6 research outputs found

    A QPTAS for Maximum Weight Independent Set of Polygons with Polylogarithmically Many Vertices

    Full text link
    The Maximum Weight Independent Set of Polygons problem is a fundamental problem in computational geometry. Given a set of weighted polygons in the 2-dimensional plane, the goal is to find a set of pairwise non-overlapping polygons with maximum total weight. Due to its wide range of applications, the MWISP problem and its special cases have been extensively studied both in the approximation algorithms and the computational geometry community. Despite a lot of research, its general case is not well-understood. Currently the best known polynomial time algorithm achieves an approximation ratio of n^(epsilon) [Fox and Pach, SODA 2011], and it is not even clear whether the problem is APX-hard. We present a (1+epsilon)-approximation algorithm, assuming that each polygon in the input has at most a polylogarithmic number of vertices. Our algorithm has quasi-polynomial running time. We use a recently introduced framework for approximating maximum weight independent set in geometric intersection graphs. The framework has been used to construct a QPTAS in the much simpler case of axis-parallel rectangles. We extend it in two ways, to adapt it to our much more general setting. First, we show that its technical core can be reduced to the case when all input polygons are triangles. Secondly, we replace its key technical ingredient which is a method to partition the plane using only few edges such that the objects stemming from the optimal solution are evenly distributed among the resulting faces and each object is intersected only a few times. Our new procedure for this task is not more complex than the original one, and it can handle the arising difficulties due to the arbitrary angles of the polygons. Note that already this obstacle makes the known analysis for the above framework fail. Also, in general it is not well understood how to handle this difficulty by efficient approximation algorithms

    Constant Integrality Gap LP Formulations of Unsplittable Flow on a Path

    No full text
    The Unsplittable Flow Problem on a Path (UFPP) isacore problem in many important settings such as network flows, bandwidth allocation, resource constraint scheduling, and interval packing. We are given a path with capacities on the edges and a set of tasks, each task having a demand, a profit, a source and a destination vertex on the path. The goal is to compute a subset of tasks of maximum profit that does not violate the edge capacities. In practical applications generic approaches such as integer programming (IP) methods are desirable. Unfortunately, no IP-formulation is known for the problem whose LP-relaxation has an integrality gap that is provably constant. For the unweighted case, we show that adding a few constraints to the standard LP of the problem is sufficient to make the integrality gap drop from Ω(n) to O(1). This positively answers an open question in [Chekuri et al., APPROX 2009]. For the general (weighted) case, we present an extended formulation with integrality gap bounded by 7+ε. This matches the best known approximation factor for the problem [Bonsma et al., FOCS 2011]. This result exploits crucially a technique for embedding dynamic programs into linear programs. We believe that this method could be useful to strengthen LP-formulations for other problems as well and might eventually speed up computations due to stronger problem formulations

    Constant integrality gap LP formulations of unsplittable flow on a path

    No full text
    The Unsplittable Flow Problem on a Path (UFPP) is a core problem in many important settings such as network flows, bandwidth allocation, resource constraint scheduling, and interval packing. We are given a path with capacities on the edges and a set of tasks, each task having a demand, a profit, a source and a destination vertex on the path. The goal is to compute a subset of tasks of maximum profit that does not violate the edge capacities. In practical applications generic approaches such as integer programming (IP) methods are desirable. Unfortunately, no IP-formulation is known for the problem whose LP-relaxation has an integrality gap that is provably constant. For the unweighted case, we show that adding a few constraints to the standard LP of the problem is sufficient to make the integrality gap drop from Ω(n) to O(1). This positively answers an open question in [Chekuri et al., APPROX 2009]. For the general (weighted) case, we present an extended formulation with integrality gap bounded by 7 + ε. This matches the best known approximation factor for the problem [Bonsma et al., FOCS 2011]. This result exploits crucially a technique for embedding dynamic programs into linear programs. We believe that this method could be useful to strengthen LP-formulations for other problems as well and might eventually speed up computations due to stronger problem formulations. © 2013 Springer-Verlag

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore