233 research outputs found

    Modeling of Speech Parameter Sequence Considering Global Variance for HMM-Based Speech Synthesis

    Get PDF
    Speech technologies such as speech recognition and speech synthesis have many potential applications since speech is the main way in which most people communicate. Various linguistic sounds are produced by controlling the configuration of oral cavities to convey a message in speech communication. The produced speech sounds temporally vary and ar

    Statistical parametric speech synthesis based on sinusoidal models

    Get PDF
    This study focuses on improving the quality of statistical speech synthesis based on sinusoidal models. Vocoders play a crucial role during the parametrisation and reconstruction process, so we first lead an experimental comparison of a broad range of the leading vocoder types. Although our study shows that for analysis / synthesis, sinusoidal models with complex amplitudes can generate high quality of speech compared with source-filter ones, component sinusoids are correlated with each other, and the number of parameters is also high and varies in each frame, which constrains its application for statistical speech synthesis. Therefore, we first propose a perceptually based dynamic sinusoidal model (PDM) to decrease and fix the number of components typically used in the standard sinusoidal model. Then, in order to apply the proposed vocoder with an HMM-based speech synthesis system (HTS), two strategies for modelling sinusoidal parameters have been compared. In the first method (DIR parameterisation), features extracted from the fixed- and low-dimensional PDM are statistically modelled directly. In the second method (INT parameterisation), we convert both static amplitude and dynamic slope from all the harmonics of a signal, which we term the Harmonic Dynamic Model (HDM), to intermediate parameters (regularised cepstral coefficients (RDC)) for modelling. Our results show that HDM with intermediate parameters can generate comparable quality to STRAIGHT. As correlations between features in the dynamic model cannot be modelled satisfactorily by a typical HMM-based system with diagonal covariance, we have applied and tested a deep neural network (DNN) for modelling features from these two methods. To fully exploit DNN capabilities, we investigate ways to combine INT and DIR at the level of both DNN modelling and waveform generation. For DNN training, we propose to use multi-task learning to model cepstra (from INT) and log amplitudes (from DIR) as primary and secondary tasks. We conclude from our results that sinusoidal models are indeed highly suited for statistical parametric synthesis. The proposed method outperforms the state-of-the-art STRAIGHT-based equivalent when used in conjunction with DNNs. To further improve the voice quality, phase features generated from the proposed vocoder also need to be parameterised and integrated into statistical modelling. Here, an alternative statistical model referred to as the complex-valued neural network (CVNN), which treats complex coefficients as a whole, is proposed to model complex amplitude explicitly. A complex-valued back-propagation algorithm using a logarithmic minimisation criterion which includes both amplitude and phase errors is used as a learning rule. Three parameterisation methods are studied for mapping text to acoustic features: RDC / real-valued log amplitude, complex-valued amplitude with minimum phase and complex-valued amplitude with mixed phase. Our results show the potential of using CVNNs for modelling both real and complex-valued acoustic features. Overall, this thesis has established competitive alternative vocoders for speech parametrisation and reconstruction. The utilisation of proposed vocoders on various acoustic models (HMM / DNN / CVNN) clearly demonstrates that it is compelling to apply them for the parametric statistical speech synthesis

    Hidden Markov model-based speech enhancement

    Get PDF
    This work proposes a method of model-based speech enhancement that uses a network of HMMs to first decode noisy speech and to then synthesise a set of features that enables a speech production model to reconstruct clean speech. The motivation is to remove the distortion and residual and musical noises that are associated with conventional filteringbased methods of speech enhancement. STRAIGHT forms the speech production model for speech reconstruction and requires a time-frequency spectral surface, aperiodicity and a fundamental frequency contour. The technique of HMM-based synthesis is used to create the estimate of the timefrequency surface, and aperiodicity after the model and state sequence is obtained from HMM decoding of the input noisy speech. Fundamental frequency were found to be best estimated using the PEFAC method rather than synthesis from the HMMs. For the robust HMM decoding in noisy conditions it is necessary for the HMMs to model noisy speech and consequently noise adaptation is investigated to achieve this and its resulting effect on the reconstructed speech measured. Even with such noise adaptation to match the HMMs to the noisy conditions, decoding errors arise, both in terms of incorrect decoding and time alignment errors. Confidence measures are developed to identify such errors and then compensation methods developed to conceal these errors in the enhanced speech signal. Speech quality and intelligibility analysis is first applied in terms of PESQ and NCM showing the superiority of the proposed method against conventional methods at low SNRs. Three way subjective MOS listening test then discovers the performance of the proposed method overwhelmingly surpass the conventional methods over all noise conditions and then a subjective word recognition test shows an advantage of the proposed method over speech intelligibility to the conventional methods at low SNRs

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Vocal Tract Length Normalization for Statistical Parametric Speech Synthesis

    Get PDF
    Vocal tract length normalization (VTLN) has been successfully used in automatic speech recognition for improved performance. The same technique can be implemented in statistical parametric speech synthesis for rapid speaker adaptation during synthesis. This paper presents an efficient implementation of VTLN using expectation maximization and addresses the key challenges faced in implementing VTLN for synthesis. Jacobian normalization, high dimensionality features and truncation of the transformation matrix are a few challenges presented with the appropriate solutions. Detailed evaluations are performed to estimate the most suitable technique for using VTLN in speech synthesis. Evaluating VTLN in the framework of speech synthesis is also not an easy task since the technique does not work equally well for all speakers. Speakers have been selected based on different objective and subjective criteria to demonstrate the difference between systems. The best method for implementing VTLN is confirmed to be use of the lower order features for estimating warping factors

    Analysis/Synthesis Comparison of Vocoders Utilized in Statistical Parametric Speech Synthesis

    Get PDF
    Tässä työssä esitetään kirjallisuuskatsaus ja kokeellinen osio tilastollisessa parametrisessa puhesynteesissä käytetyistä vokoodereista. Kokeellisessa osassa kolmen valitun vokooderin (GlottHMM, STRAIGHT ja Harmonic/Stochastic Model) analyysi-synteesi -ominaisuuksia tarkastellaan usealla tavalla. Suoritetut kokeet olivat vokooderiparametrien tilastollisten jakaumien analysointi, puheen tunnetilan tilastollinen vaikutus vokooderiparametrien jakaumiin sekä subjektiivinen kuuntelukoe jolla mitattiin vokooderien suhteellista analyysi-synteesi -laatua. Tulokset osoittavat että STRAIGHT-vokooderi omaa eniten Gaussiset parametrijakaumat ja tasaisimman synteesilaadun. GlottHMM-vokooderin parametrit osoittivat suurinta herkkyyttä puheen tunnetilan funktiona ja vokooderi sai parhaan, mutta laadultaan vaihtelevan kuuntelukoetuloksen. HSM-vokooderin LSF-parametrien havaittiin olevan Gaussisempia kuin GlottHMM-vokooderin LSF parametrit, mutta vokooderin havaittiin kärsivän kohinaherkkyydestä, ja se sai huonoimman kuuntelukoetuloksen.This thesis presents a literature study followed by an experimental part on the state-of-the-art vocoders utilized in statistical parametric speech synthesis. In the experimental part, the analysis/synthesis properties of three selected vocoders (GlottHMM, STRAIGHT and Harmonic/Stochastic Model) are examined. The performed tests were the analysis of vocoder parameter distributions, statistical testing on the effect of emotions to the vocoder parameter distributions, and a subjective listening test evaluating the vocoders' relative analysis/synthesis quality. The results indicate that the STRAIGHT vocoder has the most Gaussian parameter distributions and most robust synthesis quality, whereas the GlottHMM vocoder has the most emotion sensitive parameters and best but unreliable synthesis quality. The HSM vocoder's LSF parameters were found to be more Gaussian than the GlottHMM vocoder's LSF parameters. HSM was found to be sensitive to noise, and it scored the lowest score on the subjective listening test
    corecore