9,633 research outputs found

    Global state predicates in rough real-time

    Get PDF
    Distributed systems are characterized by the fact that the constituent processes have neither common memory nor a common system clock. These processes communicate solely via message passing. While providing a number of benefits such as increased reliability, increased computational power, and geographic dispersion, this architecture significantly complicates many of the tasks of software development and verification, including evaluation of the program state. In the case of distributed systems, the program state is comprised of the local states of the constituent processes, as well as the state of the channels between processes, and is called the global state.;With no common system clock, many distributed system protocols rely on the global ordering of local process events imposed by the message passing that occurs between processes. This leads to a partial global ordering of local process events, which can then be used to determine which process states could (or could not) have occurred simultaneously.;Traditional predicate evaluation protocols evaluate predicates on the global state of a distributed computation using consistent global states. This evaluation is complicated by the fact that the event ordering imposed by message passing is only partial. A complete history of the global states that occurred during an execution cannot always be constructed. This introduces inefficiency into predicate detection protocols and prohibits detection of certain predicates.;This dissertation explores the use of this rough global time base for global state predicate evaluation within distributed systems. By structuring the evaluation on the assumption that a global time base exists, we can develop simple and efficient protocols for both stable and unstable predicate evaluation. Further, we can evaluate certain predicates which are not easily evaluated using consistent global states. We demonstrate these advantages by developing protocols for detection of distributed termination, distributed deadlock detection, and detection of certain unstable predicates as they occur. as the global time base is rough, we can only detect unstable predicates which remain true for a sufficient duration. We additionally develop several formalizations which assist the protocol developer in dealing with the fact that the global time base is not perfect. We demonstrate the application of these formalizations within the protocols that we develop

    Monitoring Partially Synchronous Distributed Systems using SMT Solvers

    Full text link
    In this paper, we discuss the feasibility of monitoring partially synchronous distributed systems to detect latent bugs, i.e., errors caused by concurrency and race conditions among concurrent processes. We present a monitoring framework where we model both system constraints and latent bugs as Satisfiability Modulo Theories (SMT) formulas, and we detect the presence of latent bugs using an SMT solver. We demonstrate the feasibility of our framework using both synthetic applications where latent bugs occur at any time with random probability and an application involving exclusive access to a shared resource with a subtle timing bug. We illustrate how the time required for verification is affected by parameters such as communication frequency, latency, and clock skew. Our results show that our framework can be used for real-life applications, and because our framework uses SMT solvers, the range of appropriate applications will increase as these solvers become more efficient over time.Comment: Technical Report corresponding to the paper accepted at Runtime Verification (RV) 201

    Context-Dependent Diffusion Network for Visual Relationship Detection

    Full text link
    Visual relationship detection can bridge the gap between computer vision and natural language for scene understanding of images. Different from pure object recognition tasks, the relation triplets of subject-predicate-object lie on an extreme diversity space, such as \textit{person-behind-person} and \textit{car-behind-building}, while suffering from the problem of combinatorial explosion. In this paper, we propose a context-dependent diffusion network (CDDN) framework to deal with visual relationship detection. To capture the interactions of different object instances, two types of graphs, word semantic graph and visual scene graph, are constructed to encode global context interdependency. The semantic graph is built through language priors to model semantic correlations across objects, whilst the visual scene graph defines the connections of scene objects so as to utilize the surrounding scene information. For the graph-structured data, we design a diffusion network to adaptively aggregate information from contexts, which can effectively learn latent representations of visual relationships and well cater to visual relationship detection in view of its isomorphic invariance to graphs. Experiments on two widely-used datasets demonstrate that our proposed method is more effective and achieves the state-of-the-art performance.Comment: 8 pages, 3 figures, 2018 ACM Multimedia Conference (MM'18

    The ciao modular, standalone compiler and its generic program processing library

    Get PDF
    Ciao Prolog incorporates a module system which allows sepárate compilation and sensible creation of standalone executables. We describe some of the main aspects of the Ciao modular compiler, ciaoc, which takes advantage of the characteristics of the Ciao Prolog module system to automatically perform sepárate and incremental compilation and efficiently build small, standalone executables with competitive run-time performance, ciaoc can also detect statically a larger number of programming errors. We also present a generic code processing library for handling modular programs, which provides an important part of the functionality of ciaoc. This library allows the development of program analysis and transformation tools in a way that is to some extent orthogonal to the details of module system design, and has been used in the implementation of ciaoc and other Ciao system tools. We also describe the different types of executables which can be generated by the Ciao compiler, which offer different tradeoffs between executable size, startup time, and portability, depending, among other factors, on the linking regime used (static, dynamic, lazy, etc.). Finally, we provide experimental data which illustrate these tradeoffs
    • …
    corecore