9,070 research outputs found

    Consistency for Parametric Interval Markov Chains

    Get PDF
    Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory by Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In this paper we introduce and study an extension of Interval Markov Chains with parametric intervals. In particular, we investigate the consistency problem for such models and propose an efficient solution for the subclass of parametric IMCs with local parameters only. We also show that this problem is still decidable for parametric IMCs with global parameters, although more complex in this case

    Reachability in Parametric Interval Markov Chains using Constraints

    Full text link
    Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs -- consistency, qualitative reachability and quantitative reachability -- that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results

    Parameter Synthesis for Parametric Interval Markov Chains

    Get PDF
    AELOS_HCERES2020, STR_HCERES2020Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory introduced by Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In this paper we study parameter synthesis for a parametric extension of Interval Markov Chains in which the endpoints of intervals may be replaced with parameters. In particular, we propose constructions for the synthesis of all parameter values ensuring several properties such as consistency and consistent reachability in both the existential and universal settings with respect to implementations. We also discuss how our constructions can be modified in order to synthesise all parameter values ensuring other typical properties

    Regenerative block empirical likelihood for Markov chains

    Full text link
    Empirical likelihood is a powerful semi-parametric method increasingly investigated in the literature. However, most authors essentially focus on an i.i.d. setting. In the case of dependent data, the classical empirical likelihood method cannot be directly applied on the data but rather on blocks of consecutive data catching the dependence structure. Generalization of empirical likelihood based on the construction of blocks of increasing nonrandom length have been proposed for time series satisfying mixing conditions. Following some recent developments in the bootstrap literature, we propose a generalization for a large class of Markov chains, based on small blocks of various lengths. Our approach makes use of the regenerative structure of Markov chains, which allows us to construct blocks which are almost independent (independent in the atomic case). We obtain the asymptotic validity of the method for positive recurrent Markov chains and present some simulation results

    Bivariate modelling of precipitation and temperature using a non-homogeneous hidden Markov model

    Full text link
    Aiming to generate realistic synthetic times series of the bivariate process of daily mean temperature and precipitations, we introduce a non-homogeneous hidden Markov model. The non-homogeneity lies in periodic transition probabilities between the hidden states, and time-dependent emission distributions. This enables the model to account for the non-stationary behaviour of weather variables. By carefully choosing the emission distributions, it is also possible to model the dependance structure between the two variables. The model is applied to several weather stations in Europe with various climates, and we show that it is able to simulate realistic bivariate time series

    Selection of proposal distributions for generalized importance sampling estimators

    Get PDF
    The standard importance sampling (IS) estimator, generally does not work well in examples involving simultaneous inference on several targets as the importance weights can take arbitrarily large values making the estimator highly unstable. In such situations, alternative generalized IS estimators involving samples from multiple proposal distributions are preferred. Just like the standard IS, the success of these multiple IS estimators crucially depends on the choice of the proposal distributions. The selection of these proposal distributions is the focus of this article. We propose three methods based on (i) a geometric space filling coverage criterion, (ii) a minimax variance approach, and (iii) a maximum entropy approach. The first two methods are applicable to any multi-proposal IS estimator, whereas the third approach is described in the context of Doss's (2010) two-stage IS estimator. For the first method we propose a suitable measure of coverage based on the symmetric Kullback-Leibler divergence, while the second and third approaches use estimates of asymptotic variances of Doss's (2010) IS estimator and Geyer's (1994) reverse logistic estimator, respectively. Thus, we provide consistent spectral variance estimators for these asymptotic variances. The proposed methods for selecting proposal densities are illustrated using various detailed examples
    • …
    corecore