261 research outputs found

    Volumetric Untrimming: Precise decomposition of trimmed trivariates into tensor products

    Full text link
    3D objects, modeled using Computer Aided Geometric Design tools, are traditionally represented using a boundary representation (B-rep), and typically use spline functions to parameterize these boundary surfaces. However, recent development in physical analysis, in isogeometric analysis (IGA) in specific, necessitates a volumetric parametrization of the interior of the object. IGA is performed directly by integrating over the spline spaces of the volumetric spline representation of the object. Typically, tensor-product B-spline trivariates are used to parameterize the volumetric domain. A general 3D object, that can be modeled in contemporary B-rep CAD tools, is typically represented using trimmed B-spline surfaces. In order to capture the generality of the contemporary B-rep modeling space, while supporting IGA needs, Massarwi and Elber (2016) proposed the use of trimmed trivariates volumetric elements. However, the use of trimmed geometry makes the integration process more difficult since integration over trimmed B-spline basis functions is a highly challenging task. In this work, we propose an algorithm that precisely decomposes a trimmed B-spline trivariate into a set of (singular only on the boundary) tensor-product B-spline trivariates, that can be utilized to simplify the integration process in IGA. The trimmed B-spline trivariate is first subdivided into a set of trimmed B\'ezier trivariates, at all its internal knots. Then, each trimmed B\'ezier trivariate, is decomposed into a set of mutually exclusive tensor-product B-spline trivariates, that precisely cover the entire trimmed domain. This process, denoted untrimming, can be performed in either the Euclidean space or the parametric space of the trivariate. We present examples on complex trimmed trivariates' based geometry, and we demonstrate the effectiveness of the method by applying IGA over the (untrimmed) results.Comment: 18 pages, 32 figures. Contribution accepted in International Conference on Geometric Modeling and Processing (GMP 2019

    Advanced discontinuous integral-equation schemes for the versatile electromagnetic analysis of complex structures

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICLes Equacions Integrals superficials més importants són l'Equació de Camp Elèctric (EFIE), per a l'anàlisi de la dispersió electromagnètica d'objectes conductors perfectes (PEC), i la formulació Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT), orientada a l'anàlisi d'objectes homogenis penetrables. Ambdues són normalment discretitzades, amb el Mètode dels Moments (MoM), amb funcions base div-conformes, dependents de les arestes del mallat. Les discretitzacions div-conformes de les formulacions EFIE i PMCHWT representen esquemes conformes; és a dir, amb solucions convergents a dins de l'espai físic de corrents. Tanmateix, les implementations MoM div-conformes requereixen que el mallat sigui conforme geomètricament, amb cada parell de triangles adjacents compartint només una aresta. El desenvolupament d'esquemes div-conformes per a objectes compostos amb línies al llarg de les quals tres o més regions hi intersecten, esdevé molt incòmoda perquè cal definir condicions de continuïtat especials en aquestes línies d'intersecció. A més, els mallats que resulten de la juxtaposició de subdominis independentment mallats són típicament no-conformes geomètricament i per tant no aptes per a l'anàlisi div-conforme convencional en Mètode dels Moments. En aquesta Tesi, es tracta l'anàlisi robusta, precisa i versàtil de la dispersió electromagnètica d'objectes conductors o penetrables amb forma arbitrària i d'objectes compostos amb línies d'intersecció entre differents regions, ja sigui amb mallats conformes com no-conformes. Amb aquest objectiu, fem ús de la formulació d'equació integral EFIE–PMCHWT, la qual resulta de l'aplicació de les formulacions EFIE o PMCHWTal llarg de superfícies de contorn, respectivament, incloent regions conductores o separant regions penetrables. Els esquemes proposats en aquesta Tesi es basen en el desenvolupament dels corrents amb conjunts de funcions base discontínues a través de les arestes del mallat i dependents només dels triangles del mallat. Aquesta estratègia dóna lloc a integrals de contorn amb Kernels hypersingulars, que maneguem mitjançant el testeig de les equacions amb funcions de testeig especialment dissenyades, definides fora de les triangulacions de la superfície de contorn, a dins de la regió a on els camps són zero d'acord amb al Teorema d'Equivalència superficial. Les nostres implementacions de la formulació EFIE-PMCHWT, dependents només de triangles, mostren millor precisió respecte dels esquemes continus convencionals en l'anàlisi d'objectes angulosos a on el modelatge acurat del comportament dels camps singulars és d'importància cabdal. A més, els nostres esquemes mostren en general una gran flexibilitat en l'anàlisi d'objectes compostos amb línies d'intersecció entre regions ja que no hi cal el modelatge especial dels corrents. Finalment, les implementacions proposades poden abordar l'anàlisi d'objectes amb forma arbitrària, totalment homogenis o homogenis a trossos, i amb mallats geomètricament no-conformes.The most prominent surface integral equations, the electric field integral equation (EFIE) used for the scattering analysis of perfectly electrically conducting (PEC) targets and the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) formulation commonly utilized for the analysis of homogeneous penetrable objects, are usually discretized, in the context of method of moments (MoM), with edge-based divergence-conforming basis functions. Divergence-conforming discretizations of the EFIE and PMCHWT formulations excel asconforming schemes, hence with converging solutions in the physical space of currents. However, the divergence-conforming MoM implementations require the underlying mesh to be geometrically conformal, with pairs of adjacent facets sharing a single edge. Thedevelopment of divergence-conforming schemes for composite objects with junctions, viz.boundary lines where more than two regions intersect, becomes somewhat awkward because of the definition of special continuity conditions at junctions. Moreover, the meshes arising from the juxtaposition of independently meshed subdomains in the modular design of complex objects are typically nonconformal and thus not suitable for conventional divergence-conforming MoM schemes. In this thesis, we address the robust, accurate and versatile scattering analysis of PEC and penetrable objects with arbitrary shape and composite objects with junctions meshed with conformal or nonconformal meshes. For this purpose, we employ the EFIE–PMCHWT integral-equation formulation, which follows from the application of the EFIE or PMCHWT formulations over boundary surfaces, respectively, enclosing PEC regions or separating penetrable regions. The proposed schemes rely on the expansion of the corrents with the facet-based, discontinuous-across-edges basis functions. This choice gives rise to boundary integrals with hypersingular kernels, which we handle by testing the equations with well-suited testing functions defined off the boundary tessellation, inside the region where, in light of the surface equivalence principle, the fields must be zero. Our facet-based EFIE-PMCHWT implementations exhibit improved accuracy when compared with the conventional continuous schemes in the analysis of sharp-edged targets where the accurate modelling of singular fields is of great importance. Moreover, our schemes manifest in general great flexibility in the analysis of composite objects with junctions as the special modelling of currents at junctions is not required. Finally, the proposed implementations can handle geometrically nonconformal meshes when applied to piecewise (or fully) homogeneous arbitrarily shaped objects.Postprint (published version

    Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures

    Get PDF
    The voxel finite cell method employs unfitted finite element meshes and voxel quadrature rules to seamlessly transfer CT data into patient-specific bone discretizations. The method, however, still requires the explicit parametrization of boundary surfaces to impose traction and displacement boundary conditions, which constitutes a potential roadblock to automation. We explore a phase-field based formulation for imposing traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as initial condition. Phase-field approximations of the boundary and its gradient are then employed to transfer all boundary terms in the variational formulation into volumetric terms. We show that in the context of the voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions defined over explicit sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human femur and a vertebral body

    QuickCSG: Fast Arbitrary Boolean Combinations of N Solids

    Get PDF
    QuickCSG computes the result for general N-polyhedron boolean expressions without an intermediate tree of solids. We propose a vertex-centric view of the problem, which simplifies the identification of final geometric contributions, and facilitates its spatial decomposition. The problem is then cast in a single KD-tree exploration, geared toward the result by early pruning of any region of space not contributing to the final surface. We assume strong regularity properties on the input meshes and that they are in general position. This simplifying assumption, in combination with our vertex-centric approach, improves the speed of the approach. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to dozens of polyhedra. The algorithm also outperforms GPU implementations with approximate discretizations, while producing an output without redundant facets. Despite the restrictive assumptions on the input, we show the usefulness of QuickCSG for applications with large CSG problems and strong temporal constraints, e.g. modeling for 3D printers, reconstruction from visual hulls and collision detection

    Robust interactive simulation of deformable solids with detailed geometry using corotational FEM

    Get PDF
    This thesis focuses on the interactive simulation of highly detailed deformable solids modelled with the Corotational Finite Element Method. Starting from continuum mechanics we derive the discrete equations of motion and present a simulation scheme with support for user-in-the-loop interaction, geometric constraints and contact treatment. The interplay between accuracy and computational cost is discussed in depth, and practical approximations are analyzed with an emphasis on robustness and efficiency, as required by interactive simulation. The first part of the thesis focuses on deformable material discretization using the Finite Element Method with simplex elements and a corotational linear constitutive model, and presents our contributions to the solution of widely reported robustness problems in case of large stretch deformations and finite element degeneration. First,we introduce a stress differential approximation for quasi-implicit corotational linear FEM that improves its results for large deformations and closely matches the fullyimplicit solution with minor computational overhead. Next, we address the problem ofrobustness and realism in simulations involving element degeneration, and show that existing methods have previously unreported flaws that seriously threaten robustness and physical plausibility in interactive applications. We propose a new continuous-time approach, degeneration-aware polar decomposition, that avoids such flaws and yields robust degeneration recovery. In the second part we focus on geometry representation and contact determination for deformable solids with highly detailed surfaces. Given a high resolution closed surface mesh we automatically build a coarse embedding tetrahedralization and a partitioned representation of the collision geometry in a preprocess. During simulation, our proposed contact determination algorithm finds all intersecting pairs of deformed triangles using a memory-efficient barycentric bounding volume hierarchy, connects them into potentially disjoint intersection curves and performs a topological flood process on the exact intersection surfaces to discover a minimal set of contact points. A novel contact normal definition is used to find contact point correspondences suitable for contact treatment.Aquesta tesi tracta sobre la simulació interactiva de sòlids deformables amb superfícies detallades, modelats amb el Mètode dels Elements Finits (FEM) Corotacionals. A partir de la mecànica del continuu derivem les equacions del moviment discretes i presentem un esquema de simulació amb suport per a interacció d'usuari, restriccions geomètriques i tractament de contactes. Aprofundim en la interrelació entre precisió i cost de computació, i analitzem aproximacions pràctiques fent èmfasi en la robustesa i l'eficiència necessàries per a la simulació interactiva. La primera part de la tesi es centra en la discretització del material deformable mitjançant el Mètode dels Elements Finits amb elements de tipus s'implex i un model constituent basat en elasticitat linial corotacional, i presenta les nostres contribucions a la solució de problemes de robustesa àmpliament coneguts que apareixen en cas de sobreelongament i degeneració dels elements finits. Primer introduïm una aproximació dels diferencials d'estress per a FEM linial corotacional amb integració quasi-implícita que en millora els resultats per a deformacions grans i s'apropa a la solució implícita amb un baix cost computacional. A continuació tractem el problema de la robustesa i el realisme en simulacions que inclouen degeneració d'elements finits, i mostrem que els mètodes existents presenten inconvenients que posen en perill la robustesa plausibilitat de la simulació en aplicacions interactives. Proposem un enfocament nou basat en temps continuu, la descomposició polar amb coneixement de degeneració, que evita els inconvenients esmentats i permet corregir la degeneració de forma robusta. A la segona part de la tesi ens centrem en la representació de geometria i la determinació de contactes per a sòlids deformables amb superfícies detallades. A partir d'una malla de superfície tancada construím una tetraedralització englobant de forma automàtica en un preprocés, i particionem la geometria de colisió. Proposem un algorisme de detecció de contactes que troba tots els parells de triangles deformats que intersecten mitjançant una jerarquia de volums englobants en coordenades baricèntriques, els connecta en corbes d'intersecció potencialment disjuntes i realitza un procés d'inundació topològica sobre les superfícies d'intersecció exactes per tal de descobrir un conjunt mínim de punts de contacte. Usem una definició nova de la normal de contacte per tal de calcular correspondències entre punts de contacte útils per al seu tractament.Postprint (published version

    QuickCSG: Fast Arbitrary Boolean Combinations of N Solids

    Full text link
    QuickCSG computes the result for general N-polyhedron boolean expressions without an intermediate tree of solids. We propose a vertex-centric view of the problem, which simplifies the identification of final geometric contributions, and facilitates its spatial decomposition. The problem is then cast in a single KD-tree exploration, geared toward the result by early pruning of any region of space not contributing to the final surface. We assume strong regularity properties on the input meshes and that they are in general position. This simplifying assumption, in combination with our vertex-centric approach, improves the speed of the approach. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to dozens of polyhedra. The algorithm also outperforms GPU implementations with approximate discretizations, while producing an output without redundant facets. Despite the restrictive assumptions on the input, we show the usefulness of QuickCSG for applications with large CSG problems and strong temporal constraints, e.g. modeling for 3D printers, reconstruction from visual hulls and collision detection

    Advanced discontinuous integral-equation schemes for the versatile electromagnetic analysis of complex structures

    Get PDF
    Les Equacions Integrals superficials més importants són l'Equació de Camp Elèctric (EFIE), per a l'anàlisi de la dispersió electromagnètica d'objectes conductors perfectes (PEC), i la formulació Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT), orientada a l'anàlisi d'objectes homogenis penetrables. Ambdues són normalment discretitzades, amb el Mètode dels Moments (MoM), amb funcions base div-conformes, dependents de les arestes del mallat. Les discretitzacions div-conformes de les formulacions EFIE i PMCHWT representen esquemes conformes; és a dir, amb solucions convergents a dins de l'espai físic de corrents. Tanmateix, les implementations MoM div-conformes requereixen que el mallat sigui conforme geomètricament, amb cada parell de triangles adjacents compartint només una aresta. El desenvolupament d'esquemes div-conformes per a objectes compostos amb línies al llarg de les quals tres o més regions hi intersecten, esdevé molt incòmoda perquè cal definir condicions de continuïtat especials en aquestes línies d'intersecció. A més, els mallats que resulten de la juxtaposició de subdominis independentment mallats són típicament no-conformes geomètricament i per tant no aptes per a l'anàlisi div-conforme convencional en Mètode dels Moments. En aquesta Tesi, es tracta l'anàlisi robusta, precisa i versàtil de la dispersió electromagnètica d'objectes conductors o penetrables amb forma arbitrària i d'objectes compostos amb línies d'intersecció entre differents regions, ja sigui amb mallats conformes com no-conformes. Amb aquest objectiu, fem ús de la formulació d'equació integral EFIE–PMCHWT, la qual resulta de l'aplicació de les formulacions EFIE o PMCHWTal llarg de superfícies de contorn, respectivament, incloent regions conductores o separant regions penetrables. Els esquemes proposats en aquesta Tesi es basen en el desenvolupament dels corrents amb conjunts de funcions base discontínues a través de les arestes del mallat i dependents només dels triangles del mallat. Aquesta estratègia dóna lloc a integrals de contorn amb Kernels hypersingulars, que maneguem mitjançant el testeig de les equacions amb funcions de testeig especialment dissenyades, definides fora de les triangulacions de la superfície de contorn, a dins de la regió a on els camps són zero d'acord amb al Teorema d'Equivalència superficial. Les nostres implementacions de la formulació EFIE-PMCHWT, dependents només de triangles, mostren millor precisió respecte dels esquemes continus convencionals en l'anàlisi d'objectes angulosos a on el modelatge acurat del comportament dels camps singulars és d'importància cabdal. A més, els nostres esquemes mostren en general una gran flexibilitat en l'anàlisi d'objectes compostos amb línies d'intersecció entre regions ja que no hi cal el modelatge especial dels corrents. Finalment, les implementacions proposades poden abordar l'anàlisi d'objectes amb forma arbitrària, totalment homogenis o homogenis a trossos, i amb mallats geomètricament no-conformes.The most prominent surface integral equations, the electric field integral equation (EFIE) used for the scattering analysis of perfectly electrically conducting (PEC) targets and the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) formulation commonly utilized for the analysis of homogeneous penetrable objects, are usually discretized, in the context of method of moments (MoM), with edge-based divergence-conforming basis functions. Divergence-conforming discretizations of the EFIE and PMCHWT formulations excel asconforming schemes, hence with converging solutions in the physical space of currents. However, the divergence-conforming MoM implementations require the underlying mesh to be geometrically conformal, with pairs of adjacent facets sharing a single edge. Thedevelopment of divergence-conforming schemes for composite objects with junctions, viz.boundary lines where more than two regions intersect, becomes somewhat awkward because of the definition of special continuity conditions at junctions. Moreover, the meshes arising from the juxtaposition of independently meshed subdomains in the modular design of complex objects are typically nonconformal and thus not suitable for conventional divergence-conforming MoM schemes. In this thesis, we address the robust, accurate and versatile scattering analysis of PEC and penetrable objects with arbitrary shape and composite objects with junctions meshed with conformal or nonconformal meshes. For this purpose, we employ the EFIE–PMCHWT integral-equation formulation, which follows from the application of the EFIE or PMCHWT formulations over boundary surfaces, respectively, enclosing PEC regions or separating penetrable regions. The proposed schemes rely on the expansion of the corrents with the facet-based, discontinuous-across-edges basis functions. This choice gives rise to boundary integrals with hypersingular kernels, which we handle by testing the equations with well-suited testing functions defined off the boundary tessellation, inside the region where, in light of the surface equivalence principle, the fields must be zero. Our facet-based EFIE-PMCHWT implementations exhibit improved accuracy when compared with the conventional continuous schemes in the analysis of sharp-edged targets where the accurate modelling of singular fields is of great importance. Moreover, our schemes manifest in general great flexibility in the analysis of composite objects with junctions as the special modelling of currents at junctions is not required. Finally, the proposed implementations can handle geometrically nonconformal meshes when applied to piecewise (or fully) homogeneous arbitrarily shaped objects
    • …
    corecore