26 research outputs found

    Generalized Mixability via Entropic Duality

    Full text link
    Mixability is a property of a loss which characterizes when fast convergence is possible in the game of prediction with expert advice. We show that a key property of mixability generalizes, and the exp and log operations present in the usual theory are not as special as one might have thought. In doing this we introduce a more general notion of Φ\Phi-mixability where Φ\Phi is a general entropy (\ie, any convex function on probabilities). We show how a property shared by the convex dual of any such entropy yields a natural algorithm (the minimizer of a regret bound) which, analogous to the classical aggregating algorithm, is guaranteed a constant regret when used with Φ\Phi-mixable losses. We characterize precisely which Φ\Phi have Φ\Phi-mixable losses and put forward a number of conjectures about the optimality and relationships between different choices of entropy.Comment: 20 pages, 1 figure. Supersedes the work in arXiv:1403.2433 [cs.LG

    Generalised Mixability, Constant Regret, and Bayesian Updating

    Full text link
    Mixability of a loss is known to characterise when constant regret bounds are achievable in games of prediction with expert advice through the use of Vovk's aggregating algorithm. We provide a new interpretation of mixability via convex analysis that highlights the role of the Kullback-Leibler divergence in its definition. This naturally generalises to what we call Φ\Phi-mixability where the Bregman divergence DΦD_\Phi replaces the KL divergence. We prove that losses that are Φ\Phi-mixable also enjoy constant regret bounds via a generalised aggregating algorithm that is similar to mirror descent.Comment: 12 page

    Generalized Mixability via Entropic Duality

    Get PDF
    Mixability is a property of a loss which characterizes when constant regret is possible in the game of prediction with expert advice. We show that a key property of mixability generalizes, and the exp\exp and log\log operations present in the usual theory are not as special as one might have thought. In doing so we introduce a more general notion of Φ\Phi-mixability where Φ\Phi is a general entropy (\ie, any convex function on probabilities). We show how a property shared by the convex dual of any such entropy yields a natural algorithm (the minimizer of a regret bound) which, analogous to the classical Aggregating Algorithm, is guaranteed a constant regret when used with Φ\Phi-mixable losses. We characterize which Φ\Phi have non-trivial Φ\Phi-mixable losses and relate Φ\Phi-mixability and its associated Aggregating Algorithm to potential-based methods, a Blackwell-like condition, mirror descent, and risk measures from finance. We also define a notion of ``dominance'' between different entropies in terms of bounds they guarantee and conjecture that classical mixability gives optimal bounds, for which we provide some supporting empirical evidence

    Fast rates in statistical and online learning

    Get PDF
    The speed with which a learning algorithm converges as it is presented with more data is a central problem in machine learning --- a fast rate of convergence means less data is needed for the same level of performance. The pursuit of fast rates in online and statistical learning has led to the discovery of many conditions in learning theory under which fast learning is possible. We show that most of these conditions are special cases of a single, unifying condition, that comes in two forms: the central condition for 'proper' learning algorithms that always output a hypothesis in the given model, and stochastic mixability for online algorithms that may make predictions outside of the model. We show that under surprisingly weak assumptions both conditions are, in a certain sense, equivalent. The central condition has a re-interpretation in terms of convexity of a set of pseudoprobabilities, linking it to density estimation under misspecification. For bounded losses, we show how the central condition enables a direct proof of fast rates and we prove its equivalence to the Bernstein condition, itself a generalization of the Tsybakov margin condition, both of which have played a central role in obtaining fast rates in statistical learning. Yet, while the Bernstein condition is two-sided, the central condition is one-sided, making it more suitable to deal with unbounded losses. In its stochastic mixability form, our condition generalizes both a stochastic exp-concavity condition identified by Juditsky, Rigollet and Tsybakov and Vovk's notion of mixability. Our unifying conditions thus provide a substantial step towards a characterization of fast rates in statistical learning, similar to how classical mixability characterizes constant regret in the sequential prediction with expert advice setting.Comment: 69 pages, 3 figure

    Transitions, Losses, and Re-parameterizations: Elements of Prediction Games

    No full text
    This thesis presents some geometric insights into three different types of two-player prediction games – namely general learning task, prediction with expert advice, and online convex optimization. These games differ in the nature of the opponent (stochastic, adversarial, or intermediate), the order of the players' move, and the utility function. The insights shed some light on the understanding of the intrinsic barriers of the prediction problems and the design of computationally efficient learning algorithms with strong theoretical guarantees (such as generalizability, statistical consistency, and constant regret etc.). The main contributions of the thesis are: • Leveraging concepts from statistical decision theory, we develop a necessary toolkit for formalizing the prediction games mentioned above and quantifying the objective of them. • We investigate the cost-sensitive classification problem which is an instantiation of the general learning task, and demonstrate the hardness of this problem by producing the lower bounds on the minimax risk of it. Then we analyse the impact of imposing constraints (such as corruption level, and privacy requirements etc.) on the general learning task. This naturally leads us to further investigation of strong data processing inequalities which is a fundamental concept in information theory. Furthermore, by extending the hypothesis testing interpretation of standard privacy definitions, we propose an asymmetric (prioritized) privacy definition. • We study efficient merging schemes for prediction with expert advice problem and the geometric properties (mixability and exp-concavity) of the loss functions that guarantee constant regret bounds. As a result of our study, we construct two types of link functions (one using calculus approach and another using geometric approach) that can re-parameterize any binary mixable loss into an exp-concave loss. • We focus on some recent algorithms for online convex optimization, which exploit the easy nature of the data (such as sparsity, predictable sequences, and curved losses) in order to achieve better regret bound while ensuring the protection against the worst case scenario. We unify some of these existing techniques to obtain new update rules for the cases when these easy instances occur together, and analyse the regret bounds of them

    Adaptivity in Online and Statistical Learning

    Get PDF
    Many modern machine learning algorithms, though successful, are still based on heuristics. In a typical application, such heuristics may manifest in the choice of a specific Neural Network structure, its number of parameters, or the learning rate during training. Relying on these heuristics is not ideal from a computational perspective (often involving multiple runs of the algorithm), and can also lead to over-fitting in some cases. This motivates the following question: for which machine learning tasks/settings do there exist efficient algorithms that automatically adapt to the best parameters? Characterizing the settings where this is the case and designing corresponding (parameter-free) algorithms within the online learning framework constitutes one of this thesis' primary goals. Towards this end, we develop algorithms for constrained and unconstrained online convex optimization that can automatically adapt to various parameters of interest such as the Lipschitz constant, the curvature of the sequence of losses, and the norm of the comparator. We also derive new performance lower-bounds characterizing the limits of adaptivity for algorithms in these settings. Part of systematizing the choice of machine learning methods also involves having ``certificates'' for the performance of algorithms. In the statistical learning setting, this translates to having (tight) generalization bounds. Adaptivity can manifest here through data-dependent bounds that become small whenever the problem is ``easy''. In this thesis, we provide such data-dependent bounds for the expected loss (the standard risk measure) and other risk measures. We also explore how such bounds can be used in the context of risk-monotonicity
    corecore