform the First-Order SHFMMs although with added computational complexity. The reliability of the models is con rmed by an excellent match between the empirical data and SHFMM generated data as shown by the EFRD plot. The statistical models obtained using Baum-Welch to adjust the parameters of the adopted SHFMM are often locally maximized. To solve this problem, a novel Metropolis-Hastings algorithm, a Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) is developed to optimize the parameters of the adopted SHFMM. The algorithm is used to optimize the model results obtained from the single-carrier and multi-carrier PLC systems as well as that of the hybrid PLC-VLC system. Consequently, as deduced from the results, the models obtained utilizing the novel Metropolis-Hastings algorithm are more precise, near optimal model with parameter sets that are closer to the global maxima. Generally, the model results obtained in this thesis are relevant in enhancing transmission reliability on the PLC channel through the use of the models to improve the adopted modulation schemes, create adaptive modulation techniques, develop and evaluate forward error correction (FEC) codes such as a concatenation of Reed-Solomon and Permutation codes and other robust codes suitable for exploiting and mitigating noise impairments encountered on the low voltage NB-PLC channel. Furthermore, the recon gurable software de ned NB-PLC transceiver test-bed developed can be utilized for future measurement campaign as well as adapted for multiple-input and multiple-output (MIMO) PLC applications.MT201
    corecore