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Abstract

This work proposes a method of model-based speech enhancement that uses a network of

HMMs to first decode noisy speech and to then synthesise a set of features that enables

a speech production model to reconstruct clean speech. The motivation is to remove the

distortion and residual and musical noises that are associated with conventional filtering-

based methods of speech enhancement.

STRAIGHT forms the speech production model for speech reconstruction and re-

quires a time-frequency spectral surface, aperiodicity and a fundamental frequency con-

tour. The technique of HMM-based synthesis is used to create the estimate of the time-

frequency surface, and aperiodicity after the model and state sequence is obtained from

HMM decoding of the input noisy speech. Fundamental frequency were found to be best

estimated using the PEFAC method rather than synthesis from the HMMs.

For the robust HMM decoding in noisy conditions it is necessary for the HMMs

to model noisy speech and consequently noise adaptation is investigated to achieve this

and its resulting effect on the reconstructed speech measured. Even with such noise

adaptation to match the HMMs to the noisy conditions, decoding errors arise, both

in terms of incorrect decoding and time alignment errors. Confidence measures are

developed to identify such errors and then compensation methods developed to conceal

these errors in the enhanced speech signal.

Speech quality and intelligibility analysis is first applied in terms of PESQ and NCM

showing the superiority of the proposed method against conventional methods at low

SNRs. Three way subjective MOS listening test then discovers the performance of the

proposed method overwhelmingly surpass the conventional methods over all noise con-

ditions and then a subjective word recognition test shows an advantage of the proposed

method over speech intelligibility to the conventional methods at low SNRs.
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Chapter 1

Introduction

This chapter first introduces the area of speech enhancement and clarifies problems that

need to be addressed. The proposed method, which is a new approach to speech en-

hancement, is then introduced followed by its target applications. The objective of the

research, main problems to achieve it and contributions to the research area are then

clarified, and finally, the organisation of the thesis is explained.

1.1 Speech Enhancement

Speech enhancement is concerned with improving some perceptual aspects of speech

that had been degraded by noise or other factors, e.g. channel distortion, packet loss and

echo [1]. The focus on this work is noise in speech, which causes two main effects on the

perception of speech. Firstly, the auditory perception about the quality of the speech

signal is deteriorated and secondly, intelligibility of speech is affected. Such degradation

of speech quality and intelligibility brings the potential of increasing listener fatigue and

misunderstanding during communication and thus, techniques for speech enhancement

are highly desirable.

Degradation of speech by noise occurs when the source of a speech signal is affected

by noise or when noise exists on communication channels. Such a situation is very com-

mon in voice communication systems, and this phenomenon is mathematically modelled

as

ypnq “ xpnq ` dpnq (1.1)
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where xpnq, dpnq and ypnq represent a discrete-time domain signal of speech, noise and

degraded noisy speech respectively, and n denotes a discrete-time index. Therefore, the

most intuitive approach to speech enhancement is to identify unknown dpnq from ypnq

and then to remove it from ypnq. However, it is not possible to identify the exact sequence

of dpnq as long as the only accessible information is ypnq, and thus, a variety of methods

to obtain an estimate of noise, d̂pnq, instead of dpnq have been proposed [1]. These often

assume noise stationarity and exploit periods of nonspeech activity in ypnq. This enables

subtraction of d̂pnq from ypnq and derives an estimate of clean speech, x̂pnq, as

x̂pnq “ ypnq ´ d̂pnq (1.2)

Details are discussed in Chapter 2 but this works as a noise filter of speech as shown in

Figure 1.1, and it is explicit that residual noise is left in x̂pnq when d̂pnq is underesti-

mated. Conversely, when d̂pnq is overestimated, the speech signal is distorted and it may

further reduce speech intelligibility [2]. There are many alternative methods based on

y(n)

Noise Estimator 

x̂(n)

d̂(n)

+ 
+ 

- 

Figure 1.1: Noise filtering approach to speech enhancement.

this filtering approach to speech enhancement, e.g. spectral subtraction, Wiener filtering,

statistical model-based methods and subspace algorithms [1]. As evaluated in Chapter 2,

although these methods have shown effectiveness to suppress noise in conditions with rel-

atively high signal to noise ratio (SNR), performance falls at low SNRs such as 0 dB and

below. Therefore this work proposes a novel approach that moves away from the filtering

methods to achieve significant improvement to performance at low SNRs in stationary

and non-stationary noise.

Additionally, to acquire additional information to estimate d̂pnq from ypnq, various

approaches have been proposed, for example, multi-channel speech enhancement uses

multiple microphones to enhance ypnq into a multiple dimensional signal in order to
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extract positional relationship between speech source and noise source and then it is

exploited to enable better source separation [3]. Alternatively, audio-visual speech en-

hancement uses a camera to capture visual articulators, e.g. the position of speaker’s

lips, as auxiliary speech information which is independent from the SNR [4]. This the-

sis, however, focuses on single-channel speech enhancement in which the only accessible

information about speech is monaural noisy speech, ypnq. This represents a challenging

problem but is easier from a practical implementation point of view.

1.2 Proposed Method

The method of speech enhancement proposed in this thesis is based on a model-based

approach which uses statistical parametric models of speech and a speech production

model. Specifically, the statistical parametric models are realised by hidden Markov

models (HMMs), which are discussed in Chapter 4, and the STRAIGHT vocoder, which is

explored in Chapter 3, is adopted for the speech production model. Figure 1.2 illustrates

the basic architecture of the proposed method. In this method a set of speech features are

Feature Extraction 

Hidden Markov Model 
(HMM) 

STRAIGHT Vocoder 

y(n) x̂(n)

Decoding 
Parameter 
Synthesis 

Figure 1.2: The basic architecture of the proposed method.

first extracted from noisy speech and then they are decoded into a sequence of statistical

models of speech parameterised as HMMs. Since the HMMs have been trained with clean

natural speech, they can synthesise a set of features of noise-free speech corresponding

to the decoding result. Finally, the STRAIGHT vocoder reconstructs time-domain clean

speech from the synthesised parameters. The output is isolated from the noise component

of the input since the speech features of the output are determined only by the statistical

parameters. Therefore, the output is free from residual noise and musical noise unlike

the filtering-based method shown in Figure 1.1. The statistical processes are, however,
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expected to bring other types of artefacts which are attributed to, for example, decoding

errors and over-smoothing, to the output speech. Furthermore, model-based approaches

require an off-line process to train HMMs of speech that is not needed for filtering-based

methods. Thus, the size and complexity of the system tend to increase. The detail of

the method and such problems are discussed in Chapter 4 and later.

1.3 Application

The proposed method of speech enhancement is assumed to have various uses with the

most representative application being mobile communication. For example, talking on

a mobile phone outdoors and automatic speech recognition (ASR) in an automobile.

Therefore, the proposed method needs to deal with a wide range of noise types including

both stationary and non-stationary noise. This thesis evaluates the performance of speech

enhancement with white Gaussian noise that represents stationary noise and babble noise

(NOISEX-92) that represents non-stationary noise at SNRs from -5 dB to 10 dB by both

objective and subjective tests to match the test conditions to practical applications.

1.4 Objective and Problems

The objective of this research is set as follows.

• To develop a new method of speech enhancement based on a model-based ap-

proach in order to achieve better speech quality and intelligibility than conventional

filtering-based approaches at low SNRs with more compact system resource than

existing model-based speech enhancement.

In order to achieve the preceding purpose of the research with the proposed method,

the main problems addressed in this thesis are as follows.

• To employ an speech production model and speech features for the proposed method

of the model-based approach to speech enhancement

• To implement the framework which includes the processes of HMM decoding, HMM

synthesis and speech reconstruction to realise the proposed method
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• To develop methods to obtain better HMM decoding accuracy in the proposed

method

• To develop methods to detect decoding errors and methods to compensate for these

erroneous frames

• To obtain better quality and intelligibility in the HMM-based speech synthesis

process

1.5 Contributions

This thesis contributes to the research area of speech processing by achieving the pre-

ceding objective. Simultaneously, a variety of experiments in this thesis show interesting

findings in the related technologies. These also contribute to the research area in terms

of both theoretical and practical development. Moreover, two conference papers have

been published as interim reports during this research [5,6] and have given contributions

to the research field.

1.6 Organisation of the Thesis

The remainder of this thesis is organised into seven further chapters as follows:

2. Conventional Methods for Speech Enhancement: This chapter first discusses

a variety of conventional methods for speech enhancement based on the filtering

approach and then evaluates performance with objective tests. The latter part of

the chapter explores examples of reconstruction-based approaches to speech en-

hancement which have recently been proposed.

3. Speech Production Models: The proposed method in this thesis takes a model-

based speech reconstruction approach to speech enhancement. This chapter, there-

fore, discusses speech production models for the process of speech reconstruction.

The human physical speech production process is first described and it is then ex-

tended to engineering models for speech production such as the source-filter models,

the STRAIGHT vocoder and the sinusoidal model. The fundamental frequency is
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a critical speech feature for the speech production model, and thus, methods to

extract the fundamental frequency are then explored.

4. Hidden Markov Model-Based Speech Enhancement: The details of the pro-

posed method of speech enhancement are presented in this chapter. The concept of

HMMs and algorithms to apply HMMs are first discussed and then techniques for

HMM decoding and HMM-based speech synthesis are explored with their applica-

tion examples, including automatic speech recognition and text-to-speech. Finally,

the proposed method of HMM-based speech enhancement is presented by com-

bining the techniques of HMM-decoding, HMM-based speech synthesis and the

STRAIGHT voocder.

5. Adaptation of Hidden Markov Models to Noisy Speech: Decoding accuracy

in noisy speech is poor when HMMs trained with clean speech are used in the

HMM decoding process. Therefore, this chapter discusses methods to adapt HMMs

trained with clean speech to noisy speech in order to improve HMM decoding ac-

curacy practically.

6. Improvement to Hidden Markov Model-Based Speech Enhancement:

This chapter discusses methods to improve performance of the proposed HMM-

based speech enhancement. A method to compensate for decoding errors which

reduce quality and intelligibility of the output speech is first presented. Then

HMM-based speech enhancement using the global variance model is studied to

compensate for over-smoothing in the synthesised speech parameters.

7. Evaluation of the Proposed HMM-Based Speech Enhancement: This chap-

ter reports the evaluation results of the proposed method comparing with conven-

tional filtering methods after carrying out objective and subjective tests.

8. Conclusions and Further work: The final chapter first draws conclusions about

the proposed method of HMM-based speech enhancement and then describes how

the system may be extended.
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Chapter 2

Conventional Methods for Speech

Enhancement

This chapter first shows overviews of the conventional methods for speech enhancement

which use filtering-based approaches and then conducts practical experiments to show

their performance on speech enhancement. Alternative methods to the conventional

filtering-based approaches are then discussed as reconstruction-based approaches includ-

ing the corpus and inventory-based method and the model-based method.

2.1 Introduction

Conventional methods for speech enhancement are normally formed as a two stage pro-

cess. The contaminating noise in the speech or signal to noise ratio (SNR) of the noisy

speech is estimated in the first stage and then the estimate of the noise is removed from

the noisy speech by various types of filters in the second stage. Most speech enhancement

methods consisting of these processes are largely categorised into spectral subtraction,

Wiener filtering, statistical and subspace methods, and it is known that although these

filtering-based approaches are effective to improve speech quality, those performance de-

pends on the accuracy of noise and SNR estimation and, consequently, residual noise,

musical noise and distortion are introduced to the enhanced speech by the estimation

errors [1].

As an alternative to the filtering approaches, reconstruction-based approaches have
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recently been proposed to reduce the artefacts produced by filtering-based methods [7].

Methods using these approaches reconstruct clean speech by estimating the acoustic

features of the clean speech rather than filter the noisy speech. These methods are

generally divided into two types in terms of approaches to reconstruct speech. The first

uses a notion of unit selection synthesis [8], which have successfully been applied to text-

to-speech (TTS) applications [9], for the speech reconstruction process in which segments

of speech, e.g. phonemes, are first selected from a corpus or inventory of natural speech

segments and then concatenated to synthesise clean speech while the other type of the

methods utilises a speech production model, e.g. vocoders, to reconstruct clean speech.

The work proposed in this thesis belongs to the latter category of the reconstruction-

based approaches using the STRAIGHT vocoder for the speech production model.

The following sections first present overview of different methods for the noise es-

timation. After that, methods of speech enhancement which represent filtering-based

enhancement are discussed and then examined by objective tests in terms of quality and

intelligibility of the enhanced speech. The topic is then moved to the reconstruction-

based approaches including the corpus and inventory-based method which represents the

methods which use a notion of unit selection synthesis for the reconstruction process,

and model-based speech enhancement, which represents the methods to utilise a speech

production model, that have attracted a lot of research attention recently [5, 7, 10–14].

2.2 Noise Estimation

Noise estimation is the first process of filtering-based speech enhancement. The simplest

method for this process is to use voice activity detection (VAD), whose overview is

presented in the first part of the section. However, VAD-based estimation cannot achieve

enough accuracy in low SNR conditions [1, 15], therefore, the latter part of the section

introduces a method of minimum statistics representing minimal-tracking algorithms.

2.2.1 VAD-Based Noise Estimation

VAD is a simple method to classify frames of the speech as speech-active or inactive

frames. Various algorithms for VAD have been proposed and applied successfully to
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commercial applications [1, 16–18].

The simplest way of VAD for a discrete-time speech signal, spnq, is to calculate the

energy of the mixed signal at each frame, and to classify frames whose energy is more

than certain threshold, λ, as speech-active frames, otherwise the frames are categorised

as speech-inactive frames. Namely, when a frame in spnq is represented as a vector as

si “ rspn` iLq, spn` iL` 1q, . . . , spn` pi` 1qL´ 1qsT pi “ 0, 1, . . . q (2.1)

where i and L denote a frame index and a frame length, the VAD scenario gives the

following classification.

si P Csa as sTi si ą λ

si P Csi otherwise

,

/

.

/

-

for @i (2.2)

where Csa and Csi represent the cluster of speech-active frames and the cluster of speech-

inactive frames respectively.

To attain more robust performance [19] proposes another threshold σ by which all

the frames in Csi are reclassified as follows.

ssij P C1si as }ssij ´ c̄si} ă σ

ssij P C1sa otherwise

,

/

.

/

-

for @ssij P Csi (2.3)

c̄si “
1

N

ÿ

@ssij PCsi

ssij (2.4)

where ssij denotes the j-th element in Csi and N is the number of elements in Csi. A

cepstral analysis has also been proposed to achieve more robustness, in which the frames

are classified by cepstral distances [20]. After frames in the speech are categorised as

speech-active or inactive, the centroid of the spectra in the speech-inactive cluster is

calculated as the estimate of the noise spectrum.

2.2.2 Minimum Statistics

The notion of noise estimation with VAD is very simple and easy for implementation

but not enough accurate at low SNRs [1, 15, 16]. Moreover, it cannot track changes of
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statistical features in non-stationary noise during speech-active periods. To tackle this

problem, a noise estimation method using minimum statistics [21] is discussed in this

section.

In the discrete-time domain, a noisy speech, ypnq, can be described as the sum of

the speech, xpnq, and noise, dpnq, as

ypnq “ xpnq ` dpnq (2.5)

Each signal is divided into frames with an L-length window, wpmq, for analysis as follows.

yipmq “ yppq ¨ wpmq

xipmq “ xppq ¨ wpmq

dipmq “ dppq ¨ wpmq

,

/

/

/

/

.

/

/

/

/

-

p “ iL, iL` 1, . . . , pi` 1qL´ 1

m “ 0, 1, . . . , L´ 1
(2.6)

where i denotes a frame index (i “ 0, 1, . . . ). These frames are then transformed into the

frequency domain applying N -point short-time Fourier transform (STFT) analysis.

Xipfq “ F rxipmqs (2.7)

Dipfq “ F rdipmqs (2.8)

Yipfq “ F ryipmqs (2.9)

where F is the notation of the discrete-time Fourier transform (DFT), and f represents

a frequency bin index (f “ 0, 1, . . . , F ´ 1). The power spectral density (PSD) of Yipfq

is approximated to the sum of the PSD of Xipfq and the PSD of Dipfq because the cross

term of Xipfq and Dipfq can be ignored as long as the speech and noise are independent

each other.

E
“

|Yipfq|
2
‰

“ E
“

|Xipfq|
2s
‰

` E
“

|Dipfq|
2
‰

` 2E r|Xipfq|sE r|Dipfq|s

« E
“

|Xipfq|
2s
‰

` E
“

|Dipfq|
2
‰

(2.10)

where the notation E r¨s denotes the statistical expectation operator.

Minimum statistics is based on a notion where short term PSD in individual fre-

quency bands often decays to the noise floor even during speech active periods [21].
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Therefore, the short term PSD of noise during a fixed observation length, K, is estimated

by tracking the minimum of the periodogram |Yipfq|
2 during K. However, |Yipfq|

2 fluc-

tuates rapidly, therefore, the estimate of PSD of noise, P̂ipfq, is tracked after applying a

weighted moving average.

P̄ipfq “

$

’

’

’

’

&

’

’

’

’

%

|Y0pfq|
2 i “ 0

|Yipfq|
2 i “ lK pl “ 1, 2, . . . q

αP̄i´1pfq ` p1´ αq|Yipfq|
2 otherwise

(2.11)

P̂ipfq “

$

’

’

’

’

&

’

’

’

’

%

P̄0pfq i “ 0

P̄ipfq i “ lK pl “ 1, 2, . . . q

min
 

P̄i´1pfq, P̄ipfq
(

otherwise

(2.12)

where α denotes a weight constant.

Several algorithms to optimise and compensate the preceding algorithm have also

been proposed [1, 21–23].

2.3 Filtering-Based Speech Enhancement

Filtering-based algorithms for speech enhancement is a two stage process of first estimat-

ing the noise, and then filtering the speech using the estimated noise. Various approaches

to the filtering process have been proposed and they are categorised as mentioned in Sec-

tion 2.1. Each of those filtering methods are discussed in this section.

2.3.1 Spectral Subtraction

Given noisy speech as Equations (2.5)-(2.9), a frame of the complex spectrum of the

clean speech is derived in polar form.

Xipfq “ Yipfq ´Dipfq (2.13)

“ |Yipfq|e
jΦi

ypfq ´ |Dipfq|e
jΦi

dpfq (2.14)

where Φypfq and Φdpfq are the phase spectra of the noisy speech and noise respectively.

As the noise spectrum is not known precisely, the noise magnitude is replaced with the
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magnitude of the estimated noise spectrum at the preceding process in order to derive

the estimate of the spectral magnitude of the clean speech. The phase of the clean speech

is not known so it is then replaced with the phase of the noisy speech. This is motivated

by the fact that phase spectra do not contribute to intelligibility as much as magnitude

spectra in the condition of short time window length [24], and derives the estimate of the

spectrum of the clean speech, X̂ipfq.

X̂ipfq “
´

|Yipfq| ´ |D̂ipfq|
¯

ejΦ
i
ypfq (2.15)

where |D̂ipfq| represents the estimated spectral magnitude of the noise. The time-domain

enhanced speech can be obtain from Equation (2.15) by simply applying inverse Fourier

transform.

Equation (2.15) is the underlying principle of the spectral subtraction and several

derivative algorithms are proposed [1, 25–28]. for instance, the following applies the

subtraction in the spectral power domain and simultaneously compensates overestimation

or underestimation of |D̂ipfq|
2.

|X̂ipfq|
2 “ |Yipfq|

2 ´ α|D̂ipfq|
2 (2.16)

“ Hipfq|Yipfq|
2 (2.17)

Hipfq “ 1´ α
|D̂ipfq|

2

|Yipfq|2
(2.18)

where α denotes an optimised constant value to adjust the estimation. The power of the

resulting spectrum can be negative value in Equation (2.16) due to overestimation of the

noise. Therefore, several methods for rectification are proposed [27], for example,

$

’

&

’

%

|X̂ipfq|
2 “ |Yipfq|

2 ´ α|D̂ipfq|
2

|X̂ipfq|
2 “ |Yipfq|

2

as |Yipfq|
2 ´ α|D̂ipfq|

2 ě 0

otherwise
(2.19)

The preceding examples of the spectral subtraction are linear process but several

methods having non-linear processing are also proposed [27]. A method, for example,
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applies weighted moving average to |D̂ipfq|
2 and |Yipfq|

2 before the subtraction.

|X̂ipfq|
2 “ |Ȳipfq|

2 ´ α|D̄ipfq|
2 (2.20)

|D̄ipfq|
2 “ λd|D̂i´1pfq|

2 ` p1´ λdq|D̂ipfq|
2 (2.21)

|Ȳipfq|
2 “ λy|Yi´1pfq|

2 ` p1´ λyq|Yipfq|
2 (2.22)

where λd and λy are weight constants. Another example is to divide the frequency domain

of the speech and noise into K sub-bands, and then replace the constant, α, in Equation

(2.20) with a variable αkpiq associated with sub-band k (k “ 0, 1, . . . ,K´1). αkpiq varies

according to the a posteriori SNR in the corresponding sub-band of the frame.

X̂k
i “ Ȳk

i ´ αkpiqD̄
k
i (2.23)

αkpiq “ β ¨ 20 log10

ˆ

Ȳk
i

D̄k
i

˙

(2.24)

where X̂k
i , Ȳk

i and D̄k
i represent vectors consisting of the power spectrum in the k-th sub-

band of |X̂ipfq|
2, |Ȳipfq|

2 and |D̄ipfq|
2 respectively, and β denotes a constant determined

empirically.

The spectral subtraction algorithm is based on the assumption that phase spectra do

not contribute to intelligibility as much as magnitude spectra in short time frame anal-

ysis as mentioned above. Recent research, however, has discovered that phase spectra

can contribute to intelligibility as much as magnitude spectra even for short time du-

ration when analysis-modification-synthesis parameters are properly selected [29]. This

inconsistency has affected the performance of the spectral subtraction methods.

2.3.2 Wiener Filter

The spectral subtraction such as Equations (2.17) and (2.18) straightforwardly derive

the spectral power or magnitude of the clean speech only from the noisy speech and the

estimate of the noise. Therefore, the transfer function of the filter is not optimised by

the estimation errors. The Wiener filtering approach discussed in this section optimises

the transfer function of the filtering process by minimising the estimation errors in terms

of mean-square error.
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2.3.2.1 Theory of Wiener Filters

A Wiener filter is a linear and time-invariant filter to approximate an input signal, spnq,

to a desired signal, δpnq. Figure 2.1 shows the structure of a Wiener filter. The resultant

s(n)

�(n)

�̂(n)
✏(n)+ + 

+ 

+ + 
+ 

+ 
+ 

- 
h0

h1

hP�1

z�1

z�1

z�1

Figure 2.1: Block diagram of Wiener filters.

output of the filter, δ̂pnq is given as

δ̂pnq “
P´1
ÿ

k“0

hkspn´ kq (2.25)

where h0, h1, ¨ ¨ ¨ , hP´1 are the filter coefficients (impulse response) of P th-order Wiener

filters, and the error between the filter output and desired signal is derived as

εpnq “ δpnq ´ δ̂pnq (2.26)

“ δpnq ´
P´1
ÿ

k“0

hkspn´ kq (2.27)

In the frequency domain, Equation (2.27) derives

εpfq “ ∆pfq ´HpfqSpfq (2.28)

where εpfq, ∆pfq, Spfq and Hpfq are the Fourier transform of εpnq, δpnq, spnq and hpnq

respectively. The frequency response of Wiener filters, Hpfq, is optimised by minimising
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the mean-square error, J .

J “ E
“

|εpfq|2
‰

“ E r∆pfq∆˚pfqs `HpfqH˚pfqE rSpfqS˚pfqs

´HpfqE rSpfq∆˚pfqs ´H˚pfqE r∆pfqS˚pfqs (2.29)

The derivative of J with respect to Hpfq is set equal to zero in order to minimise the

mean-square error.

BJ

BHpfq
“ H˚pfqE rSpfqS˚pfqs ´ E rSpfq∆˚pfqs

“ rHpfqE rS˚pfqSpfqs ´ E rS˚pfq∆pfqss˚

“ 0 (2.30)

Solving Equation (2.30) for Hpfq, the general form of Wiener filters is derived as

Hpfq “
E r∆pfqS˚pfqs

E r|Spfq|2s
“
Pδspfq

Psspfq
(2.31)

where Psspfq and Pδspfq represent the power spectrum of spnq and the cross-power spec-

trum of δpnq and spnq respectively.

2.3.2.2 Wiener Filtering for Speech Enhancement

In an application of speech enhancement, Equations (2.26) and (2.27) are described as

ε “ xpnq ´ x̂pnq (2.32)

“ xpnq ´
P´1
ÿ

k“0

hkypn´ kq (2.33)

where ypnq, xpnq and x̂pnq correspond to the noisy speech, underlying clean speech and

the estimate of the clean speech respectively. Applying Equations (2.5) - (2.9), the

frequency response of the wiener filter at i-th frame, Hipfq, is derived by referring to
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Equation (2.31) as

Hipfq “
E rXipfqY

˚
i pfqs

E r|Yipfq|2s
(2.34)

“
E rpXipfqpXipfq `Dipfqq

˚s

E rpXipfq `DipfqqpXipfq `Dipfqq˚s
(2.35)

“
E
“

|Xipfq|
2
‰

` E rXipfqD
˚
i pfqs

E r|Xipfq|2s ` E r|Dipfq|2s ` E rXipfqD˚i pfqs ` E rDipfqX˚i pfqs
(2.36)

“
E
“

|Xipfq|
2
‰

E r|Xipfq|2s ` E r|Dipfq|2s
(2.37)

where the cross-power spectra of the clean speech and noise are equal to zero because

they are assumed to be independent each other. Hipfq can be also expressed as a function

of the a priori SNR, ξipfq.

Hipfq “
ξipfq

ξipfq ` 1
(2.38)

ξipfq “
E
“

|Xipfq|
2
‰

E r|Dipfq|2s
(2.39)

In practice, the value of ξipfq is unknown and thus, [30] proposes the following decision-

directed method to estimate the a priori SNR, ξ̂ipfq.

ξ̂ipfq “ α
|X̂i´1pfq|

2

|D̂i´1pfq|2
` p1´ αqmax

˜

|Yipfq|
2

|D̂ipfq|2
´ 1, 0

¸

(2.40)

where |D̂ipfq|
2, |X̂ipfq|

2 and α represent the estimate of the noise power spectrum ob-

tained with the methods introduced in Section 2.2, the enhanced speech at frame i and

a weight constant respectively. Equation (2.40) derives the estimate of the a priori SNR

as a weighted moving average of the past a priori SNR and the present a posteriori SNR

with a compensation for the case of the estimated power being negative.

In general, | X̂i´1pfq |
2 in Equation (2.40) is derived as pE rXi´1pfqsq

2 rather than

E
“

| Xi´1pfq |
2
‰

by a speech enhancement algorithm. This causes a bias in the estimate

of a priori SNR. Therefore, the following modification to the decision-directed approach

has been recommended in order to reduce the influence of this bias [31].

ξ̂ipfq “ max

«

α
|X̂i´1pfq|

2

|D̂i´1pfq|2
` p1´ αq

˜

|Yipfq|
2

|D̂ipfq|2
´ 1

¸

, ξmin

ff

(2.41)
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where ξmin denotes the minimum value allowed for ξipfq. Different approaches to estimate

low-variance SNR are proposed in addition to the preceding methods [1, 32].

Equations (2.37) and (2.38) are the underlying principles to optimise Wiener filters,

and several derivative algorithms have been proposed, for example, [33] generalises the

Wiener filtering as the parametric Wiener filters

Hipfq “

ˆ

P ixxpfq

P ixxpfq ` αP
i
ddpfq

˙β

(2.42)

where P ixxpfq and P iddpfq represent the power spectrum of xpnq and dpnq at i-th frame

respectively, and the algorithm is parameterised by α and β.

The spectrum of the enhanced speech, X̂ipfq, is derived as

X̂ipfq “ HipfqYipfq (2.43)

Moreover, an iterative wiener filtering algorithm in which Hipfq is renewed by the derived

enhanced speech, X̂ipfq, recursively has also been proposed for speech enhancement [1].

2.3.3 Statistical-Model-Based Method

The Wiener filters in the previous section formed an optimised linear model between

the complex spectra of the noisy and clean speech in terms of mean-square error. This

section has a discussion about filtering algorithms which construct nonlinear statistical

models between the magnitude of the clean and noisy speech.

Various techniques to build nonlinear statistical estimators have been proposed [1],

and they are largely categorised into the methods based on the maximum-likelihood (ML)

approach or the Bayesian approach. The first part of this section describes the overview

of the ML estimator while the latter part shows the overview of the log-MMSE estimator

as a representative of the Bayesian estimators.

2.3.3.1 Maximum-Likelihood Estimator

Supposing the speech signals are under the conditions of Equations (2.5)-(2.9) and (2.14),

an ML estimator is derived with the hypothesis where the probability density function

(pdf) of the noisy speech spectrum, Yipfq, is parametrised by the clean speech spectrum,
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Xipfq, and thus, the clean speech spectrum is estimated as follows [34].

X̂ipfq “ arg max
Xipfq

ppYipfq;Xipfqq (2.44)

where X̂ipfq and ppYipfq;Xipfqq denote the estimate of the clean speech spectrum and

the pdf of the noisy speech spectrum parameterised by the clean speech spectrum.

In the ML approach, Xipfq is assumed to be deterministic and the noise spectrum

Dipfq is assumed to be zero-mean, complex Gaussian whose real and imaginary parts

have variances of λidpfq{2. These assumptions give the pdf of Yipfq as

ppYipfq; |Xipfq|,Φ
i
xpfqq “

1

πλidpfq
exp

«

´
|Yipfq ´ |Xipfq|e

jΦi
xpfq|2

λidpfq

ff

(2.45)

The phase parameter is integrated to be eliminated from the parameters.

pLpYipfq; |Xipfq|q “

ż 2π

0
ppYipfq; |Xipfq|,Φ

i
xpfqqppΦ

i
xpfqqdΦi

xpfq (2.46)

Assuming the phase Φi
xpfq has a uniform distribution between r0, 2πs, the likelihood

function is derived as

pLpYipfq; |Xipfq|q “
1

πλidpfq
exp

„

´
|Yipfq|

2 ` |Xipfq|
2

λidpfq



¨
1

2π

ż 2π

0
exp

»

–

2|Xipfq|<
´

e´jΦ
i
xYipfq

¯

λidpfq

fi

fl dΦi
xpfq (2.47)

Exploiting the modified Bessel function of the first kind [34], the preceding equation is

simplified as

pLpYipfq; |Xipfq|q “
1

πλidpfq

c

2π 2|Xipfq||Yipfq|

λidpfq

¨ exp

„

´|Yipfq|
2 ` |Xipfq|

2 ´ 2|Xipfq||Yipfq|

λidpfq



(2.48)

The derivative of the log-likelihood function, log pLpYipfq; |Xipfq|q, with respect to

|Xipfq| is set equal to zero in order to maximise the log-likelihood, and then, solving
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for |Xipfq|, the ML estimate of the clean spectral magnitude is derived as

|X̂ipfq| “
1

2

„

|Yipfq| `
b

|Yipfq|2 ´ λidpfq



(2.49)

As the phase spectrum of the clean speech is unknown, the phase spectrum of the noisy

speech is combined with the estimate of the clean magnitude spectrum in order to obtain

the complex spectrum of the enhanced speech as well as the process in the spectral

subtraction.

X̂ipfq “ |X̂ipfq|e
jΦi

ypfq “ |X̂ipfq|
Yipfq

|Yipfq|
(2.50)

“

»

–

1

2
`

1

2

d

|Yipfq|2 ´ λidpfq

|Yipfq|2

fi

flYipfq (2.51)

“

«

1

2
`

1

2

d

γipfq ´ 1

γipfq

ff

Yipfq (2.52)

γipfq “
|Yipfq|

2

λidpfq
(2.53)

where γipfq represents the a posteriori SNR

2.3.3.2 Log-MMSE estimator

In the maximum-likelihood approach, the clean speech spectrum is assumed to be deter-

ministic but unknown. This section discusses an estimator using the Bayesian approach

in which the spectrum of the clean speech is assumed to be a random variable, and the a

priori knowledge about the magnitude spectrum of the clean speech pp|Xipfq|q is given

to the estimator. Several methods using the Bayesian approach have been proposed such

as the MMSE magnitude estimator, log-MMSE estimator and maximum a posteriori

(MAP) estimator [1, 35–38]. This section specifically explores the log-MMSE estimator

as a representative of the Bayesian estimators which gives the best performance both

objectively and subjectively in the statistical-model-based methods [1, 39].

The log-MMSE method forms a statistical model to minimises the mean-square error

between the estimate and the true value of the magnitude spectrum of the clean speech
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in the log-magnitude domain.

X̂ipfq “ arg min
X̃ipfq

´

E
”

plog |Xipfq| ´ log |X̃ipfq|q
2
ı¯

(2.54)

Thus, given the complex spectrum of the noisy speech, Yipfq, the log-MMSE estimator

is derived as

log |X̂ipfq| “ E rlog |Xipfq| | Yipfqs (2.55)

|X̂ipfq| “ exp pE rlog |Xipfq| | Yipfqsq (2.56)

Let Zf “ logXipfq, and the moment-generating function of Zf is given in order to

evaluate the conditional expectation in the preceding equation.

ΦZf |Yipfqpµq “ E rexp pµZf q |Yipfqs (2.57)

“ E r|Xµ
i pfq| | Yipfqss (2.58)

E rlog |Xipfq| | Yipfqs can be obtained by the derivative of the moment-generating func-

tion at µ “ 0.

E rlog |Xipfq| | Yipfqs “
d

dµ
ΦZf |Yipfqpµq

ˇ

ˇ

ˇ

µ“0
(2.59)

“
1

2
log

E
“

|Xipfq|
2
‰

1` ξipfq
`

1

2
log νipfq `

1

2

ż 8

νipfq

e´t

t
dt (2.60)

where νipfq, ξipfq and γipfq are defined by

νipfq “
ξipfq

1` ξipfq
γipfq (2.61)

ξipfq “
E
“

|Xipfq|
2
‰

E r|Dipfq|2s
(2.62)

γipfq “
|Yipfq|

2

E r|Dipfq|2s
(2.63)

The log-MMSE estimator is obtained by substituting Equation (2.60) into (2.56).

|X̂ipfq| “
ξipfq

1` ξipfq
exp

#

1

2

ż 8

νipfq

e´t

t
dt

+

|Yipfq| (2.64)
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The preceding equation shows the log-MMSE is parameterised by both a priori SNR,

ξipfq and a posteriori SNR, γipfq. Thus, the log-MMSE estimator can be expressed as

|X̂ipfq| “ G pξipfq, γipfqq |Yipfq| (2.65)

where Gpξipfq, γipfqq represents a gain function of the log-MMSE estimator. In practice,

the value of the a priori SNR is unknown and thus, it is estimated with, for example,

the decision-directed method given by Equation (2.40).

2.3.4 Subspace Algorithm

The subspace algorithms transform the noisy speech into a new space that comprises

speech and noise subspaces [40, 41]. Elimination of the noise subspace can retain speech

components and remove noise components. Thus, the subspace algorithms do not re-

quire the noise estimation process unlike the other filtering algorithms mentioned above.

However, retaining too few speech components oversmooths the speech while retaining

too many components leaves residual noise.

Considering vectors representing the clean and noisy speech and noise, the noisy

speech is determined with the vectors as

yi “ xi ` di (2.66)

xi “ rxpn` pi´ 1qLq, xpn` pi´ 1qL` 1, . . . , xpn` iL´ 1qsT (2.67)

yi “ rypn` pi´ 1qLq, ypn` pi´ 1qL` 1, . . . , ypn` iL´ 1qsT (2.68)

di “ rdpn` pi´ 1qLq, dpn` pi´ 1qL` 1, . . . , dpn` iL´ 1qsT (2.69)

where xpnq, ypnq, dpnq, i, and L denote the clean and noisy speech, noise, frame index

and frame length respectively. The clean speech vectors constitute a speech subspace X

as an LˆM matrix.

X “ rx1,x2, ¨ ¨ ¨ ,xM s (2.70)

Assuming the speech and noise are independent of each other, xi and di are assumed to

be orthogonal. Thus, they can be decoupled from yi by projecting yi into the subspace

X and the orthogonal subspace to X, namely noise subspace. This projection is given



44 Chapter 2

by a projection matrix, P, determined by

P “ XpXTXq´1XT (2.71)

For simplification, X can be decomposed by singular value decomposition (SVD) as

X “ UΣVH (2.72)

where X is assumed to be full column rank such that rankpXq “M , U is an LˆL unitary

matrix consisting of eigenvectors of XXT , V is an M ˆM unitary matrix comprising

eigenvectors of XTX and Σ is an LˆM diagonal matrix comprising the singular values

of X. Equations (2.71) and (2.72) leads to

P “ UUH (2.73)

This projection matrix divides xi and di from yi as

xi “ UUHyi (2.74)

di “ pI´UUHqyi (2.75)

If X is assumed not to be full rank, i.e. rankpXq “ r ăM , Equation (2.72) is expressed

as

X “

„

U1 U2



»

—

–

Σ1 0

0 0

fi

ffi

fl

»

—

–

VH
1

VH
2

fi

ffi

fl

“ U1Σ1V
H
1 (2.76)

where U1, U2, V1 and V2 are N ˆ r, N ˆ pN ´ rq, r ˆM and pM ´ rq ˆM matrices

respectively extracted from U and V. Σ1 is a r ˆ r diagonal matrix comprising the

singular values of X. Equations (2.71) and (2.76) lead to

P “ U1U
H
1 (2.77)
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Alternatively, the following is derived exploiting the unitarity of U.

UUH “

„

U1 U2



»

—

–

UH
1

UH
2

fi

ffi

fl

“ U1U
H
1 `U2U

H
2 “ I (2.78)

Therefore, another projection matrix, Q, projecting y into the noise subspace is given by

Q “ I´U1U
H
1 “ U2U

H
2 (2.79)

The above derives the underlying principle of the subspace algorithms for speech en-

hancement as

xi “ U1U
H
1 yi (2.80)

di “ U2U
H
2 yi (2.81)

In empirical conditions, however, the speech and noise spaces are not entirely sep-

arable particularly with the coloured noise, therefore, it is necessary to embed a further

filtering algorithm to remove the residual noise [42].

2.3.5 Experimental Results and Analysis

Various types of the filtering-based methods are discussed above and those different ap-

proaches to noise filtering bring different properties to the result of speech enhancement.

It is important to understand the performance and limitations of each method prior to

concluding the discussion of filtering-based speech enhancement. Therefore, this section

examines the performance of filtering-based speech enhancement in noisy conditions and

then evaluates the results in terms of speech quality and intelligibility objectively.

Experiments use speech from four speakers in the GRID database [43] (two males and

two females) which is down-sampled to 8 kHz assuming telephony applications. From

the 1000 utterances from each speaker, 200 are used for the tests. The test speech is

contaminated with each of white noise and babble noise at SNRs from -5 dB to 10 dB.

Then the noisy speech is first divided into 25 ms-frames with 50 % overlap by a Hamming

window and then, the noise power spectrum, |D̂ipfq|
2, at the i-th frame is estimated by
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using VAD-based estimation after 1024 point DFT as

| D̂ipfq |
2 “

$

’

’

’

’

&

’

’

’

’

%

| Yipfq |
2 i “ 0

α | D̂i´1pfq |
2 `p1´ αq | Yipfq |

2 i ą 0, γ̂i ă 3

| D̂i´1pfq |
2 i ą 0, γ̂i ě 3

(2.82)

γ̂i “ 10 log10

‖ Yipfq ‖2
‖ D̂i´1pfq ‖2

(2.83)

where |Yipfq|
2 represents the power spectrum of the observed noisy speech at the i-th

frame, and α is set equal to 0.9. After the noise estimation the noisy speech is enhanced

by four types of the filtering methods in Table 2.1. The log-MMSE is based on Equation

LOG: Log MMSE
WIN: Wienner Filter
SS: Spectral Subtraction
SUB: Subspace Algorithm

Table 2.1: Filtering-based methods for the tests

(2.64) while the Wiener filter is based on Equation (2.38), and the a priori SNR is

estimated with Equation (2.40) in both methods (α “ 0.98). The spectral subtraction is

based on Equation (2.16) where

α “

$

’

’

’

’

&

’

’

’

’

%

5 γ̂i ă ´5

1 γ̂i ą 20

4 otherwise

(2.84)

The subspace algorithm is based on Equation (2.80) with built-in pre-whitening [42].

2.3.5.1 Speech Quality

As mentioned in Section 1.1, speech enhancement is concerned with improving some

perceptual aspect of speech degraded by noise, and noise in speech brings two main effects

on perception of speech. The first is to degrade quality of speech and the second is to

reduce intelligibility of speech. Therefore, speech quality and intelligibility are regarded

as the most important attributes to gauge the performance of speech enhancement and

have widely been used to evaluate speech signals. Speech quality generally gauges how
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a speaker produces an utterance while speech intelligibility measures what the speaker

said. These measures are attributed to many factors and the connection to the acoustic

features of the speech has not been fully discovered yet [1]. Therefore, subjective listening

tests, such as the mean opinion score (MOS) test to gauge speech quality and speech

identifying test to measure speech intelligibility, are more reliable than objective tests to

evaluate speech enhancement [44]. However, a number of objective measures have been

proposed to predict the subjective measures and some of them have good correlation

with subjective measures of speech quality or intelligibility. Evaluation across a range of

objective measures shows that the perceptual evaluation of speech quality (PESQ) and

the frequency-weighted segmental SNR (fwSNRseg) achieve the highest correlation with

speech quality while the coherence speech intelligibility index (CSII) and the normalised-

covariance measure (NCM) performs the best for speech intelligibility [45]. The results of

the experiments in this section are objectively scored with PESQ and NCM to evaluate

speech quality and intelligibility respectively.

Figure 2.2 shows the performance of the four filtering-based algorithms comparing

with baseline performance given by no noise compensation (NNC) in terms of PESQ

at different SNRs in white noise and babble noise. In white noise, SUB and LOG are
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Figure 2.2: PESQ scores of different filtering-based methods at different SNRs in a)
white noise, b) babble noise.
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superior to the other methods over the SNR range. Specifically, SUB shows the higherst

scores at SNRs of 0 dB and -5 dB while LOG shows the best performance at SNRs of 5

dB and 10 dB. WIN performs with higher scores than SS between -5 dB and 5 dB but

SS becomes higher than WIN at 10 dB.

In babble noise, however, SUB shows always the lowest of the four methods over the

SNR range as opposed to LOG showing always the highest scores followed by WIN an

SS respectively. This is attributed to the fact that noise and speech are not sufficiently

orthogonal in babble noise, and thus, noise and speech are not transformed to the proper

subspace in this condition.

As the overall evaluation in terms of PESQ, LOG shows the best performance of

the four methods while the worst is SS. Superiority between WIN and SUB depends on

attributes of noise. Incidentally, even the best method reduces the score below 1.6 at -5

dB in white noise and below 1.4 at -5 dB in babble noise. This implies the filtering-based

methods do not show their effectiveness at low SNRs such as below 0 dB.

Comparing with NNC, the effectiveness of each method for speech enhancement in

babble noise is less than the case of white noise.

2.3.5.2 Speech Intelligibility

Figure 2.3 shows the performance of the four filtering-based methods comparing with

baseline performance given by NNC in terms of NCM at different SNRs in white noise

and babble noise. The performance of SUB looks superior to the others as the overall

evaluation, but all of the four methods reduce the score at lower SNRs and cannot retain

sufficient intelligibility. For example, NCM score of SUB falls below 0.6 at SNR of -5

dB and the other methods become below 0.5 in white noise. Moreover, scores of all the

methods fall far below 0.5 at -5 dB in babble noise. The general tendency of speech

intelligibility of each method at different SNRs does not show significant difference from

NNC.

2.3.5.3 Spectral Analysis

To give further insight into filtering-based speech enhancement, Figures 2.4 and 2.5 depict

narrowband spectrograms of an utterance, “Bin Blue At E Seven Now”, spoken by a
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Figure 2.3: NCM scores of different filtering-based methods at different SNRs in a)
white noise, b) babble noise.

male speaker in white noise and babble noise at SNRs of 10 dB and -5 dB. The figures

show that large parts of spectral envelopes and harmonic information still remain among

residual and musical noise after the process of each methods at SNR of 10 dB. However,

at SNR of -5 dB, those are masked under residual noise or eliminated leaving musical

noise especially in the frequency band above 1.5 kHz. These degradation are brought by

overestimation and underestimation of the noise. The subspace method estimates the

noise space on the assumption that it is orthogonal to the speech space rather than using

VAD. Therefore, spectral information remains with less estimation errors even at SNR

of -5 dB as long as the noise is orthogonal to the speech (i.e., white noise). However, it

loses most of the de-noising function when the noise does not have orthogonality to the

speech such as the case of babble noise.

The experiments show that the filtering-based methods are effective to reduce the

noise at relatively high SNRs but but those performance are insufficient at low SNRs

such as 0 dB and below. This brings a motivation to discuss the reconstruction-based

speech enhancement as an alternative approach to the filtering-based methods.
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Figure 2.4: Narrowband spectrograms of an utterance, “Bin Blue At E Seven Now”,
spoken by a male speaker in white noise. a) shows clean speech, b) and c) show noisy
speech with no enhancement at SNR of 10dB and -5dB, and d), f), h), and j) show
noisy speech at SNR of 10 dB enhanced by LOG, WIN, SS and SUB while c), e), g),
i) and k) show noisy speech at SNR of -5 dB enhanced by LOG, WIN, SS and SUB.
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Figure 2.5: Narrowband spectrograms of an utterance, “Bin Blue At E Seven Now”,
spoken by a male speaker in babble noise. a) shows clean speech, b) and c) show
noisy speech with no enhancement at SNR of 10dB and -5dB, and d), f), h), and j)
show noisy speech at SNR of 10 dB enhanced by LOG, WIN, SS and SUB while c),
e), g), i) and k) show noisy speech at SNR of -5 dB enhanced by LOG, WIN, SS and
SUB.
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2.4 Reconstruction-Based Speech Enhancement

The spectral subtraction, Wiener filters and statistical-model-based methods described

in the preceding sections are based on largely two processes of first estimating noise

components or SNR from speech-inactive periods in the noisy speech, and then forming a

linear or nonlinear filter to eliminate the noise. Therefore, these methods are classified as

filtering methods. Subspace algorithms decompose the noisy speech into two orthogonal

spaces, namely a signal space and a noise space by using SVD, and then the enhanced

speech is obtained by employing the signal space. This can also be regarded as one of

the filtering methods as well.

More recently, several alternative approaches, in which the enhanced speech is syn-

thesised or reconstructed by exploiting features extracted from the noisy speech, have

been developed. This section first discusses corpus and inventory-based speech enhance-

ment as an example applying this new approach with speech reconstruction using an

inventory or corpus of wide range of clean speech segments [10–12] while the latter part

of the section explores another approach using a model-based speech reconstruction for

the reconstruction process [5–7,13]. These speech reconstruction-based methods require

an offline training process in addition to the feature extraction and reconstruction pro-

cesses for implementation while the filtering methods can be implemented as a complete

real-time process.

2.4.1 Corpus and Inventory-based Speech Enhancement

Figure 2.6 shows a framework of corpus and inventory-based speech enhancement [12].

The input noisy speech, ypnq, is transformed to MFCC vectors after divided into short-

duration frames. The input waveform and MFCC vector at i-th frame are denoted as

yi “ rypn` pi´ 1qLq, ypn` pi´ 1qL` 1q, . . . , ypn` iL´ 1qsT (2.85)

ci “ MFCC tyiu (2.86)

where L represents the frame length. ci is referred to the noisy speech codebook as-

sociated with the clean speech codebook forming a network of Hidden Markov Models

(HMMs) in order to estimate the state of HMMs, spiq, which represents the most likely
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Figure 2.6: A framework of corpus and inventory-based speech enhancement.

waveform cluster in the clean inventory. A unit selection process selects x̂i as the closest

inventory element to yi from the cluster corresponding to spiq, and then the estimates of

all the frames, x̂i for @i, are concatenated and post-processed to reconstruct the enhanced

speech, x̂pnq.

2.4.1.1 System training

System training is an offline process to build the network of HMMs, which is the part

enclosed by broken lines in Figure 2.6. A training data set consists of both clean speech,

x1pnq, and noisy speech, y1pnq, contaminated with the target noise, d1pnq.

y1pnq “ x1pnq ` d1pnq (2.87)
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Each frame of the clean and noisy training data is converted to MFCC vectors in order

to discriminate and classify the feature of the frames.

x1i “
“

x1pn` pi´ 1qL, x1pn` pi´ 1qL` 1, . . . , x1pn` iL´ 1q
‰T

(2.88)

y1i “
“

y1pn` pi´ 1qL, y1pn` pi´ 1qL` 1, . . . , y1pn` iL´ 1q
‰T

(2.89)

d1i “
“

d1pn` pi´ 1qL, d1pn` pi´ 1qL` 1, . . . , d1pn` iL´ 1q
‰T

(2.90)

c1i “ MFCC
 

x1i
(

(2.91)

c̃1i “ MFCC
 

y1i
(

(2.92)

c1i is first divided into speech-active/inactive group using a VAD and these two groups

are completely separated in the inventory, then classified with intra-phonemic clustering

to form the speech segments with the adjacent similar frames as follows.

c̄1Ij “
1

Nj

ÿ

iPIj

c1i (2.93)

where c̄1Ij denotes the centroid of cluster, Ij , j represents cluster index and Nj is the

number of elements in Ij . c1i is included into Ij if the both Equations (2.94) and (2.95)

are satisfied.

}c̄1Ij ´ c1i} ă λ (2.94)

}c̄1IjYc1i ´ c1k} ă λ for @c1k P Ij (2.95)

where λ represents a threshold value. If c1i fails to satisfy the conditions, j should be

incremented and c1i becomes the first frame of the Ij`1. The above procedure is iterated

with the increment of i.

The inventory has to have a sufficient number of clusters, namely sufficient codebook

size, in order to reconstruct the clean speech with good intelligibility. However, the

number of the clusters produced by intra-phonemic clustering, nevertheless, needs to be

quantised into an appropriate size so that each cluster, which corresponds to each HMM

state, can occur with enough frequency during training to construct the network of HMMs

with sufficient quality. Therefore, inter-phonemic clustering is operated to combine the



2.4 Reconstruction-Based Speech Enhancement 55

intra-phonemic clusters having similar characteristics each other. The followings are an

example of vector quantisation using the k-means algorithm [12]. The first two seeds of

the inter-phonemic clusters are chosen as follows.

pm1,m2q “ arg max
@j,@k

}c̄Ij ´ c̄Ik} (2.96)

Im1 and Im2 become the first element of the seeds Cm (m “ 1, . . . ,M : M “ 2) and then,

all the intra-phonemic clusters, Ij for @j, are divided into Cm according to Equation

(2.97).

Ij P Cp as p “ arg min
m“1,...,M

}c̄Ij ´ c̄Cm} for @j (2.97)

The next seed is created by the element of zm1 .

zm “ arg max
@IjPCm

}c̄Ij ´ c̄Cm} pm “ 1, . . . ,Mq (2.98)

m1 “ arg max
m“1,...,M

}zm ´ c̄Cm} (2.99)

The operation from Equation (2.97) to (2.99) is iterated with increment of M until the

number of the clusters amounts to the appropriate size.

The seeds of the inter-phonemic clusters, C1,C2, . . . ,CM are optimised using the

k-means clustering algorithm [46]. The centroids of the optimised clusters, C “

tC1, C2, . . . , CMu, forms the clean codebook. The noisy codebook, C̃ “
!

C̃1, C̃2, . . . , C̃M
)

,

is also constituted with noisy training data, c̃1i, in the same manner. In addition, the

framed clean waveforms, x1i, are also classified into the clusters, D “ tD1,D2, . . . ,DMu,

in the clean inventory. The elements in a waveform cluster Dm are associated with the

elements in the corresponding optimised inter-phonemic cluster Cm.

x1i P Dm as c1i P Cm for @i pm “ 1, 2, . . . ,Mq (2.100)

After the clean and noisy codebooks are constituted, statistical parameters are esti-

mated to construct the network of HMMs (The theory of HMMs is described in Chapter

4 in detail). Using the Viterbi algorithm, the HMM network converts a sequence of ob-

served frames, ci, to a sequence of associated states, spiq P t1, 2, . . . ,Mu. Therefore, the

measure of the similarity between the clean observed frames and elements of the clean
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codebook is firstly determined as following distortion measure [12,47].

dpCm, c1iq “ }c1i}
ˆ

1´
CTmc1i

}Cm}}c1i}

˙

(2.101)

Applying this similarity measure, the state sequence of the observed clean training speech

is estimated as

s1piq “ arg min
m“1,2,...,M

dpCm, c1iq (2.102)

Next, the sequence of noisy observation codes, s̃piq, corresponding to the observed noisy

training speech is estimated as well.

s̃1piq “ arg min
m“1,2,...,M

dpC̃m, c̃1iq (2.103)

These estimations of the state and observation codes enable the statistical calculation of

the state transition probabilities required at HMM decoding.

ajk “ p
`

s1pi` 1q “ k|s1piq “ j
˘

(2.104)

bjk “ p
`

s̃1piq “ k|s1piq “ j
˘

(2.105)

2.4.1.2 Enhancement Process

The trained HMM network works as a function to decode the observed frames ci into

the most likely state sequence. This state sequence, spiq, is derived by using Viterbi

algorithm incorporating Equations (2.103), (2.104) and (2.105). (Viterbi algorithm is

referred to Chapter 4.)

After the decoding ci into spiq, the waveform frames which are closest to the frames

of the input noisy waveform are selected from the clean waveform cluster corresponding

to the state sequence by exploiting the following similarity measure with power normal-

isation [9, 12].

x̂i “ arg min
@x1jPDspiq

yTi x1j
b

| }yi}
2
´D2| }x1j}

(2.106)

D2 “ E
”

d1
T
i d1i

ı

(2.107)

Finally, the selected clean waveform units are concatenated to reconstruct the enhanced
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speech x̂pnq.

2.4.1.3 Post-processing

The enhanced speech reconstructed with the preceding processes are concatenations of

short-time waveform units and brings phase inconsistency at the frame boundaries. Con-

sequently, post-processing is required to deal with this issue, for example, applying a

Fourier analysis and synthesis model such as sinusoidal model to the selected frames and

remove the phase discontinuity.

2.4.2 Model-Based Speech Enhancement

The model-based speech enhancement is another approach to the reconstruction-based

speech enhancement. This method reconstructs speech with a speech production model

such as a vocoder and the sinusoidal model, which are discussed in Chapter 3, instead of

using a corpus or inventory of natural speech. A set of speech features of clean speech

required by the speech production model to reconstruct speech is provided by statistical

models of speech. Figure 2.7 illustrates a framework of model-based speech enhancement.

Feature Extraction Speech Production Model 

Statistical Model of Speech 
⇤ = {�1,�2, . . . ,�K}

y(n) x̂(n)
Noisy Speech Enhanced Speech 

arg max 
X̂

arg max P (� | Y) P (X̂ | �)
� 2 ⇧

Figure 2.7: Framework of model-based speech enhancement.

At the training stage, a set of speech segments such as words and phonemes,

Λ “ tλ1, λ2, . . . , λKu, is statistically modelled by a set of parameters of speech features

required by the speech production model. Then Λ is trained by clean speech.

At the test stage, the feature extraction process first extracts a set of the speech

features from noisy speech, ypnq. Then, a sequence of the extracted features, Y, is



58 Chapter 2

decoded into a sequence of the statistical models, λ, as

λ “ arg max
λ1PΠ

P
`

λ1 | Y
˘

(2.108)

where Π is a group which consists of all the possible sequence of the statistical mod-

els during the observation. In the next process, λ synthesises a sequence of statistical

parameters of the speech features, X̂, as

X̂ “ arg max
X̂1

P
´

X̂1 | λ
¯

(2.109)

X̂ is then passed to the speech production model and reconstructed to the time-domain

speech, x̂pnq.

The work proposed in this thesis falls into this category and uses STRAIGHT [48]

as a speech production model while hidden Markov models (HMMs) are applied to the

statistical model of speech segments. The largest advantage in the model-based speech

enhancement over the corpus and inventory-based method is the cost required for a

corpus or inventory because only statistical parameters rather than waveform data of

natural speech are stored into the system [9]. Moreover, those statistical parameters

can be adapted to different speakers or different types of noise without enlargement of

the database. The model-based reconstruction, however, has challenging problems with

its speech quality because it utilises only the statistical parameters to reconstruct the

speech while the corpus and inventory-based method uses a range of natural speech. This

causes artefacts to be produced in the resultant acoustic features. Moreover, quality of

speech production model may also become a cause of degradation in model-based speech

enhancement. Therefore, a wide range of speech speech production models are discussed

in depth in the following chapter.

2.5 Conclusion of the Chapter

This chapter has presented conventional methods for the speech enhancement including

the spectral subtraction, Wiener filters, statistical-model-based methods and subspace

algorithms which are based on the filtering approaches. The topic was then extended
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to the reconstruction-based approaches including corpus and inventory-based speech en-

hancement and model-based speech enhancement.

Experimental analysis has shown that the log MMSE method, which represents the

statistical filtering methods, generally shows the best performance as the overall evalu-

ation in terms of PESQ. The filtering-based methods including the log MMSE method,

however, leave a lot of musical noise, residual noise and distortion at low SNRs such as 0

dB and below. This degradation is attributed to underestimation and overestimation at

the noise estimation stage. Alternatively, the reconstruction-based methods are expected

to obtain background noise-free speech because these methods reconstruct clean speech

from an inventory which stores natural clean speech or statistical parameters of clean

speech.
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Chapter 3

Speech Production Models

Model-based speech enhancement utilises a speech production model to reconstruct clean

speech. Therefore, the speech production model is one of the key processes to determine

the baseline performance of model-based speech enhancement. This chapter first reviews

physical speech production to give an insight into the characteristics of speech signals.

Engineering models of speech production are then categorised into the source-filter models

and the sinusoidal model and these are discussed in depth. Finally, different approaches

to estimate the fundamental frequency, which gives harmonic information of speech to

speech production models, are explored.

3.1 Introduction

Speech is airflow which is expelled from the lungs and then phonated through the vocal

chords of the larynx and resonated in the vocal cavities before radiated through the

oral articulators or the nose. It is known that the speech production process can be

approximated as a digital filter comprising excitation signal inputs and vocal tract filters

which models the spectral envelops of the vocal tract resonance, glottal flow and lip

radiation based on the source-filter models. [49, 50]. Various types of vocoders have

been developed that employ the source-filter model, for instance, linear predictive coding

(LPC), residual-excited linear prediction (RELP), code-excited linear prediction (CELP),

mixed excitation linear prediction (MELP) and STRAIGHT [48,51–55].

Alternatively, a notion that speech signals can be synthesised as a sum of different
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sinusoidal signals has derived another approach to the speech production models, namely,

the sinusoidal model and HNM [56–58]. The process of speech production (i.e., recon-

struction) is one of the key processes of model-based speech enhancement and a choice

of the speech production model may determine the baseline performance of model-based

speech enhancement. Therefore, it is important to discuss each of these models and to

understand those properties.

The remainder of the chapter is organised as follows. The physical model of the

human speech production process is first presented to understand the properties of the

speech signals and to acquire insights into speech production models. The subsequent

two sections explore different speech production models represented as source-filter mod-

els and the sinusoidal model. Finally, different methods to estimate the fundamental

frequency (f0) and voicing, which are referred to for the harmonic features of the speech

by speech production models, are discussed prior to the conclusion of the chapter.

3.2 Physical Speech Production Process and Speech Sig-

nals

In the human speech production process, an excitation signal is created from air expelled

by the lungs at the vocal chords. The signal then excites resonant cavities of the vo-

cal tract which consist of the pharyngeal cavity, the oral cavity and nasal cavity. The

resonant frequencies formed at this process are known as the formant frequencies. The

signal is then radiated through the lips involving the tongue and teeth. When the velum

is lowered, the nasal cavity is acoustically coupled to the pharyngeal and oral cavities

to produce the nasal sounds of speech [1, 49]. Figure 3.1 illustrates the overview of this

process.

Changes in the shape of the vocal tract causes the resonant frequencies of the vocal

tract to change which in turn produces different speech sounds, therefore, the speech

signals are nonstationary. However, it is known that the short-time segments of voiced

speech signals (10-30 ms) can be fairly stationary because the muscles constituting the

vocal tract do not change their shape as quickly as the short time duration for voicing.

However, some changes in the vocal tract to produce unvoiced sounds, such as release
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Figure 3.1: Overview of the human speech production model.

of a constriction which makes a plosive, are fast with regard to the analysis frame, and

the excitation source for unvoiced sounds is turbulence which will only be filtered by

the vocal tract after constriction. Therefore, formants of unvoiced sounds look different

during frication.

Figure 3.2 illustrates the relation between the shape of the oral and pharyngeal

cavities and the frequency response of those resonances. For voiced sounds, larger cavities

give rise to lower formant frequency, and the tongue divides the vocal tract into two

cavities. The rear cavity determines the first formant frequency, F1, whereas the front

cavity determines the second formant frequency, F2.

Figure 3.3(a) shows an instance of the speech signal for the utterance “bin blue at

L four again” of a male speaker sampled at 8 kHz. This shows that the speech signals

can be divided into various segments corresponding to the different sounds and these

segments can be largely categorised into voiced segments having periodic signal property

or unvoiced segments having a property of the random noise. Figure 3.3(b) shows the

zoomed-in plot of the voiced segment corresponding to the sound /ue/ in “blue” while

Figure 3.3(c) depicts the zoomed-in plot of the unvoiced segment corresponding to /f/
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Figure 3.2: The relation between the shape of the oral and pharyngeal cavity and
the frequency response of the resonance showing a) sound of /i/ in “beat”, b) sound
/u/ in “boot” and c) sound /a/ in “bart”.
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(c) Unvoiced Segment

Figure 3.3: Time domain waveform of the utterance “bin blue at L four again” of
a male speaker showing: a) the whole speech signal, b) the zoomed-in plot corre-
sponding to the voiced segment “ue” in “blue”, c) the zoomed-in plot corresponding
to the unvoiced segment “f” in “four”.
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in “four”, and this derives the notion that the voiced signals can be modelled with the

excitation source of the periodic pulse train whereas the unvoiced signals are modelled

as the random white noise.

3.3 Source-Filter Models

The source-filter model is an engineering model of the speech production process exploit-

ing the properties of the speech signals discussed above. This section first presents the un-

derlying notion of the source-filter model and then specifically the LPC and STRAIGHT

models are discussed as the representative examples of the source-filter model.

3.3.1 Overview

The source-filter model assumes that an excitation signal is generated by the lungs and

vocal chords and this is then filtered by the vocal tract. The excitation signal of the

voiced sound is a periodic signal and thus, the voiced speech has harmonic properties

according to the period of the excitation signal, so-called pitch period, while the excitation

signal of the unvoiced speech is a noise-like signal and the unvoiced speech signals have

the characteristics of random noise. According to these properties of the source-filter

model, the engineering model of the source-filter model is represented as Figure 3.4. For

Voiced 

Unvoiced 

x 

Gain (loudness) 

Voicing 
decision Pitch  

Speech 

Vocal Tract 
Filter 

s(n)

h(n)
v(n)N0

euv(n)
g(n)

ev(n) = �(n � mN0)

Figure 3.4: Overview of the source-filter model.

the discrete-time domain speech signal, spnq, the model is parameterised by the pitch

period, N0pnq, the voiced/unvoiced decision, vpnq, the loudness gain, gpnq, the random

noise for the unvoiced excitation, euvpnq, and the impulse response of the vocal tract

filter, hpnq. The vocal tract filter is generally modelled as an all-pole filter so that the
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poles of the transfer function form the formants in its frequency response and thus, the

transfer function of the vocal tract filter is derived as

Hpzq “
1

1´
řP
k“1 akz

´k
(3.1)

where ak are the filter coefficients to determine the frequency characteristics of the vocal

tract filter and P is the order of the filter which determines the number of the formants.

The number of the formants is specified P and frequency bandwidth.

3.3.2 Linear Predictive Coding

LPC represents the source-filter model with a simple structure and it models the speech

signal as Equation (3.2) in z-domain.

Spzq “ GHpzqEpzq (3.2)

where Spzq, Hpzq, Epzq and G represent the speech signal, the transfer function of the

vocal tract filter, the excitation signal in z-domain and a loudness gain factor respectively.

Hpzq is determined by Equation (3.1) and therefore, the model derives

Spzq “
G

1´
řP
k“1 akz

´k
Epzq (3.3)

This filter has a structure of the autoregressive (AR) filter as illustrated in Figure 3.5

and the excitation signal is derived as its inverse, namely a finite impulse response (FIR)

filter

Gepnq “ spnq ´ pa1spn´ 1q ` a2spn´ 2q ` ¨ ¨ ¨ ` apspn´ P qq (3.4)

“ spnq ´
P
ÿ

k“1

akspn´ kq (3.5)

where epnq and spnq are the time domain signals of the excitation and the speech signal

respectively. Equation (3.5) signifies that the coefficients of the vocal tract filters, ak

(k “ 1, 2, ¨ ¨ ¨ , P ) constitute a linear prediction filter which estimates spnq with the past

samples, spn´ 1q, spn´ 2q, ¨ ¨ ¨ , spn´P q, and the residual of the linear prediction corre-
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sponds to Gepnq as illustrated in Figure 3.6. Thus, the coefficients, ak, are determined

z�1

z�1

z�1

+ 

+ 

+ 

e(n)

G

s(n)

z�1

a1

a2

aP

Figure 3.5: AR model forming a vocal tract filter of LPC vocoder.

by minimum mean square error (MMSE) such that the residual is minimised in terms of

MMSE in order to approximate epnq as a pulse train as follows.

J “ E
”

pGepnqq2
ı

s “ E

»

–

˜

spnq ´
P
ÿ

k“1

akpn´ kq

¸2
fi

fl (3.6)

The derivative of J with respect to al (l “ 1, 2, ¨ ¨ ¨ , P ) is set equal to zero in order to

minimise the mean square error.

BJ

Bal
“ ´2E

«˜

spnq ´
P
ÿ

k“1

akspn´ kq

¸

spn´ lq

ff

(3.7)

“ ´2

˜

E rspnqspn´ lqs ´
P
ÿ

k“1

akE rspn´ kqspn´ lqs

¸

(3.8)

“ ´2

˜

rssplq ´
P
ÿ

k“1

akrssp|k ´ l|q

¸

“ 0 (3.9)

where

rssplq “ E rspnqspn´ lqs pfor l “ 1, 2, ¨ ¨ ¨ , P q (3.10)



68 Chapter 3

s(n)

+ 

+ 

+ 

z�1

z�1

z�1

z�1

Ge(n)

�a1

�a2

�aP

Figure 3.6: Linear prediction filter which is the inverse of the LPC model

The preceding equations derives the vocal tract filter coefficients as

rss “ Rssa (3.11)

a “ R´1
ss rss (3.12)

where a is the vector of the filter coefficients, ra1 a2 ¨ ¨ ¨ aP s
T , rss is the autocorrelation

vector, rrssp0q rssp1q ¨ ¨ ¨ rsspP ´ 1qsT , and Rss is the autocorrelation matrix formed as

Rss “

»

—

—

—

—

—

—

—

—

—

—

–

rssp0q rssp1q rssp2q ¨ ¨ ¨ rsspP ´ 1q

rssp1q rssp0q rssp1q ¨ ¨ ¨ rsspP ´ 2q

rssp2q rssp1q rssp0q ¨ ¨ ¨ rsspP ´ 3q

...
...

...
. . .

...

rsspP ´ 1q rsspP ´ 2q rsspP ´ 3q ¨ ¨ ¨ rssp0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.13)

Figure 3.7 shows an instance of the speech reconstruction with a 16th order LPC

model. Subplot (a) depicts the natural speech of the sound /ue/ in “blue” of a male

speaker sampled at 8 kHz. Subplot (b) and (c) show the residual of the linear prediction

as the reference of the excitation signal, epnq, and the frequency response of the vocal

tract filter, Hpfq, obtained by Equations (3.5) and (3.12). Subplot (d) represents the

pulse train the period of which is equal to the pitch period, T0, of subplot (b), and subplot
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(a) Original Speech Signal

Figure 3.7: Example of the speech production with the LPC model (P = 16) showing:
a) original natural speech of the sound /ue/ in “blue” uttered by a male speaker,
b) the residual of the linear prediction as the reference of the excitation source, c)
the frequency response of the vocal tract filter, d) pulse train used for the excitation
and e) reconstructed speech with c) & d).
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(e) shows the reconstructed speech signal from the vocal tract(c) and the excitation (d).

These plots show that although the reconstructed signal is over-smoothed due to the

excitation source which consists of only a simple pulse train, the characteristics of the

speech is kept because it has the same formant frequencies and the pitch period as the

original natural speech. Therefore, this notion to use a simple pulse train as the excitation

of voiced speech is used as a basic technique of vocoders and also applied to low bit rate

coding. Specifically, typical 10th order vocal tract filters use 40 bits/frame while the

excitation source information requires typically 4 bits/frame. Therefore, if the speech is

windowed into 20 ms frames, the required bit rate equals 2,200 bit/s. Subjective listening

tests, however, discover explicit degradation with having a buzzy characteristic which is

attributed to strong harmonics brought by using simple pulse excitation because the

voiced speech in the natural speech signals are not exactly periodic [59,60].

Different methods have been proposed to tackle the problem of this buzzy noise in

the reconstructed speech and the mixed excitation models which utilise a mixture of the

pulse and random noise rather than using binary pulse as the excitation source have

been successfully adopted to reduce the buzzy sounds. These methods such as RELP,

CELP, MELP and those variant algorithms [53–55, 59, 61, 62] require the mixture ratio

of the periodic signal and aperiodic noise in the excitation source instead of the binary

voicing information. The mixture ratio is estimated from, for example, the feature of the

linear prediction residual [62], and the source signal is constituted with the mixture ratio,

random white noise and the estimated fundamental frequency, f0, which is the reciprocal

of the pitch period, T0.

f0 “
1

T0
(3.14)

The methods of the fundamental frequency estimation are discussed in Section 3.5.

The LPC models determine the filter coefficients by using linear prediction analysis

as discussed above. However, different approaches to estimate the filter coefficients for

the source-filter model also have been proposed such as the methods using short-time

Fourier analysis and Mel-cepstral analysis [63–65].
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3.3.3 STRAIGHT

STRAIGHT is a sophisticated mixed excitation source-filter vocoder which has been

successfully applied to HMM-based speech synthesis [9, 50, 66]. The filtering process of

STRAIGHT is decomposed into minimum-phase and all-pass systems so that the group

delay of the system can be adjusted to improve speech quality because it is known that

the group delay in the speech signal is perceptually detectable [67].

STRAIGHT requires three inputs for speech reconstruction, namely i) the spectral

surface, Spf, iq, of the speech, ii) the fundamental frequency contour, f0piq, and iii) the

aperiodicity measure, Apf, iq where f and i denotes the indices of the frequency bins and

time frames respectively [68–70]. Spf, iq is a time series of the spectral envelopes, Sipfq,

in which the harmonic information and temporal interference are eliminated [71]. Sipfq

forms the vocal tract filter consisting of the minimum phase part, Hipfq and the all-pass

part, Φipfq. When a filter has the minimum phase impulse response, the complex cep-

strum of the filter coefficients is causal [72], and there is a relationship between complex

cepstrum, cipnq, and real cepstrum, ĉipnq, as

ĉipnq “
cipnq ` cip´nq

2
(3.15)

therefore, Hipfq is derived from Sipfq as

Hipfq “ exp pF rcipnqsq (3.16)

cipnq “

$

’

’

’

’

&

’

’

’

’

%

2ĉipnq pn ą 0q

ĉipnq pn “ 0q

0 pn ă 0q

(3.17)

ĉipnq “ F´1 rlog pSipfqqs (3.18)

where the notation F r¨s and F´1r¨s denote Fourier and inverse Fourier transform re-

spectively. The all-pass filter Φipfq adjusts the group delay of the system and thus, the

energy of the periodic pulse in the excitation source is spread to the adjacent time sam-

ples. This is also effective in reducing the buzzy noise from the reconstructed speech.
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The impulse response of the vocal tract filter, hipnq, is then acquired as

hipnq “ F´1 rHipfqΦipfqs (3.19)

The excitation source is synthesised from f0piq and Apf, iq. The fundamental fre-

quency at the i-th frame, f0i, represents the periodic component in the excitation source

while the aperiodicity at the i-th frame, Aipfq, represents the indeterministic component

and it is defined as the proportion of the lower spectral envelope to the upper spectral en-

velope to represent the relative energy distribution of the random noise components [60].

Therefore, the excitation source of the i-th frame, eipnq is synthesised as

eipnq “
1
?
f0i
δ

ˆ

n´
fs
f0i

˙

`F´1 rAipfq|Npfq|s (3.20)

δpnq “

$

’

&

’

%

1 pn “ 0q

0 potherwiseq
(3.21)

where |Npfq| and fs represents the magnitude spectrum of the random white noise and

the sampling frequency respectively. The speech signal is finally reconstructed by the

source-filter convolution.

ŝipnq “ hipnq˙ eipnq (3.22)

where the symbol ‘˙’ denotes the operation of convolution.

Figure 3.8 shows an example of the speech reconstruction with STRAIGHT. The

reconstruction process is performed with the following all-pass filtering settings.

iq Group delay dpfq “ 0

iiq Group delay dpfq “

$

’

&

’

%

0 pf ď 2000 Hzq

0.5 ms pf ą 2000 Hzq

iiiq Group delay dpfq “

$

’

&

’

%

0 pf ď 2000 Hzq

2.0 ms pf ą 2000 Hzq

Figure 3.8 (a) shows a segment of the natural speech of the sound /ue/ in “blue” uttered

by a male speaker and the signal is sampled at 8 kHz but this signal is not identical to
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Figure 3.7 (a). (b) depicts the magnitude spectrum of the vocal tract filter. (c) and (d)

show the excitation and reconstructed speech respectively with the group delay setting i).

(e) and (f) also represent the excitation and reconstructed speech respectively with the

group delay setting ii) while (g) and (h) show the plots with the group delay setting iii).

The blue lines in the excitation source plots represent the sum of the periodic and noise

components in the signals whereas the red lines extract only the periodic pulse component

in the signals. These plots illustrate the influence of the group delay settings and also

show that the reconstructed speech has a better approximation than the over-smoothed

signal reconstructed with the simple LPC model shown in Filgure 3.7.

3.4 Sinusoidal Model

The source-filter models are based on the notion that the excitation source represented

by a mixture of a pulse train and white noise is resonated by the vocal tract filter. The

sinusoidal model is an alternative to the preceding approach and it models speech as a

summation of the sinusoids that have the harmonic frequencies of the speech [56,57].

3.4.1 Basic Sinusoidal Model

The sinusoidal model leads a stationary short-time speech frame, sipnq, that is modelled

as

ŝipnq “ A1 cos

ˆ

2π
f1

fs
n` φ1

˙

`A2cos

ˆ

2π
f2

fs
n` φ2

˙

` ¨ ¨ ¨

¨ ¨ ¨ `ALcos

ˆ

2π
fL
fs
n` φL

˙

(3.23)

“

L
ÿ

l“1

Al cos

ˆ

2π
fl
fs
n` φl

˙

(3.24)

where L denotes the number of harmonics in the speech, fs is the sampling frequency and

Al, fl and φl are amplitude, frequency and phase of each sinusoid respectively. Regarding

the harmonic frequencies are pure integral multiples of the fundamental frequency and

the sinusoid amplitudes Al correspond to the magnitude spectra at the harmonic frequen-

cies while the sinusoid phases φl are represented by the phase spectra at the harmonic
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(f) Reconstructed (Delay=0.5ms)
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(g) Excitation (Delay=2.0ms)
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(h) Reconstructed (Delay=2.0ms)

Figure 3.8: Example of the speech reconstruction with STRAIGHT showing: a) a
segment of the natural speech, b) the magnitude spectrum of the vocal tract filter, c),
e) and g) the excitation source where the blue line represents the sum of the periodic
and noise components while the red line shows only the periodic pulse component at
the group delay of 0, 0.5, and 2.0 ms respectively, d), f) and h) reconstructed speech
at the group delay of 0, 0.5, and 2.0 ms respectively.
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frequencies, the preceding equation is simplified as

ŝipnq “
L
ÿ

l“1

Al cos

ˆ

2πl
f0i

fs
n` φl

˙

(3.25)

where

Al “ |Siplf0iq| (3.26)

φl “ =Siplf0iq (3.27)

where f0i and Sipfq are the fundamental frequency at the i-th frame and the complex

spectrum of sipnq respectively.

Equation (3.25) models voiced speech signals. Frames of unvoiced speech, however,

cannot be represented as the summation of the harmonic components as there is no pitch

period in the signal. Therefore, sipnq is modelled as the following binary state model by

taking the notion of the source-filter model for the unvoiced speech [7].

ŝipnq “

$

’

&

’

%

řL
l“1Al cos

´

2πl f0i

fs
n` φl

¯

pvoicedq

hipnq˙ wipnq punvoicedq
(3.28)

where hipnq represents the impulse response of the filter, coefficients of which are deter-

mined from the spectral envelope of sipnq, and wipnq is a sequence of white noise.

Figure 3.9 shows an example of the speech reconstruction with the sinusoidal model.

Subplot (a) shows a short-time segment of the natural speech of the sound /ue/ in “blue”

uttered by a male speaker and subplot (b) is the reconstructed speech. The spectral en-

velopes to estimate the amplitude and phase of the sinusoids are up-sampled to have

the resolution of 1 Hz at the reconstruction process. The plots show that the sinusoidal

model produces good quality speech and an evaluation across a range of speech produc-

tion models has reported that variants of the sinusoidal models generally obtain better

performance than variants of the source-filter models [66] but require more parameters

for the input making it less suitable for coding applications.
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(b) Reconstructed

Figure 3.9: Example of the speech reconstruction with the sinusoidal model showing:
a) a short-time segment of the natural speech of the sound “ue” in “blue” uttered
by a male speaker and b) the reconstructed speech.

3.4.2 Harmonics Plus Noise Model

The harmonics plus noise model (HNM) is a variant of the sinusoidal model which divides

voiced speech into a harmonic component and a stochastic component. The harmonic

component is modelled as a summation of the harmonic sinusoids while the stochastic

component is modelled as white noise [58, 73]. The reconstructed speech is derived by

the summation of the harmonic and stochastic components as follows.

ŝipnq “
L
ÿ

l“1

Al cos

ˆ

2πl
f0i

fs
n` φl

˙

` ripnqwipnq (3.29)

where ripnq is a time domain window which modulates the white noise in order to match

the energy to the harmonic component in the original speech [58].

Several variants of the sinusoidal model and HNM have been proposed such as the

adaptive harmonic model (aHM), and perceptual dynamic sinusoidal model (PDM) [66,

74,75].

3.5 Estimation of the Fundamental Frequency

Both the source-filter and sinusoidal speech production models require the fundamental

frequency of the speech in order to refer it for the harmonic information of speech. This
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section discusses several methods to estimate the contour of the fundamental frequency

of speech. The performance of each method is then evaluated in Section 3.5.3.

3.5.1 Time-Domain Analysis

Various methods to estimate the fundamental frequency of speech signals have been devel-

oped and they are largely categorised as methods to analyse a signal in the time-domain

or methods to analyse a signal in the frequency or cepstrum-domain. The following

sections discuss representative methods of time-domain approach.

3.5.1.1 Autocorrelation Method

Considering time-shift operation applied to a periodic signal, the signal matches the

original when the amount of the time-shift is equal to the pitch period of the signal. In

other words, the auto-correlation function of a periodical signal is maximised when the

time-shift is equal to the pitch period of the signal. Therefore, the pitch period of the

signal, T0i, and the fundamental frequency, f0i, at frame index, i, can be derived as

T0i “

arg max
m

trsspmqu

fs
(3.30)

f0i “
1

T0i
(3.31)

where m denotes the number of sample shift and rsspmq is the autocorrelation function

of a periodical discrete-time signal spnq sampled at fs, therefore, rsspmq is determined as

rsspmq “
M
ÿ

n“0

sipnqsipn`mq for M “ L´m (3.32)

where L is the number of the samples in a frame.

Periodic signals of speech often show high auto-correlation as the time-shift is equal

to a half of the pitch period or integer multiples of the pitch period [76]. Therefore, the

estimate of the pitch period could be detected as a half or integral multiple of the actual

pitch period. This is called an octave error which causes necessity of using post processing

that applies temporal continuity constraints. The estimate of voicing information is also

obtained during that post processing.
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Although it is known that the auto-correlation method has good performance and

is robust to noise [77], this method has a major disadvantage in sensitivity to changes

in signal amplitude. Therefore, if the signal has a rapid amplitude change in the frame,

it can introduce incorrect lags that have greater autocorrelation values than the lag

corresponding to the true pitch period and consequently estimation errors.

3.5.1.2 Normalised Autocorrelation

The normalised autocorrelation function has been applied to fundamental frequency es-

timation to tackle the problem on the auto-correlation method [78]. In this method, the

autocorrelations between different lags are determined as

rsspmq “

řM
n“0 sipnqsipn`mq

b

řM
n“0 sipnq

řM
n“0 sipn`mq

for M “ L´m (3.33)

In this case, autocorrelation is not affected by the changes in the signal amplitude because

of the normalisation by the signal energy. A robust algorithm for pitch tracking (RAPT)

which has been successfully applied to many applications uses this algorithm [77].

3.5.1.3 YIN Method

The YIN method uses a different approach to deal with the problem of amplitude changes

in speech signals [79]. This method employs the squared difference function rather than

the normalised autocorrelation function.

dpmq “

M
ÿ

n“0

pspnq ´ spn`mqq2 for M “ L´m (3.34)

“

M
ÿ

n“0

spnqspnq `
M
ÿ

n“0

spn`mqspn`mq ´ 2
M
ÿ

n“0

spnqspn`mq (3.35)

“ rssp0q ` r
pmq
ss p0q ´ 2rsspmq (3.36)

dpmq is minimised at m corresponding to the pitch period by the term of ´2rsspmq

while the term of r
pmq
ss p0q represents the energy of the lagged signal and compensates

for changes in the signal amplitude. Furthermore, dpmq is replaced with the following
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function to keep the values high at low lag periods.

d1pmq “

$

’

&

’

%

1 pm “ 0q

dpmq { rp1{mq
řm
k“1 dpkqs (otherwise)

(3.37)

This avoids producing dips at lags corresponding to the first formant and improves the

accuracy of the pitch detection.

3.5.2 Cepstrum and Frequency-Domain Analysis

The preceding methods to estimate the fundamental frequency employ time-domain ap-

proaches. Alternatively, the following sections discuss cepstrum and time-domain ap-

proaches.

3.5.2.1 Cepstrum Method

Several methods to utilise the cepstrum of the speech have been proposed [80, 81]. The

cepstrum of spnq is determined as

cipnq “
ˇ

ˇ

ˇ
F´1

”

log
´

|F rsipnqs|
2
¯ıˇ

ˇ

ˇ
(3.38)

The log operation flattens the harmonic peaks in the spectral magnitude and thus, more

distinct periodic peaks are given in the cepstrum. Consequently, the fundamental fre-

quency can be estimated by detecting the peaks in the cepstrum.

Although the cepstrum method has good performance and is robust to noise [77],

this method also has a problem of sensitivity to changes in signal amplitude as well as

the auto-correlation method in the time-domain.

3.5.2.2 PEFAC

The correlation methods including the square difference function in the YIN method

perform well in moderate noise levels. However, these methods do not give a distinct peak

in the autocorrelation function in more severe noise conditions such as negative SNRs.

The pitch estimation filter with amplitude compression (PEFAC) method is proposed as

a frequency-domain approach to pitch estimation which is robust to high levels of noise
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to resolve this problem [82].

PEFAC estimates the fundamental frequency from the autocorrelation in the log-

frequency domain with a matched filter applying a novel spectral normalisation [83]. For

a periodic source contaminated with stationary noise, the power spectral density at frame

i in the log-frequency domain is determined as

Sipqq “
K
ÿ

k“1

akδ pq ´ log k ´ log f0iq `Dipqq (3.39)

where q denotes log-frequency, and K, ak and f0i are the number of harmonics, power

at k-th harmonic and the fundamental frequency respectively, and Dipqq represents the

power spectral density of the noise. In the log-spectral domain, the harmonic interval is

determined by log k rather than f0i, therefore, a matched filter is derived as

hipqq “
K
ÿ

k“1

δ plog k ´ qq (3.40)

and the filter output Sipqq˙ hipqq gives a peak at q0 “ log f0i.

Dipqq, however, broadens the spectral peaks in Sipqq and the filter output is affected

in severe noise conditions. Therefore, PEFAC applies a spectral normalisation to reduce

the dominance of the noise component by using the smoothed periodogram and the

universal long term average speech spectrum (LTASS) which is independent of language

and speaker [84]. The normalised periodogram, S1ipqq, is determined as

S1ipqq “ Sipqq
Lpqq

S̄ipqq
(3.41)

where Lpqq represents the universal LTASS and S̄ipqq is the smoothed periodgram filtered

by moving average filters in the time and log-frequency domain. [82] reports that this

normalisation can give heavy attenuation to any regions of the periodogram at which the

SNR ! 0 dB. The autocorrelation function is finally obtained as

rsspqq “ S1ipqq˙ hipqq (3.42)

and log f0i is represented by a peak in rsspqq.
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3.5.3 Experimental Results and Evaluation

This section examines the performance of methods to estimate the fundamental frequency

discussed above. In applications using statistical parametric speech synthesis (SPSS) such

as text-to speech, both spectral features and the fundamental frequency are synthesised

by the statistical models of HMMs [50]. Model-based speech enhancement, however, can

estimate the fundamental frequency of clean speech from the noisy speech rather than

synthesise it from the statistical models, and this motivates each method of fundamental

frequency estimation to be examined in noisy conditions. Therefore, RAPT, YIN and

PEFAC are examined in noisy conditions with white noise and babble noise at SNRs from

-5 dB to 10 dB. The GRID database (two male speakers and two female speakers) down

sampled to 8 kHz is used for the test speech and each method estimates the fundamental

frequency from 200 utterances for each speaker (800 utterances in total) in each noise

condition. The ground truth is determined as follows. All three methods first estimate

the voicing and fundamental frequency of the test utterances in noise-free condition and

then the voicing decision of each frame is determined by majority vote. The fundamental

frequency of the voiced frames are decided by taking the mean of the estimates of the

algorithms constituting the voicing decision.

The performance of each method is examined in terms of gross error rate, pg, and

accuracy, pa, which are marked by the following criteria.

pg “
ną20

N
ˆ 100 (3.43)

pa “
nă5

Nv
ˆ 100 (3.44)

where ną20 represents the number of frames including voicing error frames the estimates

of which are more than 20 % apart from the ground truth while nă5 is the number of

the frames whose distance to the ground truth is less than 5 %. N and Nv denote the

number of the total frames and voiced frames respectively.

Each method takes the analysis window length as 90 ms duration with 5 ms window

shift and the minimum and maximum of the fundamental frequency range is set to 50 Hz

and 300 Hz respectively. RAPT and PEFAC employ dynamic programming (DP) [85]

for post processing whereas YIN adopts an aperiodicity measure to obtain the voicing
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decision. Other settings for each algorithm follow the empirical parameters in [77,79,82].

Figure 3.10 shows the test results. Subplots (a) and (b) illustrate the gross error

rate of each method at the different SNRs with white and babble noise. Subplots (c)

and (d) show the accuracy of each method in the same conditions. The test results show
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Figure 3.10: Fundamental frequency estimation performance with each methods
showing: a) gross error rate in white noise, b) gross error rate in babble noise, c)
estimation accuracy of the voiced speech in white noise and d) babble noise.

that the three methods have similar performance and significant differences are not found

in high SNR conditions such as at SNR of 10 dB. In low SNR conditions, however, the

performance of PEFAC is superior to the others. At SNR of -5 dB with white noise,

PEFAC has a gross error rate of 18 % while the other two methods deteriorate to 40

%. Although gross error rates of PEFAC in babble noise are higher than RAPT, for

example, PEFAC is scored 50 % at -5 dB while RAPT is 43 %, accuracy of PEFAC at

the same condition is significantly higher than RAPT. The accuracy of PEFAC at -5

dB is 52 % and 63 % in babble noise and white noise respectively while the other two
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methods fall to around 20 %. This test results give fair reason to adopt PEFAC for the

fundamental frequency estimation in the subsequent experiments. YIN does not employ

a post processing while PEFAC and RAPT use a dynamic programming post processing.

This may cause a disadvantage to YIN in terms of gross error rate.

3.6 Conclusion of the Chapter

This chapter first discussed the human speech production process and properties of the

speech signal attributed to the production process. For example, voiced speech is excited

as a periodic signal at the vocal chords and then resonates at resonant cavities which con-

sist of the pharyngeal cavity, the oral cavity and the nasal cavity prior to being radiated

from the lips or the nose. Therefore, the characteristics of the signal are determined by

the length of the vocal chords and motion of the resonant cavities involving the tongue

and teeth. The former characterises the harmonic structure of speech and the latter

determines the frequency response of the vocal tract. Alternatively, unvoiced speech is

radiated with the property of random noise.

The source-filter model was then discussed with respect to the preceding human

speech production process and the properties of speech signals. This model comprises

the excitation source and the vocal tract filter. The excitation source is modelled as

a periodic pulse train or random noise according to voicing information, and the vocal

tract filter is generally designed as an all-pole filter to enable the frequency response to

have the formants. LPC and STRAIGHT are representative of this model. Specifically,

STRAIGHT showed remarkable performance in the experiment of speech reconstruc-

tion from information of the spectral envelopes, the aperiodicity and the fundamental

frequency of speech

Alternatively, the sinusoidal model and the HNM, which is one of variants of the

sinusoidal model, have also been studied as another approach to model voiced speech.

These models are based on the notion where voiced speech is modelled as a summation

of harmonic sinusoids, and an experiment showed the sinusoidal model reconstructing

speech with high quality.

It has been reported that vocoders based on the source-filter model generally have
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buzzy characteristic which is attributed to strong harmonics brought by using a pulse

train for excitation, and the sinusoidal model and its variants tend to show better perfor-

mance [9,50,66]. However, the number of parameters needed by the sinusoidal model and

its variants is much more than the source-filter model, and such models do not suit appli-

cations which applies statistical models to the parameters, such as model-based speech

enhancement because of too much variability. Alternatively, STRAIGHT has resolved

the issue of buzzy noise by applying the mixed-excitation model and the parameters re-

quired for speech reconstruction, i.e. the spectral envelopes, the aperiodicity coefficients,

and the fundamental frequency contour, are suitable to form statistical models because

the number of parameters does not vary and the spectral envelopes and the aperiodicity

coefficients are able to be transform to the Mel-filterbank domain. Therefore, the pro-

posed method in this thesis adopts the STRAIGHT vocoder for the speech reconstruction

process in HMM-based speech synthesis.

Finally, different methods to estimate the fundamental frequency of speech are ex-

plored and the experiments have shown that PEFAC has a distinct advantage over RAPT

and YIN in the performance to estimate the fundamental frequency of speech in noisy

condition.
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Chapter 4

Hidden Markov Model-Based

Speech Enhancement

This thesis proposes Hidden Markov Model (HMM)-based speech enhancement which

is based on the reconstruction-based approach using HMMs for statistical models of

speech segments and the STRAIGHT vocoder for the speech production model. HMMs

are utilised to both decode the input speech into the state sequence of the models and

synthesise speech features of the clean speech from the state sequence. This chapter first

discusses an overview of HMMs and then the discussion is extended to the decoding stage

and synthesis stage of the method, and finally they are combined to explore HMM-based

speech enhancement.

4.1 Introduction

HMMs are statistical time series models which have been successfully applied to various

applications to build statistical models of phenomena, e.g. speech, handwriting letters and

facial image. One of the most important features of HMMs is that they have a structure

that can be expressed as a mathematical description, and it enables a theoretical basis

to be established for applications in many and various areas [86].

An HMM comprises a sequence of finite statistical states. Each state can have an

independent statistical distribution and transitions among the states are also statisti-

cally determined. This structure enables HMMs to model statistical characterisation of
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nonstationary signals such as speech and time-varying noise [28]. Specifically, automatic

speech recognition (ASR) has successfully employed HMMs for decades [87] while vari-

ous researches have shown the advantages of using HMMs for text to speech applications

recently [9, 50].

HMM-based speech enhancement combines these techniques by first decoding noisy

speech using a network of HMMs and then, using the same network of HMMs, synthesises

a clean speech signal as illustrated in Figure 4.1. This is motivated by a desire to reduce

HMM Decoding HMM Synthesis 

Hidden Markov Models 

Noisy Speech Clean Speech 

State / Model Sequence 

Speech Reconstruction Feature Extraction 

⇤ = {�1,�2, . . . ,�D}

(STRAIGHT) 
y(n)

O

q

Ô

x̂(n)

P (q0 | O,⇤)
q0 2 Q

arg max P (Ô0 | q,⇤)
Ô0

arg max 

Figure 4.1: A combination of different HMM techniques to build HMM-based speech
enhancement.

distortion and artefacts that conventional speech enhancement methods can introduce [1].

The first section of this chapter gives a basic overview of HMMs. Then HMM

decoding is discussed in the context of Automatic Speech Recognition (ASR) as its rep-

resentative application in the second section. The next section explores HMM-based

speech synthesis with various experiments prior to the discussion and evaluation of the

initial experiments of HMM-based speech enhancement.

4.2 Hidden Markov Models

Figure 4.2 illustrates an ergodic Markov chain with 4 states, in which each state in a

model has a transition to every state with a particular probability. S1, S2, ¨ ¨ ¨ , SM are

each state where M denotes the number of the states (M “ 4 in Figure 4.2). HMMs

determine the observation outputs probabilistically with the state transition probability,

aij , probability density of the states, bjponq, and initial state probability, πj , where
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S1 S2

S3S4

a11 a22

a33
a44

a12

a21

a23 a32

a34

a43

a14 a41

a13

a31

a24

a42

b1(on) b2(on)

b3(on)b4(on)

Figure 4.2: 4 state ergodic Markov chain.

1 ď i, j ďM . These probabilities are derived as follows.

aij “ P rqn`1 “ Sj | qn “ Sis (4.1)

bjponq “ P ron | qn “ Sjs (4.2)

πj “ P rq0 “ Sjs (4.3)

where qn represents the state of the model at discrete-time n and on is an observed vector

at n. Using this notation, a parameter set of an HMM can be described as

λ “ taij , bjponq, πju , i, j “ 1, 2, ¨ ¨ ¨ ,M (4.4)

Considering an ASR application using HMMs, the goal of the function is to calculate

probabilities of the observation sequence, given models, and then the most likely sequence

of the models is selected. Alternatively, HMM-based speech synthesis applications, such

as text to speech (TTS), synthesise the speech features according to a state and model

sequence corresponding to the target speech. Therefore, these applications require to

reveal the hidden part of HMMs, i.e. state sequence. In addition, HMMs in any appli-

cations need to be optimised to observation training vectors in advance. Therefore, the

preceding requirements to apply HMMs to speech applications are summarised as the

following three problems [86], and the following subsections discuss these problems:

• Given observation sequence, O “
“

oT0 ,o
T
1 , ¨ ¨ ¨ ,o

T
N

‰T
, and model, λ, how can the
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probability of the observation sequence, P pO | λq, be derived?, i.e. decoding.

• Given O and λ, how can the optimal corresponding state sequence, q “

tq0, q1, ¨ ¨ ¨ , qNu, be found?, i.e. find the most likely state sequence.

• Given O and λ, how can λ be adjusted to maximise P pO | λq?, i.e. training.

4.2.1 Probability of the Observation Sequence

Given initial state probabilities, πjpj “ 1, 2, ¨ ¨ ¨ ,Mq, and state sequence, q, for observa-

tion period, N , the probability of observation sequence, O, and the probability of state

sequence, q, are derived as

P pO | q, λq “ bq0po0q ¨ bq1po1q ¨ ¨ ¨ bqN´1poN´1q (4.5)

P pq | λq “ πq0 ¨ aq0q1 ¨ aq1q2 ¨ ¨ ¨ aqN´2qN´1 (4.6)

Then, the joint probability of O and q can be calculated as

P pO,q | λq “ P pO | q, λq ¨ P pq | λq (4.7)

The probability of O given λ is then calculated by summing over all possible state

sequence q P Q, therefore,

P pO | λq “
ÿ

qPQ

P pO,q | λq (4.8)

“
ÿ

qPQ

πq0bq0po0q ¨ aq0q1bq1po1q ¨ ¨ ¨ aqN´2qN´1bqN´1poN´1q (4.9)

However, this algorithm requires 2NMN calculations [86]. This is unfeasible even for

small values of M and N , for example, 3 sec speech framed at 5 ms interval with 3 state-

HMMs requires 1200 ˆ 3600 calculations. Therefore, a more efficient procedure using

forward and backward variables can be used instead.

A forward variable, αnpiq, at discrete-time n is first defined as

αnpiq “ P po0,o1, ¨ ¨ ¨ ,on, qn “ Si | λq, i “ 1, 2, ¨ ¨ ¨ ,M (4.10)
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Then, P pO | λq can be obtained inductively using this forward variable as follows

1) Initialisation:

α0piq “ πibipo0q (4.11)

2) Induction:

αn`1pjq “

«

M
ÿ

i“1

αnpiqaij

ff

bjpon`1q

$

’

&

’

%

0 ď n ď N ´ 2

j “ 1, 2, ¨ ¨ ¨ ,M
(4.12)

3) Termination:

P pO | λq “
M
ÿ

i“1

αN´1piq (4.13)

This algorithm requires M2N calculations to obtain αN´1piq [86]. This can be a

significantly smaller order than the preceding direct calculation (2NMN ), for instance,

the computation for the preceding example of the speech can be attained with 5,400

calculations. Similarly, a backward variable, βnpiq, can be defined as

βnpiq “ P pon`1,on`2, ¨ ¨ ¨ ,oN´1 | qn “ Si, λq i “ 1, 2, ¨ ¨ ¨ ,M (4.14)

This backward variable also can be led to P pO | λq inductively as follows:

1) Initialisation:

βN´1piq “ 1 (4.15)

2) Induction:

βnpiq “
M
ÿ

j“1

aijbjpon`1qβn`1pjq 0 ď n ď N ´ 2 (4.16)

3) Termination:

P pO | λq “
M
ÿ

i“1

πibipo0qβ0piq (4.17)

This backward algorithm also requires the calculation order of M2N to obtain β0piq as

well as the forward algorithm.
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4.2.2 Optimal State Sequence

There are several possible methods to find the optimal state sequence corresponding to

the observation sequence from O and λ. One possible criterion is to select the states, qn,

which are individually most likely. A variable, γnpiq, is defined as follows to calculate the

state sequence, q, with this criterion.

γnpiq “ P pqn “ Si | O, λq (4.18)

where
M
ÿ

i“1

γnpiq “ 1 (4.19)

Then, γnpiq can be exploited to find the most likely state at time n as

qn “ arg max
1ďiďM

rγnpiqs , n “ 0, 1, ¨ ¨ ¨ , N ´ 1 (4.20)

Equation (4.20) takes only the instantaneous most likely state into account. There-

fore, it might be possible that the derived state sequence is invalid for the given models in

some cases, for example, when the model has state transitions which are zero probability.

To solve this problem, the probability of occurrence of the entire state sequence should

be taken into account, and the Viterbi algorithm is widely used to find the single best

state sequence by maximising P pq | O, λq. A quantity, δnpiq, is defined to derive Viterbi

algorithm as

δnpiq “ max
q0,q1,¨¨¨ ,qn´1

P rtq0, q1, ¨ ¨ ¨ , qn´1u , qn “ Si | to0,o1, ¨ ¨ ¨ ,onu , λs (4.21)

where i “ 1, 2, ¨ ¨ ¨ ,M . The induction of this sequence is derived as

δn`1pjq “ max
i
rδnpiqaijs ¨ bjpon`1q, j “ 1, 2, ¨ ¨ ¨ ,M (4.22)

Technically, the algorithm requires an array, ψnpjq, to keep track of each maximised

argument in Equation (4.22) to allow the state sequence to be obtained. The complete

procedure of the algorithm is given as follows [86].



4.2 Hidden Markov Models 91

1) Initialisation:

δ0piq “ πibipo0q, i “ 1, 2, ¨ ¨ ¨ ,M (4.23)

ψ0piq “ 0 (4.24)

2) Recursion:

δnpjq “ max
1ďiďM

rδn´1piqaijs bjponq (4.25)

ψnpjq “ arg max
1ďiďM

rδn´1piqaijs (4.26)

where

1 ď n ď N ´ 1 (4.27)

j “ 1, 2, ¨ ¨ ¨ ,M (4.28)

3) Termination:

R “ max
1ďiďM

rδN´1piqs (4.29)

qN´1 “ arg max
1ďiďM

rδN´1piqs (4.30)

4) Path backtracking:

qn “ ψn`1pqn`1q n “ N ´ 2, N ´ 3, ¨ ¨ ¨ , 0 (4.31)

4.2.3 Training of the HMMs

There is no known analytical method to adjust the HMM parameters in order to maximise

the probability of the observation sequence, P pO | λq [86]. However, some iterative

procedures such as the Baum-Welch method and Expectation-Modification (EM) method

are known to optimise λ such that P pO | λq can be locally maximised. This section

discusses the Baum-Welch method for the HMM training process.

A quantity, ξnpi, jq, is defined in order to describe the procedure for training the

HMM parameters, λ. This quantity denotes the probability such that the model is in
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state Si and Sj at the observation time n and n` 1 respectively. Therefore, ξnpi, jq can

be derived as

ξnpi, jq “ P pqn “ Si, qn`1 “ Sj | O, λq (4.32)

ξnpi, jq can also be given in terms of the forward-backward variables as

ξnpi, jq “
αnpiqaijbjpon`1qβn`1pjq

P pO | λq
(4.33)

“
αnpiqaijbjpon`1qβn`1pjq

řM
i“1

řM
j“1 αnpiqaijbjpon`1qβn`1pjq

(4.34)

Because of the definition of γnpiq in Equation (4.18), it can be obtained by summing

ξnpi, jq over j

γnpiq “
M
ÿ

j“1

ξnpi, jq (4.35)

If γnpiq is summed over n from 0 to N´2, it gives the expected number of transitions

made from Si, and if γnpiq is summed over n from 0 to N´1, it gives the expected number

of the times that state Si is visited. Similarly, summing ξnpi, jq over n from 0 to N ´ 2

gives the expected number of transition from Si to Sj . These expected numbers can be

exploited to re-estimate the HMM parameters to maximise P pO | λq. Namely, a set of

re-estimation formulas for the HMM parameters, πj , aij , and bjponq are derived as

π̄j “ γ0pjq (4.36)

āij “

řN´2
m“0 ξmpi, jq
řN´2
m“0 γmpiq

(4.37)

b̄jponq “

ř

tm: om“onu
γmpjq

řN´1
m“0 γmpjq

(4.38)

where 1 ď i, j ď M and tm : om “ onu represents time, m, such that on is observed

then.

Alternatively, Equations (4.36) to (4.38) can be derived by maximising Baum’s aux-

iliary function [86]

Gpλ, λ̄q “
ÿ

qPQ

P pq | O, λq log
“

P pO,q | λ̄q
‰

(4.39)
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over λ̄, and this maximisation brings a increase of the probability of O as follows.

max
λ̄

“

Gpλ, λ̄q
‰

ñ P pO | λ̄q ě P pO | λq (4.40)

In this way, iterative computation of λ̄ in place of λ can improve the probability of the

observation until some limiting point, and such a re-estimated λ̄ is called a maximum

likelihood estimate of the HMM.

At this point the HMM is now trained and can be applied to applications such as

ASR and speech synthesis, which are discussed in the following sections.

4.3 HMM decoding and Automatic Speech Recognition

HMM decoding is one of the key processes in the proposed HMM-based speech enhance-

ment shown in Figure 4.1 and this technique has successfully been applied to HMM

applications such as ASR. This section briefly explores an application of ASR as a typi-

cal example of HMM decoding. A framework of ASR is illustrated in Figure 4.3. Input
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Algorithm 
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P (O)�

w

O

⇤

Figure 4.3: A framework of ASR.

speech, spnq, is first framed and transformed to a sequence of feature vectors, O at the

feature extraction process. The following process is divided into the training process and

the decoding process. The training process is an offline process to optimise HMMs, λ,

such that P pO | λq is maximised by using the set of training speech and its word labels
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while the decoding process is an online process to determine output words or sentence,

w, corresponding to O. In this process w is determined with the probabilities of acous-

tic model, P pO | λq, and language model, P pλq, in the sense of maximum likelihood

estimation. The acoustic models are trained at the training process while the language

models are build as, for example, a network of linguistic grammar and a dictionary of

vocabulary. The following subsections discuss each of these processes and experimental

results are then evaluated at the end of this section.

4.3.1 Feature Extraction

Although different choices of feature vectors of speech exist based on, for instance, a Mel-

frequency cepstrum, a linear-frequency cepstrum, a linear prediction cepstrum or a linear-

prediction spectrum to represent the acoustic feature of speech [88], it has been reported

that the feature vectors based on a Mel-frequency cepstrum represent the acoustic feature

of speech very well for ASR applications [88] and specifically, Mel-Frequency Cepstral

Coefficients (MFCCs) have successfully been applied to practical applications [89, 90].

This subsection discusses a process to extract sequence of MFCC vectors, O, as the

input of the ASR decoding process.

An overview of a feature extraction process to obtain MFCC vectors from input

speech is shown in Figure 4.4. Discrete-time domain speech, spnq is first split into a

Framing s(n) FFT Mel-Filterbank 
Channel Coefs 

Logarithm DCT (Coefficient 
Truncation) 

oi

| Si(f) |2

ol
i

ofb
i

si(n)

Figure 4.4: A block diagram to extract MFCC vectors.

series of frames with a Hamming window to obtain i-th frame of the speech, sipnq, where

i “ 0, 1, 2, . . . , I´1 and I denotes the number of the frames. STFT analysis then derives
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the power spectrum of sipnq as

Sipfq “ F rsipnqs (4.41)

| Sipfq |
2 “ SipfqS

˚
i pfq (4.42)

where f denotes frequency bins of the Fourier transform, F .

It is known empirically that human ears resolve frequencies non-linearly and that

frequency resolution is lower at higher frequencies, and this characteristic is approximated

by the Mel-scale [91] as Figure 4.5(a).

fmel “ 2595 log10

ˆ

1`
flin
700

˙

(4.43)

where flin is a frequency in the linear space domain whereas fmel represents the cor-

responding frequency in the Mel-scaled domain. MFCC vectors employ this character-
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Figure 4.5: a) shows Mel-scale frequency warping while b) illustrates a 16 channel
Mel-filterbank

istic to make the performance of ASR applications robust. To impose this feature in

the observation vectors, a Mel-filterbank is first formed by setting equally spaced tri-

angular filters in the Mel-frequency domain with 50 % overlapping, as shown in Figure

4.5(b), and then the Mel-filterbank is applied to | Sipfq |
2 to obtain energy in j-th

filterbank channel, ofbi pjq, which constitutes a vector of the Mel-filterbank coefficients,

ofbi “ rofbi p0q, o
fb
i p1q, . . . , o

fb
i pM ´ 1qsT where M is the number of filterbank channels. A
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logarithm is then taken to derive a log-Mel-filterbank coefficient vector, oli as

oli “

”

log ofbi p0q, log ofbi p1q, . . . , log ofbi pM ´ 1q
ıT

(4.44)

“

”

olip0q, o
l
ip1q, . . . , o

l
ipM ´ 1q

ıT
(4.45)

where olipjq is a log-Mel-filterbank coefficient in j-th filterbank channel.

Speech signals can be modelled as a convolution of an excitation signal and vocal

tract filter coefficients as shown in Figure 3.4, and this is represented as a multiplication

in the frequency domain as

Sipfq “ HipfqEipfq (4.46)

where Hipfq and Eipfq represents the frequency response of a vocal tract filter and the

spectrum of an excitation signal of speech respectively. Taking logarithm of Equation

(4.46), the components of excitation and vocal tract can be separable as a sum.

logSipfq “ logHipfq ` logEipfq (4.47)

Therefore, the log operation to derive oli separates the components of excitation and

vocal tract in ofbi as a sum.

Finally, MFCC vector, oi, is derived by applying a discrete cosine transform (DCT)

to oli as

oi “
“

oi0, o
i
1, . . . , o

i
M´1

‰T
(4.48)

where

oij “

c

2

M

M´1
ÿ

k“0

olipkq cos

ˆ

πp2k ` 1qj

2M

˙

(4.49)

By this DCT operation, i.e. transform to cepstrum, components of the spectral envelope

in | Sipfq |
2, which changes slowly along the frequency axis, are stored into low quefrency

coefficients whereas harmonic components, which changes quickly along the frequency

axis, are stored into high quefrency coefficients. For use in ASR, high quefrency elements

in oi are truncated since words or phonemes are discriminated by motion of vocal tract,

i.e. spectral envelope, for example, [90] employs 23 channel Mel-filterbank in the process

to calculate MFCC vectors, oi, and then coefficients from oi13 to oi22 are removed to
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extract 13 coefficient MFCC vectors from 8 kHz-sampled speech. Figure 4.6 illustrates

that the truncation of high quefrency coefficients extracts the energy of the spectral

envelope. For better visualisation, the figure shows an example with a spectral feature in

the linear-frequency domain without applying a Mel-filterbank rather than MFCCs, but

the underlying notion is identical to MFCCs. Subplot (a) shows the spectral magnitude of

a short-time (20 ms) segment of the natural speech of the sound /b/ in “blue” uttered by

a male speaker. Subplot (b) is the log spectral magnitude of the same speech segment.

Subplot (c) shows the cepstrum of the speech segment obtained by applying DCT to

(b). Quefrency bins corresponding to more than 1 ms are then set to zero and this is

shown in subplot (d). Subplot (e) and (f) are log spectral magnitude and linear spectral

magnitude obtained with the inverse transform of (d). These match the envelope of the

original spectra and the harmonic structure in the original spectrum, i.e pitch, which is

not useful for identifying vocal tract motion has been removed.

Then, MFCC observation vector, O, during N frames is formed as

O “
“

oT0 ,o
T
1 , . . . ,o

T
N´1

‰T
(4.50)

Additionally, previous researches have shown that adding dynamic features, such as ve-

locity and acceleration derivatives, into feature vectors improves the robustness of ASR

performance against noise [92]. In this case, O is formed as

O “
“

oT0 ,∆oT0 ,∆
2oT0 ,o

T
1 ,∆oT1 ,∆

2oT1 , . . . ,o
T
N´1,∆oTN´1,∆

2oTN´1

‰T
(4.51)

where ∆oi and ∆2oi are a velocity derivative vector and an acceleration derivative vector

of oi respectively.

4.3.2 HMM Training

Phonemes constituting words are characterised by a series of motions of resonant cavities

as mentioned in Section 3.2, therefore, in statistical models of words or sub-words, each

state in the models represents a shape of the vocal tract cavities at a point and these

states occurs in order along a time sequence. Thus, in the training process, the initial

prototype model is designed as a left-right Markov chain, as shown in Figure 4.7, rather
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(d) Cepstrum (Truncated)
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Figure 4.6: Extraction of a spectral envelope by truncating high quefrency bins of
a cepstrum showing: a) spectral magnitude of speech, b) log spectral magnitude, c)
cepstrum obtained with DCT, d) cepstrum in which quefrency bins corresponding to
more than 1 ms are truncated and then padded with zeros, e) and f) log and linear
spectral magnitude inverse-transformed from d).
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than employing a ergodic HMM represented in Figure 4.2. The structure of left-right

HMMs constrains the possible state sequences as follows.

π1 “ 1 (4.52)

πj “ 0, j ‰ 1 (4.53)

ajk ą 0, k “ j or k “ j ` 1 (4.54)

ajk “ 0, otherwise (4.55)

qN´1 “ SM (4.56)

where M is the number of the states while N denotes the number of the feature vec-

tors (frames) constituting a word or a sub-word. Now, the prototype is determined by

observation probabilities modelled by a Gaussian distributions at each state, bjpµj ,Σjq

where µj and Σj represent the mean value and the covariance matrix of the Gaussian

distribution at state j, and state transition probabilities, ajj and ajpj`1q. Alternatively,

S1 S2 S3 S4

a11 a22 a33 a44

a12 a23 a34

b1(µ1,⌃1) b2(µ2,⌃2) b3(µ3,⌃3) b4(µ4,⌃4)

Figure 4.7: 4 state left-right HMM.

observation probabilities in each state can be modelled by multiple Gaussian distribu-

tions, i.e. Gaussian mixture models (GMMs), but HMMs discussed in this section employ

observation probabilities, bjpµj ,Σjq, modelled by a single Gaussian distribution.

The prototype is then optimised to each word or sub-word model according to the

corresponding parts in the training data set, which are labelled on transcripts in the data

set. The trained HMMs λ̄ are derived as

λ̄ “ arg max
λ

P pO | λq (4.57)
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where

O “
“

oT0 ,o
T
1 , ¨ ¨ ¨ ,o

T
N´1

‰T
(4.58)

This optimisation is achieved by a two stage process. At the first stage O is first equally

divided and assigned into each state in order to obtain the initial path of the state

sequence. This initial path is then renewed by using the Viterbi algorithm mentioned in

Section 4.2 as

q̄ “ arg max
qPQ

P pq | O,λq (4.59)

where q is the initial state sequence while q̄ is renewed state sequence, and Q represents

overall possible state sequences. According to q̄, O is reassigned into each state and

it changes the parameters of the Gaussian distribution in each state, bjpµj ,Σjq, with

Equation (4.57). The first stage of the model optimisation can be achieved by iterating

the above procedure to renew the state sequence and the Gaussian distributions.

At the second stage of the process, the renewed HMMs at the first stage are further

optimised iteratively by using the Baum-Welch algorithm mentioned in Section 4.2.

A model configuration, such as employing whole-word models or sub-word models

and the number of the states in the models, needs to be decided at the beginning of the

training process. These are important factors to determine the performance of decoding,

therefore, different configurations of HMMs are examined and evaluated in Section 4.3.4.

4.3.3 HMM Decoding

The HMM decoding process finds the most likely model and state sequence corresponding

to a sequence of feature vectors during an utterance. Therefore, in this process, λ denotes

a possible sequence of the trained models and states, and O denotes a sequence of feature

vectors during an utterance while they represented a single model and a feature vector

sequence corresponding to the single model in an utterance in the training process.

This process calculates P pλ | Oq for each possible model and state sequence and

selects the most likely model and state sequence, λ̂, given the observed sequence of the

feature vectors during an utterance, O, as

λ̂ “ arg max
λPΛ

P pλ | Oq (4.60)
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where Λ “ tλ1, λ2, . . . , λDu represents the group of all D possible combinations of models

and states in the system, and if the HMMs consist of whole-word models, λ̂ forms the

spoken sentences corresponding to the input speech whereas λ̂ forms words and then the

sentences if the HMMs comprise sub-word models.

Applying the Bayes rule to Equation (4.60), the likelihood of each model and state

sequence is derived as

P pλ | Oq “
P pO | λqP pλq

P pOq
(4.61)

where P pO | λq corresponds to the acoustic model of the system which can be calculated

by applying the algorithm, which uses forward and backward variables, mentioned in

Section 4.2 while P pλq represents the language model of the system which linguistically

constrains the network of the HMMs including their positions and combinations. The

language model is, for instance, determined by a dictionary and grammar. The dictionary

contains all the words covered in the application and defines each word as a combination

of sub-words, e.g. phonemes. Therefore, it can constrain the selection of λ̂, such that

the resultant model and state sequence forms only the words defined in the dictionary

and combinations which are not listed in the dictionary are eliminated from the decision.

The grammar depends on characteristics of languages or data sets and is modelled based

on statistical probabilities of word occurrences in order to enable λ̂ to be selected with

a linguistic perspective. The decoding accuracy can be further improved by extending

the language model to bigrams or trigrams but it makes the footprint of the system

larger [93].

P pOq in Equation (4.61) is independent of λ, thus, λ̂, is derived by comparing the

product of the probabilities of the acoustic model and the language model for each λ as

λ̂ “ arg max
λPΛ

P pO | λqP pλq (4.62)

HMMs with different configurations of acoustic models and language models are

examined and evaluated in the next section.
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4.3.4 Experimental Evaluation on ASR

Understanding the performance of ASR and practical techniques to achieve accurate

decoding is important to apply HMM decoding to HMM-based speech enhancement. For

this purpose, various experiments are conducted in order to evaluate ASR performances

with different feature vector settings and model configurations in this subsection.

Experiments use speech from four speakers in the GRID database [43], two males and

two females, to form speaker dependent models and those speech data are downsampled

to 8 kHz. Sentences in the data set conform to a particular grammatical structure

(GRID grammar) of commandÑcolourÑprepositionÑletterÑdigitÑadverb. From the

1000 utterances from each speaker, 800 are used for training and the remainder are for

testing. Tests are carried out in white noise and babble noise at SNRs from -5 dB to 10

dB. In each experiment, the set of HMMs, Λ, is trained on feature vectors, O, that are

extracted from both clean and noisy speech which are in the same noise condition as the

test so that the noisy speech input can be decoded by Λ including noise-matched HMMs.

4.3.4.1 Feature Vector settings

To evaluate HMM decoding performance with different feature vector settings, five con-

figurations of MFCC vectors as shown in Table 4.1 are first examined with the trained

set of 16 state whole-word single Gaussian HMMs. These configurations set different

MFCC Config. Mel-FB Channels MFCC Coeffs Derivatives

MFCC16-16 16 16

Static
MFCC23-23 23 23
MFCC40-40 40 40
MFCC60-40 60 60
MFCC128-128 128 128

Table 4.1: Configurations of MFCC coefficients as the observation vectors without
coefficient truncation.

number of Mel-filterbank channels without truncation of the MFCC coefficients. The

frame length and frame interval of each vector are set equal to 25 ms and 5 ms respec-

tively, The spectra of each frame are derived with 1024 point Fourier transform and the

vectors comprise only static coefficients of MFCC. Λ consists of 52 whole-word models
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and possible sequences of the models are constrained by the language model of GRID

grammar.

The word accuracy, Wacc, is calculated as follows.

Wacc “
WN ´ pWD `WS `WIq

WN
ˆ 100 % (4.63)

where WD, WS and WI are the total number of deletion errors, substitution errors and

insertion errors respectively, and WN denotes the total number of words in the reference

transcripts. Figure 4.8 shows the ASR word accuracy in those different settings. Feature
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Figure 4.8: ASR accuracy with 16-state whole-word HMMs and different MFCC
settings in A) white noise and b) babble noise. The frame interval is 5 ms.

vectors of 16, 23 and 40 coefficient MFCCs have the highest accuracy at high SNRs but

16 coefficient MFCC vectors are most robust to noise followed by 23 coefficient MFCC

vectors. 60 coefficient MFCCs are inferior to the preceding three settings over the SNR

range and 128 coefficient MFCCs show the worst performance of the five settings. This

seems to be attributed to too much variability of the feature vectors.

The next experiment examine the ASR performance with different settings of MFCC

observation vectors in which high order coefficients are truncated. Table 4.2 shows each

setting for the test. 16, 23 and 40 coefficient MFCC vectors are first extracted (MFCC16-
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MFCC Config. Mel-FB Channels MFCC Coeffs Derivatives

MFCC16-16
16

16
StaticMFCC16-13 13

MFCC16-8 8

MFCC23-23
23

23
StaticMFCC23-13 13

MFCC23-8 8

MFCC40-40
40

40
StaticMFCC40-13 13

MFCC40-8 8

Table 4.2: Configurations of MFCC coefficients as the observation vectors with co-
efficient truncation.

16 / MFCC23-23 / MFCC40-40). The first 13 coefficients of them are then retained and

other coefficients are eliminated (MFCC-16-13 / MFCC23-13 / MFCC40-13) in order to

extract only the coefficients whose period of the DCT basis is more than fs{24 where fs

denotes the sampling frequency. These vectors then have further truncation to extract

only first 8 coefficients whose period of the DCT basis is more than fs{12 (MFCC-16-8

/ MFCC-23-8 / MFCC40-8).

The results of ASR with these MFCC settings are illustrated in Figure 4.9 showing

that the truncation of the high order MFCC coefficients improves the robustness to the

noise in each MFCC setting. The differences in improvement between the truncations of 8

coefficients and 13 coefficients are very little in white noise. In babble noise, however, the

truncations of 8 coefficients give more robustness than the truncations of 13 coefficients

in each settings, and MFCC16-8 shows the best ASR accuracy in total.

4.3.4.2 Acoustic Model Settings for Whole-Word HMMs

The following experiments examine different acoustic models by changing the number of

states in whole-word single Gaussian HMMs, and employ MFCC16-8 as the observation

vectors in which the frame length and interval are 25 ms and 5 ms respectively. The

model configurations for the test are shown in Table 4.3.

Figure 4.10 shows the ASR results with these model configurations in white noise

and babble noise. The influence of state numbers are little in the range of settings but a

choice between 16 and 28 states seems to be better.
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Figure 4.9: ASR accuracy with 16-state whole-word HMMs and different MFCC
truncation settings in A) white noise and b) babble noise. The frame interval is 5
ms.

HMM Config. Number of States Feature Vector

WORD8 8

MFCC16-8

WORD12 12
WORD16 16
WORD20 20
WORD24 24
WORD28 28
WORD32 32

Table 4.3: Configurations for whole-word HMMs.
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Figure 4.10: ASR accuracy with different whole-word HMM settings in a) white
noise and b) babble noise. The configuration of feature vectors is MFCC16-8 the
frame interval of which is equal to 5 ms.

A proper choice of the state numbers could depend on the frame interval, therefore,

the frame interval of the feature vectors are changed to 10 ms and then the ASR perfor-

mance is examined with each state settings. The result is shown in Figure 4.11. In this

frame interval, the number of states should be selected between 12 and 16 for better ASR

accuracy, and the results also show that the ASR accuracy with feature vectors framed

at 10 ms interval is almost same as the case of 5 ms interval as long as the number of

states in HMMs is properly modelled.

Alternatively, Figure 4.12 shows the results of ASR test in which feature vectors

framed at 1 ms interval are employed and the state configurations in Table 4.4 are added.

In the case of using the feature vectors framed at 1 ms interval, the influence of the

HMM Config. Number of States Feature Vector

WORD36 36
MFCC16-8

WORD40 40

Table 4.4: Added configurations for the tests with 1 ms-framed feature vectors.

number of states in HMMs on the performance is very little as the number of states is

between 24 and 40, but the robustness to the noise is slightly lower than the case of 5
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Figure 4.11: ASR accuracy with different whole-word HMM settings in a) white
noise and b) babble noise. The configuration of feature vectors is MFCC16-8 the
frame interval of which is equal to 10 ms.
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Figure 4.12: ASR accuracy with different whole-word HMM settings in a) white
noise and b) babble noise. The configuration of feature vectors is MFCC16-8 the
frame interval of which is equal to 1 ms.
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Whole-Word Model: 

Monophone Model: 

“SET” “RED” 

/s/ /e/ /t/ /r/ /e/ /d/ 

Figure 4.13: A structure of monophone models.

ms and 10 ms frame intervals. For example, the accuracy at SNR of 0 dB or less than 0

dB is 3 pt. to 5 pt. lower than the case of the preceding frame intervals.

4.3.4.3 Acoustic Model Settings for Monophone HMMs

The preceding experiments examined the ASR performance with whole-word HMMs.

Applications using whole-word HMMs, however, have to define all the words with which

the applications can deal in advance, and training data are required to include all of those

words. This may be accepted for applications which work with limited vocabularies for

a specific purpose but not practical for ASR of general spoken language. Additionally,

if a decoding result has an error in whole-word HMM-based speech enhancement, the

influence of the error in the enhanced speech spans the whole-word. To resolve the

problems above, the acoustic model is extended to sub-word single Gaussian models

at this point. All the words in the GRID vocabulary are first resolved into phonemes

the number of which is 35 by referring to a dictionary, which lists all the words and

corresponding phoneme sequences contained in GRID database. The segments in the

training data set corresponding to each phoneme are then extracted to constitute a group

of statistical models, i.e. monophone models, as shown in Figure 4.13. These monophone

HMMs are trained with various settings configured by different state numbers in HMMs

as shown in Table 4.5, and feature vectors of speech are represented by the setting of

MFCC16-8 framed at 10 ms, 5 ms and 1 ms as well as the tests with the whole-word

HMMs.

In the decoding process, the resultant model sequence is constrained by the dictio-
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HMM Config. Number of States Feature Vector

MONO3 3

MFCC16-8

MONO5 5
MONO7 7
MONO9 9
MONO12 12
MONO16 16
MONO20 20
MONO24 24

Table 4.5: Configurations for monophone HMMs.

nary and the GRID grammar, which form the language model of the system. Therefore,

the choice of the most likely model, i.e. phoneme, is limited such that the resultant se-

quence of phonemes forms a word in the GRID vocabulary, meanwhile, the word matches

the GRID grammar as well.

The ASR results with the test conditions above are shown in Figure 4.14 in which

the accuracy of ASR is calculated by Equation (4.63). The subplots in the first column

are the test results in white noise while the second column is for the test results in babble

noise. Subplots (a) and (b) show the ASR accuracy with the feature vectors framed at

10 ms. In this condition, 7-state HMMs give the best performance whereas 12 states

HMMs show the best scores in the case of 5 ms interval shown in subplot (c) and (d).

Alternatively, the results with the observations framed at 1 ms in subplots (e) and (f)

show the highest accuracy and noise robustness with 24-state monophone HMMs. The

differences in the ASR accuracy among the different frame periods of the observation

vectors at each SNR are very little as long as the best model configurations are employed

in each case.

The results also show that the accuracy of ASR using monophone HMMs is lower

than the case of whole-word HMMs shown in Figures 4.10 - 4.12 over the range of SNRs.

For instance, the accuracy of the monophone HMMs is 12 pt. lower than the whole-word

HMMs at SNR of 10 dB with white noise, and 8 pt. lower in babble noise. At SNR of -5

dB, the accuracy of the monophone HMMs is 15 pt. lower than the whole-word HMMs

in white noise whereas 25 pt. lower in babble noise. This deterioration in ASR accuracy

seems to be attributed to the fact that sub-word models have much more choices to select
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Figure 4.14: ASR accuracy with different monophone HMM configurations and
frame intervals. a) & b) show the ASR accuracy in white noise and babble noise
with the observation vectors framed at 10 ms interval while c) & d) are results with
the frame interval at 5 ms, and e) & f) show the accuracy in white noise and babble
noise with the observation vectors framed at 1 ms. The configuration of feature
vectors is MFCC16-8.
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Whole-Word Model: 

Monophone Model: 

“SET” “RED” 

/s/ /e/ /t/ /r/ /e/ /d/ 

Context-Dependent Triphone (CDT) Model: 
s+e s-e+t e-t+r t-r+e r-e+d e-d 

A-B+C 
A: Previous Phoneme 
B: Current Phoneme 
C: Next Phoneme  

Figure 4.15: A structure of CD-triphone HMMs.

the most likely word than whole-word models. In whole-word model applications, each of

the HMMs models a word itself, therefore, it can be more effective for word recognition

than sub-word models. Alternatively, sub-word models can form any words by combining

with other models and recognise even words which have not been trained in the training

process as oppose to whole-word models which can deal with only the words trained

in advance. This can be a good motivation to employ sub-word models in practical

applications in spite of the lower decoding performance than whole-word models.

The monophone models comprising 35 phonemes may not have enough variation

to represent speech having various prosodical characteristics especially for HMM-based

speech synthesis discussed in Section 4.4. Therefore, context-dependent triphone HMMs

(CD-triphone HMMs) are next discussed and examined as an alternative sub-word acous-

tic model to the monophone models.

4.3.4.4 Acoustic Model Settings for Context-Dependent Triphone HMMs

In the CD-triphone HMMs, a series of 3 phonemes corresponding to the previous, current

and next phoneme forms a model regardless of word boundaries as illustrated in Figure

4.15. In this example, the CD-triphone model of /e/ in “set”, s-e+t, is different from

/e/ in “red”, r-e+d, because of their different context, and this enables the models to

represent speech with prosodical characteristics by including the contextual information
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in each model.

In the case of GRID database used in the following tests, the transcripts of 800

utterances of each speaker for training make approximately 660 CD-triphone HMMs.

These seem enough variation of the models as compared with 35 models in monophone

HMMs. This fine division of the models, however, reduces the occurrences of each model

during training, and consequently some of the models cannot be trained with enough

samples and it causes overfitting of the models. In addition, cases where a CD-triphone

in the test scripts is not included in the training set need to be considered. To tackle this

problem, the following CD-triphone HMM ASR experiments employ tree-based model

clustering [94]. This method constructs a decision tree, and different questions related

with the characteristics of the CD-triphones are assigned at each node of the tree in

order to cluster the models which have similar characteristics. Table 4.6 is an example

of the questions and Figure 4.16 illustrates a decision tree structure. Each node of

C-Vowel Is the current phoneme a vowel?
L-Vowel Is the previous phoneme a vowel?
R-Vowel Is the next phoneme a vowel?
C-Fricative Is the current phoneme a fricative?
L-Fricative Is the previous phoneme a fricative?
R-Fricative Is the next phoneme a fricative?
C-/a/ Is the current phoneme /a/?
L-/a/ Is the previous phoneme /a/?
R-/a/ Is the next phoneme /a/?

...
...

Table 4.6: An Example of the questions at nodes of the decision tree.

the tree forms a cluster of the models and calculates the minimum description length

(MDL) [94,95] which decides whether the cluster is further divided by the next question

or it stops the split. This method can reduce the number of models by clustering similar

models and it enables each model to have enough training samples to form a better

statistical model. Moreover, even if the test data includes an unknown CD-triphone,

which did not appear in the training set, it can be led to the appropriate cluster through

the tree and then HMMs are revised so that the unknown CD-triphone can be included

in the HMMs.
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C-/a/ ? 
R-Fricative? C-Fricative? 

p-a+f 
s-a+v 
t-a+s 

YES 

YES YES 

NO 

NO NO 

Ih-v+a 
e-s+o 
p-th+e 

...
...

Cluster 1 Cluster n

Figure 4.16: Tree-based model clustering

The ASR experiments with the CD-triphone HMMs in this section apply the cluster-

ing to the CD-triphone HMMs state-by-state and this reduces the number of the models

to around 200.

The experiments examines the performances with various settings configured by

different state numbers in HMMs as shown in Table 4.7, and feature vectors of speech

are represented by the setting of MFCC16-8 framed at 10 ms, 5 ms and 1 ms as well as

the tests with the monophone models and the whole-word models.

HMM Config. Number of States Feature Vector

TRI3 3

MFCC16-8

TRI5 5
TRI7 7
TRI9 9
TRI12 12
TRI16 16
TRI20 20
TRI24 24

Table 4.7: Configurations for CD-triphone HMMs.

The test results with the CD-triphone HMMs are shown in Figure 4.17 in which the

accuracy of ASR is calculated by Equation (4.63). The subplots in the first column are

the test results in white noise while the second column is for the test results in babble

noise. Subplots (a) and (b) show the ASR accuracy with the feature vectors framed

at 10 ms. In this condition, HMMs comprising between 5 and 7 states give the best

performance whereas HMMs with between 7 and 12 states show the best scores in the
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Figure 4.17: ASR accuracy with different CD-triphone HMM configurations and
frame intervals. a) & b) show the ASR accuracy in white noise and babble noise
with the observation vectors framed at 10 ms interval while c) & d) are results with
the frame interval at 5 ms, and e) & f) show the accuracy in white noise and babble
noise with the observation vectors framed at 1 ms. The configuration of feature
vectors is MFCC16-8.
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case of 5 ms interval shown in subplot (c) and (d). Alternatively, the results with the

observations framed at 1 ms in subplots (e) and (f) show the HMMs with between 16

and 24 states generally perform with higher accuracy than other configurations but 12

state HMMs show the highest accuracy at SNRs of 0 dB and less than 0 dB in babble

noise.

Taking the proper model configuration in each subplot, the differences in the ASR

accuracy among the different frame periods of the observation vectors at each SNR are

very little except for the 1 ms framed observation in babble noise, i.e. subplot (f), where

the accuracy at SNRs of 0 dB and less than 0 dB is 12 to 15 pt. lower than other frame

intervals.

The results also show that the CD-triphone HMMs raise the decoding accuracy as

compared with monophone models in Figure 4.14. For example, the accuracy at SNR

of -5 dB in babble noise improves by approximately 18 pts. in the case of 10 ms and 5

ms frame intervals while the improvement at 1 ms frame interval in babble noise is not

significant. In the white noise, improvement of the accuracy is approximately 10 pts.

over all noise conditions. The decoding accuracy of CD-triphone HMMs is, however, 5

pts. to 10 pts. lower than the whole-word HMMs with respect to the best configurations

in each models.

Table 4.8 summarises the best configurations for each ASR conditions examined in

the preceding experiments in terms of word recognition accuracy.

HMMs Frame Interval States Observation

Whole-Word
10 ms 12 - 16

MFCC16-8

5 ms 16 - 28
1 ms 24 - 40

Monophone
10 ms 7
5 ms 12
1 ms 24

CD-triphone HMM
10 ms 5 - 7
5 ms 7 - 12
1 ms 16 -24

Table 4.8: A summary of the best configurations for each ASR experiments
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4.3.4.5 Language Model

The previous experiments have employed the GRID grammar and dictionary as a lan-

guage model in addition to the acoustic model brought by different configurations of

HMMs. Applying a language model improves the ASR accuracy by constraining the

choices of possible model sequences such that the resultant model sequence can match a

local linguistic rules. The language model, however, also limits the input data because

the input speech has to follow the local rules determined by the grammar and dictionary.

The language model for the GRID corpus, for example, limits the number of recognisable

words to only 52 including a model for silence by the dictionary and the grammar is far

from practical English speech. Therefore, the use of this model cannot be applied to

practical applications and loosening the constraint of the language model is essential to

enable the system to be applied to practical use.

The following experiments eliminate the language model of the GRID grammar, i.e.

the grammatical structure of command Ñ colour Ñ preposition Ñ letter Ñ digit Ñ

adverb, from the ASR system tested above in order to evaluate the influence of the

language model by comparing the performances with the original results obtained with

the language model. The settings of acoustic model and the feature vector for the tests

are chosen as shown in Table 4.9 by referring to Table 4.8. The first column to the

Config AM LM Observation Interval Practicality

WORD G WORD16 YES

MFCC16-8 5 ms

NO
WORD N WORD16 NO NO
MONO G MONO12 YES NO
MONO N MONO12 NO YES
TRI G TRI12 YES NO
TRI N TRI12 NO YES

Table 4.9: Test configurations for the language model evaluation

last column of the table show names of configurations, settings of the acoustic model

(AM), use of the language model (LM), observation vector settings, frame interval, and

practicalities of the configurations. WORD G, MONO G and TRI G exploit the GRID-

specific language model as well as the preceding tests, therefore, these configurations

cannot be applied to practical language applications. Although WORD N gets rid of the
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Figure 4.18: ASR accuracy with different model configurations with and without
the language model. The feature vector is configured as MFCC16-8 framed at 5 ms
interval.

language model, the whole-word HMMs for the acoustic model still limit word varieties to

the vocabularies in GRID database. Alternatively, MONO N is absolutely free from the

constraint of the language model. TRI N is constrained only by the previous and the next

phoneme, therefore, this configuration is independent from the GRID-specific grammar

and possible to be applied to practical applications. However, the small vocabulary of

GRID database still constrains the triphone coverage.

The test results are shown in Figure 4.18 where the ASR accuracy, Sacc, is derived

as

Sacc “
SN ´ pSD ` SS ` SIq

SN
ˆ 100 (4.64)

where SD, SS and SI are the total number of word segments, i.e. phonemes for monophone

and CD-triphone and words for whole-word models, making deletion errors, substitution

errors and insertion errors respectively, and SN denotes the total number of word seg-

ments in the reference transcripts. Triphone contexts are ignored at the error detection.

Subplot (a) shows the ASR accuracy in white noise whereas the test results in babble

noise are shown in subplot (b). The accuracy of WORD N is always lower than WORD G.
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For example, WORD N is 10 pt. lower at SNR of -5 dB in white noise and 7 pt. lower at

-5 dB in babble noise. This deterioration is attributed to the influence of the grammar.

In the case of monophone HMMs, MONO N always keeps low accuracy, which is lower

than 55 % even at SNR of 10 dB, and does not reach the level of practical use over the

range of SNRs. This seems to be due to too few variations of acoustic models to represent

distinctive features of speech, and they cannot perform without referring to the language

model. Interestingly, the performance of TRI N is superior to TRI G over the range of

SNRs. It seems that the acoustic model of CD-triphone HMMs sufficiently represents the

speech features and TRI N can avoid extending a partial sub-word error to a whole-word

error by not referring to the dictionary. This explains the reason why TRI N obtains

higher accuracy than TRI G though it does not exploit the language model.

Alternatively, the smaller vocabulary of the GRID corpus could make the constraint

of CD-triphone contexts stronger and it could give the good performance of TRI N.

However, the acoustic model constituted by CD-triphone HMMs seems to be effective

solution to realise practical applications

4.3.4.6 Summary of the Experimental Results of ASR

The tests of ASR first examined ASR performance with different configurations of MFCC

vectors using the 16 state noise-matched whole-word HMMs with the GRID grammar.

16-dimensional (16-D) MFCCs show the best word recognition accuracy, and higher

dimensional MFCCs show the trend to have less accuracy. The results also show the

effectiveness of the truncation of high order coefficients to improve the decoding accuracy.

Therefore, selecting the observation features which do not have too much variability seems

to be an important to achieve good performance in HMM decoding.

Next, different state configurations of the noise-matched whole-word HMMs have

been examined with 8-D MFCCs (MFCC16-8) and the GRID grammar. The results

show that the whole-word HMMs performs best with the number of the states being

set between 12 and 16 when the frame interval of the observation is 5 ms and 10 ms.

Alternatively, in the case of 1 ms-frame interval, the accuracy becomes relatively high

when the number of the states is set between 24 and 40. However the noise robustness

of the performance is reduced as compared with the frame intervals set 5 ms and 10 ms.
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The ASR tests was then extended to the noise-matched monophone HMMs followed

by the noise-matched CD-triphone HMMs with (MFCC16-8) and the GRID grammar.

When the frame interval is set equal to 10 ms, 5 ms and 1 ms, Both of monophone

HMMs and CD-triphone HMMs performs best with the number of the states set around

7, 12 and 24 respectively. Comparing the performance with the best configurations, the

performance of the monophone HMMs is, however, always lower than whole-word HMMs,

and it seems that the monophone HMMs which consit of 35 models of phonemes do not

have enough variation to model natural speech while the whole-word HMMs consist of 52

models of words and the CD-triphone HMMs comprise around 200 models of phonemes.

Alternatively, CD-triphone HMMs shows higher performance than monophone HMMs.

Specifically, the noise robustness in babble noise is significantly improved as compared

with monophone HMMs. Furthermore, the accuracy of CD-triphone HMMs at -5 dB

in babble noise surpass the whole-word HMMs though the whole-word HMMs performs

best of the three at the other noise conditions.

Finally, the effectiveness of the LM was examined by comparing the decoding accu-

racy of each HMM configuration with and without the GRID grammar. The performance

of the whole-word HMMs and monophone HMMs falls when the GRID grammar is not

applied, specifically, the monophone HMMs shows significant deterioration which is at-

tributed to the fact that the monophone HMMs without the LM is completely free from

the constraint and the performance depends on only the AM which does not have enough

variation to represent natural speech. Conversely, CD-triphone HMMs performs better

with no GRID grammar. It seems that the constraint from CD-triphone itself is relatively

strong in this test condition because of the smaller vocabulary of the GRID corpus, and

thus, the LM makes the constraint too strong and affects the decoding accuracy. For

example, when a word “BIN” in an utterance failed to be recognised, TRI N can possi-

bly select “IN” instead of “BIN” but alternatives to “BIN” in TRI G are limited within

“LAY”, “PLACE” or “SET”.

As the overall evaluation, the 16 state noise-matched whole-word HMMs with the

GRID grammar performs best with the observation configured as MFCC16-8 followed by

the 12 state noise-matched CD-triphone HMMs with no language model. The difference

of the performance between these two models is not significant, and thus, it is more
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notable that CD-triphone HMMs performs without the LM, considering practical use.

4.4 HMM-Based Speech Synthesis

HMM synthesis is another key technique for HMM applications such as statistical para-

metric speech synthesis including text to speech (TTS) [50] and it also forms key process

in the proposed HMM-based speech enhancement shown in Figure 2.7. This section ex-

plores the techniques related with the HMM-based speech synthesis with an example of

a TTS application. A framework of the HMM-based speech synthesis for TTS is illus-

trated in Figure 4.19. The processes in the TTS application are divided into the offline

Feature 
Extraction 

Training Set 
(Speech Signal / Label) 

Speech Feature 
(Spectral / Harmonic) 

Training 
Algorithm 

 
Hidden Markov 

Models 
 

Synthesis 
Algorithm 

s(n)

�
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Transcript 
(Sentence) w

Text 
Analysis 

Dictionary 

Ĉ = arg max {P (WC | q̂,�)}
q̂ = arg max {P (q | w,�)}

q

Ĉ

O

C

⇤

Figure 4.19: A framework of HMM-based speech synthesis for TTS.

training process and the online synthesis process as well as the ASR applications, which

also consist of training process and decoding process.

4.4.1 HMM Training

HMM training in HMM-based speech synthesis is an offline process to optimise whole-

word or sub-word model, λ, such that P pO | λq is maximised by using the training data

set of the speech and its transcript labels. The training procedure in this process is

largely the same as the training process for ASR discussed in Section 4.3.2. However,

the sequence of the feature vectors, O, is different from ASR applications because the
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observation sequence in HMM-based speech synthesis needs to contain all the speech

features required by the speech production model, such as the fundamental frequency

and voicing in addition to MFCCs, for the purpose of the application. Therefore, in the

case where STRAIGHT is employed as the speech production model, a sequence of static

observation vectors, C, is composed from a sequence of MFCC vectors, X, sequence of

the aperiodicity vectors, A, and the log of the fundamental frequency contour, G as

X “
“

xT0 ,x
T
1 , . . . ,x

T
N´1

‰T
(4.65)

A “
“

aT0 ,a
T
1 , . . . ,a

T
N´1

‰T
(4.66)

G “ rg0, g1, . . . , gN´1s
T (4.67)

C “
“

cT0 , c
T
1 , . . . , c

T
N´1

‰T
(4.68)

ci “
“

xTi ,a
T
i , gi

‰T
(4.69)

where xi, ai and gi represent the static MFCC vector, the static aperiodicity vector

and log of fundamental frequency at frame i respectively. The aperiodicity vectors are

formed from aperiodicity measure of speech, Apf, iq, mentioned in Section 3.3.3 by the

same processes as MFCC where a Mel-filterbank is applied to Apf, iq, and then logarithm

is taken prior to DCT but the coefficients should not be truncated. To obtain gi, the

fundamental frequency at frame i, f0i, is first estimated by using the algorithms discussed

in Section 3.5, such as PEFAC and then gi is calculated as

gi “

$

’

&

’

%

log f0i Voiced frames

´1010 Unvoiced frames
(4.70)

The log operation to f0i reduces the dynamic range of f0i at voiced frames while constant

value, ´1010, is set instead of log f0i at unvoiced frames so that unvoiced frames can be

strongly isolated from voiced frames.

Moreover, a velocity derivative and an acceleration derivative of the feature vectors

should be added into C in order to compose augmented observation sequence, O, in order

to avoid a piecewise state-dependent sequence of synthesised feature vectors that results
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in poor speech quality [9] as follows.

O “
“

oT0 ,o
T
1 , ¨ ¨ ¨ ,o

T
N´1

‰T
(4.71)

oi “

”

poxi q
T , poai q

T , pofi q
T
ıT

(4.72)

oxi “
“

xTi ,∆xTi ,∆
2xTi

‰T
(4.73)

oai “
“

aTi ,∆aTi ,∆
2aTi

‰T
(4.74)

ofi “
“

gi,∆gi,∆
2gi

‰T
(4.75)

where ∆ and ∆2 denote the velocity derivative and the acceleration derivative respec-

tively. These derivatives of the feature vectors are taken from augmented MFCC se-

quence, Ox, augmented aperiodicity sequence, Oa, and augmented log fundamental fre-

quency contour, Of , which are derived as

Ox “ WxX “
“

pox0q
T , pox1q

T , . . . , poxN´1q
T
‰T

(4.76)

Oa “ WaA “
“

poa0q
T , poa1q

T , . . . , poaN´1q
T
‰T

(4.77)

Of “ WfG “

”

pof0q
T , pof1q

T , . . . , pofN´1q
T
ıT

(4.78)

where matrix, Wx, Wa and Wf contain the regression coefficients to transform a

sequence of the static vectors into the sequence of the augmented vectors. The fol-

lowing equation, for example, shows the transform from a sequence of static vectors,

U “ ruT0 ,u
T
1 , . . . ,u

T
N´1s

T , to the sequence of the augmented vectors including the veloc-

ity derivative, V “ ruT0 ,∆uT0 ,u
T
1 ,∆uT1 , . . . ,u

T
N´1,∆uTN´1s

T , by matrix, Wu, but accel-
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eration derivatives are omitted.
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(4.79)

Figure 4.20 illustrates the structure of augmented observation vector, O.
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Figure 4.20: Structure of an augmented observation vector.

There exists another technique required in the training process. In TTS applications,

the input of the system is a text-based transcript and thus, duration of the words, sub-

words and states of the models for the output are unknown. To tackle this problem,
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duration of each model and each state are also statistically modelled in the training

process [96, 97] in which the duration models are formed as a Gaussian distribution of

how many frames keep staying in each state per occurrence from the estimated state

sequences of the training set obtained by the Viterbi algorithm which solves Equation

(4.59).

4.4.2 Synthesis Process

In the synthesis process, the input transcript is first resolved into words and then

sub-words by referring to the word dictionary in the system in order to convert the

text input into sequence of HMMs, w. Then an estimate of static feature vector,

Ĉ “
“

ĉT0 , ĉ
T
1 , ¨ ¨ ¨ , ĉ

T
N´1

‰T
, corresponding to w, is synthesised with the following steps.

Ô “ arg max
O

tP pO | w, λqu (4.80)

“ arg max
O

$

&

%

ÿ

all qPQ

P pO,q | w, λq

,

.

-

(4.81)

« arg max
O

„

max
qPQ

tP pO,q | w, λqu



(4.82)

“ arg max
O

„

max
qPQ

tP pq | w, λq ¨ P pO | q, λqu



(4.83)

where Ô is an estimate of the augmented vector including static and dynamic features

that corresponds to w while q and Q represent a state sequence, rq0, q1, ¨ ¨ ¨ , qN´1s, and

a group of the all possible state sequences respectively. Equation (4.83) is approximated

as

Ô « arg max
O

tP pO | q̂, λqu (4.84)

where q̂ is the most likely state sequence defined as

q̂ “ arg max
q

tP pq | w, λqu (4.85)

In TTS applications, this most likely state sequence is derived by splitting each model in

w into its states according to the trained duration models mentioned in Section 4.4.1.

Probability density of O in each state in λ are defined as Gaussian distributions,
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thus, Equation (4.85) derives

Ô “ arg max
O

 

N pO;µq̂,Σq̂q
(

(4.86)

where

µq̂ “

”

µTq̂0 ,µ
T
q̂1 , ¨ ¨ ¨ ,µ

T
q̂N´1

ıT
(4.87)

Σq̂ “ diag
”

σTq̂0 ,σ
T
q̂1 , ¨ ¨ ¨ ,σ

T
q̂N´1

ıT
(4.88)

where µq̂i represents the mean vector of the Gaussian distribution in state q̂i while σq̂i is

the diagonal vector of the covariance matrix in state q̂i. Equations (4.76 - 4.78) shows that

O is a linear transform of C, therefore, the following equation is derived from Equation

(4.86).

Ĉ “
“

ĉT0 , ĉ
T
1 , . . . , ĉ

T
N´1

‰T
(4.89)

“ arg max
C

 

N pWC;µq̂,Σq̂q
(

(4.90)

where ĉi is the synthesised static feature vector at i-th frame. The derivative of log-

normal distribution with respect to C is set equal to zero in order to synthesise Ĉ as

B logN
`

WC;µq̂,Σq̂

˘

BC
“ 0 (4.91)

This derives the following relationship and Ĉ is finally obtained.

WTΣ´1
q̂ WĈ “ WTΣ´1

q̂ µq̂ (4.92)

In the case of using the STRAIGHT vocoder as the speech production model, synthe-

sised vector, ĉi, comprises MFCC vector, x̂i, aperiodicity vector âi and log fundamental

frequency ĝi.

ĉi “
“

x̂Ti , â
T
i , ĝi

‰T
(4.93)

“ rx̂ip0q, x̂ip1q, . . . , x̂ipM ´ 1q, âip0q, âip1q, . . . , âipP ´ 1q, ĝis
T (4.94)
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where x̂ipmq represents the synthesised m-th MFCC while âippq is p-th mel-filterbank-

cepstral coefficient of aperiodicity measure at i-th frame. In the case where the MFCCs

are truncated to the first M 1 coefficients in original observation, O, pM ´M 1q zeros are

padded to the tail of x̂i as

x̂i “
“

x̂ip0q, x̂ip1q, . . . , x̂ipM
1 ´ 1q, 0, 0, . . .

‰T
(4.95)

The fundamental frequency contour is derived by taking exponent of ĝi for i “

0, 1, . . . , N ´ 1.

f̂0i “

$

’

&

’

%

exp pĝiq , as ĝi ‰ ´1010

0, as ĝi “ ´1010
(4.96)

and inverse DCT is applied to x̂i and âi to derive the log-Mel-filterbank coefficient vector

of the spectral power, x̂li, and the log-Mel-filterbank coefficient vector of the aperiodicity

measure, âli.

x̂li “

”

x̂lip0q, x̂
l
ip1q, . . . , x̂

l
ipM ´ 1q

ıT
(4.97)

âli “

”

âlip0q, â
l
ip1q, . . . , â

l
ipP ´ 1q

ıT
(4.98)

where

x̂lipjq “

M´1
ÿ

k“1

c

2

M
x̂ipkq cos

ˆ

p2j ` 1qkπ

2M

˙

(4.99)

âlipjq “

P´1
ÿ

k“1

c

2

P
âipkq cos

ˆ

p2j ` 1qkπ

2P

˙

(4.100)

x̂li and âli are then transformed to the linear-Mel-filterbank domain as

x̂fbi “

”

x̂fbi p0q, x̂
fb
i p1q, . . . , x̂

fb
i pM ´ 1q

ıT
(4.101)

âfbi “

”

âfbi p0q, â
fb
i p1q, . . . , â

fb
i pP ´ 1q

ıT
(4.102)
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where

x̂fbi pjq “ exp
´

x̂lipjq
¯

(4.103)

âfbi pjq “ exp
´

âlipjq
¯

(4.104)

The bandwidth of each Mel-filterbank channel is equalised in the Mel-frequency domain,

therefore, x̂fbi and âfbi need to be normalised as follows.

x̄i “ rx̄ip0q, x̄ip1q, . . . , x̄ipM ´ 1qsT (4.105)

āi “ rāip0q, āip1q, . . . , āipP ´ 1qsT (4.106)

where

x̄ipjq “
2x̂fbi pjq

Bpjq
(4.107)

āipjq “
2âfbi pjq

Bpjq
(4.108)

where Bpjq is the bandwidth of the band-pass filter in j-th Mel-filterbank channel. Fi-

nally, cubic spline interpolation [98] is applied to x̄i and āi in order to obtain the spectral

envelope, X̂ipfq, and the aperiodicity measure, Âipfq, where f “ 0, 1, . . . , F ´ 1 and F

denotes the number of the frequency bins. X̂ipfq and Âipfq at i “ 0, 1, . . . , N ´ 1, are

aligned to the time-frequency domain to derive X̂pf, iq and Âpf, iq, and all the parameters

required by the STRAIGHT vocoder, i.e. X̂pf, iq, Âpf, iq and f̂0i, are now synthesised

from the HMMs.

4.4.3 Experimental Evaluation on HMM-Based Speech Synthesis

Understanding the performance of HMM-based speech synthesis and proper settings to

improve the quality of synthesised speech is important to apply its techniques to HMM-

based speech enhancement. This motivates to evaluate the performances of HMM-based

speech synthesis with different model and observation vector settings. For that purpose,

this section conducts experiments in which model and state sequences of the synthesised

speech are obtained from natural speech by HMM decoding with forced alignment rather
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than having a text input as a TTS application.

The experiments use clean speech from four speakers in the GRID database [43], two

males and two females, which is down sampled to 8 kHz as well as the ASR experiments

in Section 4.3.4. From the 1000 utterances from each speaker, 800 are used for training

and the remainder are for testing to derive the model and state sequences by forced

alignment.

Trained HMMs synthesise the spectral envelope and aperiodicity in the time-

frequency domain and the fundamental frequency contour as discussed above, and then

the STRAIGHT vocoder converts them to the time-domain speech. Different config-

urations of HMMs including whole-word, monophone and CD-triphone HMMs (single

Gaussian) are evaluated.

4.4.3.1 Feature Vectors

The feature vector is formed as a combination of the MFCC coefficients, the log-Mel-

filterbank aperiodicity coefficients and the fundamental frequency with the velocity and

acceleration derivatives as shown in Figure 4.20. Different configurations of the MFCC

are examined while the number of the aperiodicity coefficients is fixed as 40, and Table

4.10 shows the feature vector configurations examined with the following experiment.

Config Mel-FBank MFCC Coeffs Aperiodicity Coefs Derivatives

MFCC16-8
16

8

40 ∆ and ∆2MFCC16-16 16
MFCC23-8

23
8

MFCC23-23 23

Table 4.10: Configurations of the feature vectors.

MFCC16-8 and MFCC16-16 are based on 16 coefficient MFCCs while MFCC23-8

and MFCC23-23 are based on 23 coefficient MFCCs, but MFCC16-8 and MFCC23-8

contain only the first 8th coefficients and other coefficients are truncated. These config-

urations are chosen because the ASR tests in Section 4.3.4.1 show these configurations

represent speech features better than other settings.

The first experiment uses whole-word HMMs which consist of 16 states, and they

are trained with each configuration of feature vectors which are framed at 5 ms interval.



4.4 HMM-Based Speech Synthesis 129

The HMMs then decode clean test speech to obtain their word and state sequences by

which the HMMs synthesise the HMM-based speech features, i.e. the spectral envelope,

the aperiodicity and the fundamental frequency. The synthesised fundamental frequency

contour is, however, not used for speech reconstruction. Instead, PEFAC estimates the

fundamental frequency directly from the original speech. Reconstructed speech synthe-

sised with different configurations of feature vectors is then evaluated in terms of PESQ,

and the configuration which shows the best PESQ scores is used for the following exper-

iments.

PESQ is an objective measure recommended by ITU-T (2000) for speech quality

assessment of narrow-band handset telephony and narrow-band speech codecs [99]. This

measure assesses distortions in speech including packet loss, signal delays and codec dis-

tortions by comparing a degraded signal with the original reference signal. The reference

and degraded signals are first equalised to a standard listening level and then filtered by

a filter having a response similar to a telephone handset. The filtered signals are then

aligned in time to correct time delays followed by an auditory transform to obtain the

loudness spectra. Finally, the difference of the loudness spectra between the reference

and degraded signals is averaged over time and frequency to produce the objective score

which correlates with subjective MOS listening tests.

The results of the first experiment are shown in Table 4.11. The feature vectors where

MFCC16-8 MFCC16-16 MFCC23-8 MFCC23-23

PESQ 2.48 2.59 2.48 2.63

Table 4.11: Average PESQ scores of the synthesised speech with 16-state whole-word
HMMs and different feature vector configurations framed at 5 ms interval.

the MFCC coefficients are not truncated show higher PESQ score while the truncation

of MFCC coefficients are effective in ASR decoding. Since the proposed HMM-based

speech enhancement utilises both techniques of HMM decoding and synthesis, the feature

vectors need to be optimised so that the performance of HMMs can be balanced between

decoding and synthesis. Considering this result with respect to Figure 4.9, MFCC23-23

is employed as the appropriate feature vector to the following experiments which evaluate

the performance of speech synthesis in further detail.
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4.4.3.2 Whole-Word Model

The next experiment examines whole-word HMMs with speech feature vectors framed

at 10 ms, 5 ms and 1 ms intervals. The optimum HMM settings for each frame interval

have been evaluated in the ASR experiment and summarised in Table 4.8, therefore, the

test configurations here are set as Table 4.12.

Frame Interval Number of States Observation

10 ms 12
MFCC23-235 ms 16

1 ms 40

Table 4.12: Configurations of the whole-word HMMs for different frame interval.

Figure 4.21 shows narrowband spectrograms of synthesised speech. Subplot(a) is the

spectrogram of natural speech of “Bin Blue At E Seven Now.” spoken by a male speaker.

Subplot (b), (c) and (d) show the spectrograms of the HMM-based speech with the

feature vectors framed at 10 ms, 5 ms and 1 ms respectively. These results show that the

whole-word HMMs synthesise speech in fair quality but the synthesised speech with 10

ms frame interval is over-smoothed as compared with others. Figure 4.22 illustrates the

fundamental frequency contour of the same speech synthesised by the whole-word HMMs.

HMM-based fundamental frequency contour cannot trace rapid changes in the natural

speech and it causes voicing errors and different intonation. Therefore, the fundamental

frequency contour required by the speech production model should be estimated from

the original speech by using f0 estimation techniques, discussed in Section 3.5, rather

than using synthesised parameters in the case of HMM-based speech enhancement.

4.4.3.3 Monophone Model

HMM-based speech synthesis with monophone HMMs are next examined with different

frame intervals. Monophone HMM state settings for each frame interval are configured

as Table 4.13, according to Table 4.8. Figure 4.23 shows narrowband spectrograms of

synthesised speech. Subplot(a) is the spectrogram of natural speech of “Bin Blue At E

Seven Now.” spoken by a male speaker. Subplot (b), (c) and (d) show the spectrograms of

the HMM-based speech with the feature vectors framed at 10 ms, 5 ms and 1 ms respec-
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Figure 4.21: Narrowband spectrograms of a) the original natural speech of “Bin
Blue At E Seven Now” spoken by a male speaker, b) HMM-based speech synthesised
by 12-state whole-word HMMs with feature vector, MFCC23-23, framed at 10 ms
interval, c) HMM-based speech synthesised by 16-state whole-word HMMs with
MFCC23-23 framed at 5 ms interval and d) HMM-based speech synthesised by 40-
state whole-word HMMs with MFCC23-23 framed at 1 ms interval.

Frame Interval Number of States Observation

10 ms 7
MFCC23-235 ms 12

1 ms 24

Table 4.13: Configurations of the monophone HMMs for different frame interval.
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Figure 4.22: Fundamental frequency contours synthesised by different configurations
of whole-word HMMs.

tively. These results show that the quality of speech synthesised with monophone HMMs

is totally inferior to the whole-word HMM-based speech because of over-smoothing. This

is attributed to the lack of model variation and the use of CD-triphone HMMs are mo-

tivated.

4.4.3.4 Context Dependent Triphone HMMs

HMM-based speech synthesis with CD-triphone HMMs are next examined with different

frame intervals. In the training process, the tree-based clustering is also applied to the

CD-triphone HMMs as well as the ASR experiments in Section 4.3.4.4. The state settings

of CD-triphone HMMs for each frame interval are configured as Table 4.14, referring to

Table 4.8.

Frame Interval Number of States Observation

10 ms 7
MFCC23-235 ms 12

1 ms 24

Table 4.14: Configurations of the CD-triphone HMMs for different frame interval.

Figure 4.24 shows narrowband spectrograms of synthesised speech. Subplot(a) is
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Figure 4.23: Narrowband spectrograms of a) the original natural speech of “Bin Blue
At E Seven Now” spoken by a male speaker, b) HMM-based speech synthesised
by 7-state monophone HMMs with feature vector, MFCC23-23, framed at 10 ms
interval, c) HMM-based speech synthesised by 12-state monophone HMMs with
MFCC23-23 framed at 5 ms interval and d) HMM-based speech synthesised by 24-
state monophone HMMs with MFCC23-23 framed at 1 ms interval.
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Figure 4.24: Narrowband spectrograms of a) the original natural speech of “Bin Blue
At E Seven Now” spoken by a male speaker, b) HMM-based speech synthesised
by 7-state-CD-triphone HMMs with feature vector, MFCC23-23 framed at 10 ms
interval, c) HMM-based speech synthesised by 12-state-CD-triphone HMMs with
MFCC23-23 framed at 5 ms interval and d) HMM-based speech synthesised by 24-
state-CD-triphone HMMs with MFCC23-23 framed at 1 ms interval.
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the spectrogram of natural speech of “Bin Blue At E Seven Now.” spoken by a male

speaker. Subplot (b), (c) and (d) show the spectrograms of the HMM-based speech with

the feature vectors framed at 10 ms, 5 ms and 1 ms respectively. These results show

that the CD-triphone HMMs synthesise the speech in as good quality as the whole-word

HMM-based speech synthesis, and provides fairly natural speech especially in the case of

short time frame shift.

Figure 4.25 illustrates the fundamental frequency contour of the same speech syn-

thesised by the CD-triphone HMMs. This result shows that the CD-triphone HMMs
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Figure 4.25: Fundamental frequency contours synthesised by different configurations
of CD-triphone HMMs.

synthesise the fundamental frequency contour which can trace rapid change as compared

with the whole-word HMMs because the duration of each model is shorter than the whole-

word HMMs. However the accuracy of the contour is still not sufficient and it encourages

estimating the fundamental frequency contour directly from the original speech rather

than using synthesised f0 contour.

The average PESQ scores of the synthesised speech in different configurations are

summarised in Table 4.15 showing whole-word HMMs and CD-triphone HMMs synthesise

speech with the same PESQ scores which are superior to monophone HMMs.

The resultant PESQ scores set the upper limit to the proposed method of HMM-
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HMM Frame Int. 10 ms Frame Int. 5 ms Frame Int. 1 ms

Whole-Word 2.55 2.63 2.73
Monophone 2.18 2.25 2.42
CD-triphone 2.55 2.63 2.73

Table 4.15: PESQ scores of synthesised speech in different model configurations.
The feature vector configuration is MFCC23-23.

based speech enhancement because the model and state sequences in these experiments

are obtained in error-free condition by forced alignment. The results shown in Table 4.15

use 23-D MFCC vector to give the best PESQ scores to synthesised speech whereas the

results illustrated in Figure 4.18 use 8-D MFCC vector to give priority to the noise robust-

ness. Both of these characteristics are important for HMM-based speech enhancement,

therefore, the best balanced setting needs to be explored.

4.4.4 Summary of the Experimental Results of HMM-Based Speech

Synthesis

The experiments synthesised speech parameters with the clean whole-word HMMs, mono-

phone HMMs and CD-triphone HMMs and then STRAIGHT reconstructed speech from

the synthesised parameters. The model and state sequence to synthesise speech was

obtained by forced alignment with clean natural speech and its transcript.

The experimental results first found that an acoustic configuration containing higher

dimension MFCCs performs better than the other, comparing the output speech synthe-

sised from the whole-word HMMs with the acoustic configurations of MFCC16-16 and

MFCC23-23 in terms of PESQ. Moreover, it was also found that the acoustic configu-

rations containing MFCCs without truncation performs better than the configurations

using the truncated MFCCs. This is opposite tendency to the decoding process, therefore,

it is important to find a balance when the acoustic model is configured in HMM-based

speech enhancement.

Then it was found that the whole-word HMMs and CD-triphone HMMs obtain the

same PESQ score while the monophone HMMs performs lower than them. This result

supports the notion that the monophone HMMs do not have enough variation to represent

natural speech.
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The experiments also showed that the fundamental frequency contour synthesised

from the HMMs is not as accurate as the fundamental frequency contour estimated

by PEFAC. Therefore, the proposed method of HMM-based speech enhancement should

estimate the fundamental frequency contour of clean speech from noisy speech by PEFAC

rather than synthesising from HMMs.

4.5 HMM-Based Speech Enhancement

In the preceding sections, the key techniques for HMM applications, i.e. HMM training,

HMM decoding and HMM synthesis, are individually discussed and explored with the

practical examples of ASR and TTS. This section combines these techniques in order to

constitute HMM-based speech enhancement and evaluates its performance in terms of

PESQ and NCM, which represent objective measures of speech quality and intelligibility.

Speech from two female speakers and two male speakers in the GRID database is

used for the evaluation as well as other tests in the preceding sections. 1000 utterances

from each speaker are down sampled to 8 kHz and 800 of them are used for training and

the remainder are used for tests of speech enhancement in white noise and babble noise

at SNRs from -5 dB to 10 dB.

The empirical tests in this section follow earlier works in [5,6] and the framework of

speech enhancement is illustrated in Figure 4.26.

4.5.1 Feature Extraction

In the proposed method of HMM-based speech enhancement, a configuration of feature

vectors cannot be changed between the decoding process and synthesis process because it

is important to share the same HMMs between those processes. Considering the balance

of the performance between decoding and synthesis, 8-D MFCC vectors produced by

truncating 16-D log-Mel-filterbank coefficient vectors and 23-D MFCC vectors with no

truncation are employed as the spectral component in the feature vectors by referring

to the empirical knowledge of both Figure 4.9 and Table 4.11. The former configuration

gives priority to the noise robustness at decoding while the latter sets priority to raising

the upper limit of the quality of enhanced speech. In addition to the MFCC vectors,
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Figure 4.26: The framework of HMM-based speech enhancement.

the aperiodicity measure and fundamental frequency contour need to be included in the

feature vectors in order to utilise the STRAIGHT speech model. Table 4.16 shows the

specification of these components in the feature vectors to be examined.

Configuration Component DFT Mel-FBK MFCC Coefs Derivatives

MFCC16-8
MFCC 1024 16 8

∆, ∆2Aperiodicity 1024 40 40
log f0 - - -

MFCC23-23
MFCC 1024 23 23

∆, ∆2Aperiodicity 1024 40 40
log f0 - - -

Table 4.16: The configuration of the feature vectors for the test.

Discrete-time speech is first divided into 25 ms-length frames by applying a Ham-

ming window in which the frame shift is set equal to 1 ms and 5 ms. A 1024-point

STFT is then applied to obtain the power spectrum and aperiodicity measure which are

then input into a Mel-filterbank. The number of Mel-filterbank channels is set equal to

16 and 23 for the power spectrum and 40 for the aperiodicity measure. A logarithm is

then applied to the filterbank energies followed by a discrete cosine transform to produce

8-D and 23-D MFCC vector, xi, and 40-D aperiodicity vector, ai. The fundamental fre-

quency contour, f0i, is estimated with PEFAC followed by logarithm applied to produce
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log f0i. These three components are assigned into augmented feature vector O with their

velocity derivatives, ∆xi, ∆ai, and ∆ log f0i, and acceleration derivatives, ∆2xi, ∆2ai,

and ∆2 log f0i, as illustrated in Figure 4.20.

The velocity and acceleration derivatives of xi are calculated as the second-order

regression

∆xi “

$

’

’

’

’

&

’

’

’

’

%

pxi`1 ´ xi´1q {2 i “ 1, 2, . . . , N ´ 2

xi`1 ´ xi i “ 0

xi ´ xi´1 i “ N ´ 1

(4.109)

∆2xi “

$

’

’

’

’

&

’

’

’

’

%

xi´1 ´ 2xi ` xi`1 i “ 1, 2, . . . , N ´ 2

0 i “ 0

0 i “ N ´ 1

(4.110)

where N is the number of frames, and ∆ai, ∆2ai, ∆ log f0i and ∆2 log f0i are also calcu-

lated in the same manner.

4.5.2 HMM Training

The tests of HMM-based speech enhancement in this section examine four configura-

tions of HMMs. The first configuration, WORD G/8, employs whole word HMMs to

deal with the feature vectors constructed as MFCC16-8 while the second configuration,

WORD G/23, also uses whole-word HMMs but they are based on the feature vectors

formed as MFCC23-23. Each of these two configurations models 52 whole-word HMMs

for each speaker training set and uses the GRID grammar and the vocabulary list to

constrain the choice of possible model sequences as the language model. The third con-

figuration, TRI N/8, employs CD-triphone HMMs with the feature vectors configured

as MFCC16-8 whereas the other, TRI N/23, uses CD-triphone HMMs which are based

on the feature vectors formed as MFCC23-23. These CD-triphone HMMs constrain the

model sequences only with the CD-triphone context and no language model is applied.

The training process first models 658 CD-triphone HMMs for the female speaker training

set and 663 CD-triphone HMMs for the male speaker training set. Tree-based clustering
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is then applied state-by-state to reduce the number of models to the range between 150

and 250 for each speaker with the MDL criterion.

Each of the model configurations is examined with the feature vectors framed at 5

ms interval and 1 ms interval. In the case of whole-word HMMs, i.e. WORD G/8 and

WORD G/23, the number of states is set equal to 16 for 5 ms-frame interval, and 40 for

1 ms-frame interval. Alternatively, the number of states of TRI N/8 and TRI N/23 are

set equal to 12 for 5 ms-frame interval and 24 for 1 ms-frame interval. These settings are

based on the empirical knowledge shown in Figure 4.10, 4.12 and 4.17.

Table 4.17 summarises the model configurations for the evaluation. The configura-

Configuration Frame Int. Feature # States # HMMs Lang. Model

WORD G/8
5 ms

MFCC16-8
16

52 YES
1 ms 40

WORD G/23
5 ms

MFCC23-23
16

1 ms 40

TRI N/8
5 ms

MFCC16-8
12

150-250 NO
1 ms 24

TRI N/23
5 ms

MFCC23-23
12

1 ms 24

Table 4.17: Model configurations.

tions using 5 ms-frame interval or MFCC16-8 give priority to the noise robustness in the

decoding process whereas the configurations using 1 ms-frame interval or MFCC23-23

give priority to raising the upper limit of speech quality of enhanced speech.

The performance of the proposed method is examined in white noise and babble

noise at SNRs from -5 dB to 10 dB. Therefore, HMMs are also trained in those noise

conditions so that the noise-matched HMMs can be selected in the decoding process.

This method using the noise-matched HMMs is impractical unless the noise type and

its SNR is known a priori. This problem is discussed later in Chapter 5 and thus, the

noise-matched HMMs are provisionally exploited regardless of those impracticality at

this point.
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4.5.3 HMM Decoding

After off-line training of HMMs, the test set of 200 utterances from each speaker is de-

coded by HMMs, which are trained in clean and noise-matched conditions, to produce the

model and state sequences. The model configurations of WORD G/8 and WORD G/23

constrain the model sequences with the language model representing GRID-specific con-

figurations while TRI N/8 and TRI N/23 constrain the model sequences with the context

of the previous and next phonemes and no language model representing practical configu-

rations though the small vocabulary of GRID database constrains the triphone coverage.

The observation vectors for the tests comprise components of the MFCCs, aperiodic-

ity and fundamental frequency with their velocity and acceleration derivatives. However,

the Viterbi algorithm and forward-backward algorithm to obtain the most likely model

and state sequences should be applied only to the MFCC components in the vectors

because the MFCC vectors represent the motion of vocal tract cavities as discussed in

Section 3.2 and 4.3.2. Therefore, other components in the vectors are ignored during

the decoding process, and the derivatives of MFCC vectors are also ignored from the

computation because the preliminary tests have shown these components cause a decline

in decoding accuracy in case of using noise-matched HMMs.

Figure 4.27 shows the resultant accuracies of model sequences in different model

configurations and frame intervals. Subplots (a) and (b) show the accuracies of model

sequences in white noise and babble noise respectively with the feature vectors, config-

ured as MFCCC16-8 and MFCC23-23, framed at 5 ms interval. In these conditions,

TRI N/8 performs as well as the whole-word models in spite of no grammar applied.

This reproduces the result shown in Figure 4.18, in which the advantages of using CD-

triphone HMMs are discussed. Alternatively, the accuracy of TRI N/23 is significantly

lower than others. This is attributed to the effectiveness of the truncation of MFCC

coefficients to represent motion of the vocal tract cavities as discussed in Section 4.3.1,

and the disadvantage of the vector configuration is not compensated by the language

model unlike WORD G/23.

Subplots (c) and (d) show the results in white and babble noise with the feature

vectors framed at 1 ms interval. In these conditions the noise robustness becomes lower
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Figure 4.27: The accuracy of model sequences in different model configurations. a)
and b) show accuracy in white noise and babble noise respectively, with the feature
vectors framed at 5 ms interval while c) and d) shows the results with the feature
vectors framed at 1 ms interval.
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than the cases of 5 ms-frame interval over all the model configurations.

4.5.4 HMM-Based Parameter Synthesis

In the synthesis process, the HMMs trained in a clean condition are used to synthesise

clean speech parameters according to the model and state sequences obtained in the

decoding process though they are derived by the noise-matched HMMs. This brings

inconsistency between the decoding result and synthesised parameters, and causes the

resultant enhanced speech having distortions because the clean HMMs and the noise-

matched HMMs are trained independently. This problem is discussed in Chapter 5

and thus, using different HMMs between decoding and synthesis is provisionally allowed

regardless of the mismatch in HMMs at this point.

The synthesised speech parameters are converted to spectral envelopes and aperiod-

icity measures in the time-frequency domain as discussed in Section 4.4.2. However, the

fundamental frequency contour is estimated from the original noisy speech directly with

PEFAC instead of using the synthesised log f0 parameters, and the enhanced speech is

finally reconstructed from these parameters through the STRAIGHT vocoder.

4.5.5 Speech Quality

Figure 4.28 shows PESQ scores for different HMM-based enhancement configurations and

for comparison results are included for the log MMSE representing the filtering methods

of speech enhancement and no noise compensation (NNC). Subplots (a) and (b) show

the results in white noise and babble noise respectively with the feature vectors framed

at 5 ms interval. In these conditions WORD G/23 shows the best performance over the

range of SNRs though its accuracy of model sequences is lower than WORD G/8 because

the PESQ score of speech synthesis with the feature vectors configured as MFCC23-23 is

higher than the case of using the truncated vectors, MFCC16-8, as shown in Table 4.11.

This represents the importance of balance between the performances in decoding and

synthesis. TRI N/8 keeps higher score than TRI N23 at SNRs at 0 dB and below but

the scores in high SNRs, such as at 5 dB and 10 dB, are inferior to TRI N/23 whose noise

robustness is the worst of the four HMM-based enhancement configurations. In white

noise, the PESQ scores of all four configurations are superior to log MMSE at SNRs of
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Figure 4.28: PESQ scores in different model configurations comparing with the log
MMSE method and no noise compensation (NNC). a) and b) show the PESQ scores
of enhanced speech in white noise and babble noise respectively, with the feature
vectors framed at 5 ms interval while c) and d) show the results with the feature
vectors framed at 1 ms interval.
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0 dB and below while only TRI N/23 is lower than the PESQ scores of log MMSE and

does not show significant effect to NNC in babble noise.

Subplots (c) and (d) illustrate the PESQ scores in white noise and babble noise in

the case of using the feature vectors framed at 1 ms interval showing the PESQ scores of

each model configuration except WORD G/8 become lower than the case of 5 ms-frame

interval. This is attributed to the lower decoding accuracy than the case of 5 ms-frame

interval, and the configurations using the triphone models do not show significant effect

to NNC in babble noise in this condition.

The results of this experiment motivate to use the proposed method for speech

enhancement at low SNRs such as 0 dB and below specifically with the configuration of

TRI N/8 with 5 ms-frame interval because it is not GRID-specific setting.

4.5.6 Speech Intelligibility

Figure 4.29 shows NCM representing objective measures for speech intelligibility.

Subplots (a) and (b) show the results in white noise and babble noise respectively with the

feature vectors framed at 5 ms interval. In these conditions WORD G/8, WORD G/23

and TRI N/8 remain very stable even at low SNRs whereas TRI N/23 drops the NCM

score at low SNRs because of low decoding accuracy in those SNRs. The NCM scores

of the log MMSE method falls more rapidly and when SNR falls to around 0 dB, log

MMSE performs worse than the whole-word models in terms of NCM.

Subplots (c) and (d) illustrate the NCM scores in white noise and babble noise in

the case of using the feature vectors framed at 1 ms interval showing the NCM scores of

CD-triphone HMM configurations fall. This is also attributed to the results of decoding

accuracy with each configurations.

In addition to the results based on PESQ and NCM scores, figures 4.30 and 4.31

compare the spectrogram of enhanced speech with the original clean and noisy speech.

Subplot (a) of each figure shows the narrowband spectrogram of natural clean speech

of an utterance, “Bin Blue At E Six Now”, spoken by a female speaker. Subplot (b)

represents the noisy speech in white noise at SNR of -5 dB in Figure 4.30 and in babble

noise in Figure 4.31. Subplot (c) in each figure shows the spectrogram of enhanced

speech by HMM-based speech enhancement with the model configuration of TRI N/8
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Figure 4.29: NCM scores in different model configurations comparing with the log
MMSE method and no noise compensation (NNC). a) and b) show the NCM scores
of enhanced speech in white noise and babble noise respectively, with the feature
vectors framed at 5 ms interval while c) and d) show the results with the feature
vectors framed at 1 ms interval.
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Figure 4.30: Narrowband spectrograms of speech, “Bin Blue At E Six Now”, spoken
by a female speaker. a) is natural clean speech. b) is contaminated with white noise
at SNR of -5 dB. c) is enhanced speech with HMM-based speech enhancement using
TRI N/8 configuration while d) is enhanced by the log MMSE method.
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Figure 4.31: Narrowband spectrograms of speech, “Bin Blue At E Six Now”, spoken
by a female speaker. a) is natural clean speech. b) is contaminated with babble noise
at SNR of -5 dB. c) is enhanced speech with HMM-based speech enhancement using
TRI N/8 configuration while d) is enhanced by the log MMSE method.
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using the feature vectors framed at 5 ms interval while subplot (d) is enhanced by the

log MMSE method. These figures show that the enhanced speech by HMM-based speech

enhancement can reconstruct the original clean speech without residual noise even at

SNR of -5 dB whereas the filtering method remains a lot of residual noise. Subplot (c) in

Figure 4.31, however, shows the influences of decoding errors at the beginning and end

of the utterance and this is the biggest issue of HMM-based speech enhancement.

4.6 Conclusion of the Chapter

This chapter first discussed the overview of HMMs and the theories were then extended

to the practical applications such as ASR and HMM-based speech synthesis. The latter

part of the chapter explored HMM-based speech enhancement achieved by combining the

techniques of HMM training, HMM decoding and HMM synthesis with the STRAIGHT

speech production model. Experiments evaluated the performance of the speech enhance-

ment with different sets of configurations comparing with the log MMSE method which

represents the conventional filtering methods. The experimental analysis has shown that

using CD-triphone HMMs with no grammar constraints, e.g. TRI N/8, with 5 ms-frame

interval achieves the PESQ and NCM scores sufficiently close to that with grammar con-

strained whole-word models, but puts no restrictions on the input speech. Compared

to conventional methods of speech enhancement, HMM-based speech enhancement has

higher PESQ and NCM scores at lower SNRs. In fact, the scores of PESQ and NCM

remain relatively stable as SNRs reduce. However, tests at higher SNRs show that those

scores are limited to relatively low levels, compared to that of the original speech, which

puts a low upper limit on performance.
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Chapter 5

Adaptation of Hidden Markov

Models to Noisy Speech

HMM-based speech enhancement in the previous chapter trained the HMMs with clean

speech for the clean HMMs and with noisy speech for the noise-matched HMMs and then

decoded the noisy speech with the noise-matched HMMs. This is, however, impractical

because it is not possible to know in advance the noise type and SNR of the input speech

and train the HMMs in that condition a priori. Moreover, the parameters of enhanced

speech were synthesised by using the clean HMMs though the model and state sequences

had been derived from the noise-matched HMMs, and thus, this may cause distortion of

the synthesised speech. To tackle this problem, this chapter discusses a method to model

the input noisy speech from the clean HMMs as an online process by using techniques of

HMM adaptation in order to acquire accurate state and model sequences from the noisy

speech at the decoding process of HMM-based speech enhancement.

5.1 Introduction

At the stage of HMM decoding in HMM-based speech enhancement, acquisition of the

model and state sequence from noisy speech without decoding errors is the key problem.

If a set of HMMs, Λ “ tλ1, λ2, . . . , λDu, is trained with clean speech, the statistical

parameters in λd (d “ 1, 2, . . . , D) do not match the statistical distribution of the features

in noisy speech especially at low SNRs. Therefore, decoding noisy speech with clean
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HMMs is not a suitable solution for HMM-based speech enhancement. For this reason,

the experiments in Section 4.5 employed the noise-matched HMMs, Λ1 “ tλ11, λ
1
2, . . . , λ

1
Du,

which had been trained with noisy speech.

This method gives the statistical parameters which match the statistical distribution

of the features in noisy speech to λ1d and thus, the decoding accuracy is expected to be

improved. This method, however, has two main drawbacks. Firstly, it is generally not

possible to know in advance the noise type and SNR of the input speech at the training

stage in practical use. Therefore, HMMs need to be trained with vast amount of speech

contaminated with various types and levels of noise in order to deal with any unknown

noisy speech. Furthermore, this raises the number of the models, i.e. the candidates of

the choice are increased, and then it may affects the decoding accuracy.

Secondly, HMM-based speech enhancement uses Λ to synthesise the clean speech

parameters, therefore, a state sequence, q, for Λ is required at the synthesis stage.

However, the method using the noise-matched HMMs obtains a state sequence, q1, for

Λ1 instead of q in the decoding process. Consequently, Λ synthesises the parameters

according to q1, and this may cause the output to have distortion because the state

allocation in λk and the state allocation in λ1k are not identical. Figure 5.1 illustrates

this problem. λ and λ’ in the figure have different state allocation for the same waveform,

and if the segments of the waveform corresponding to each state of λ (i.e., S1, S2, S3, S4)

are allocated according to the allocation of the states in λ1 (i.e., S11, S21, S31, S41q, the

reconstructed wave form has distortion (red line). This may occur in HMM-based speech

enhancement as long as the noise-matched HMMs are used in the decoding process.

To achieve robust performance against noise in HMM decoding process while avoid-

ing the preceding problems, an approach to adapt Λ to characteristics of the noisy speech

input without changing their state allocation is discussed in this chapter. Several meth-

ods for this approach have been proposed such as state based filtering [100], cepstral

mean compensation [101, 102], HMM decomposition [103] and parallel model combina-

tion [104–106] and it is reported that parallel model combination can perform more

effectively for HMMs modelled in the MFCC domain [105].

The remainder of this chapter first discusses the HMM adaptation with parallel

model combination including the techniques to determine mismatch function and to
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Figure 5.1: Distortion brought by temporal inconsistency of the states between clean
and noise-matched HMMs.

deal with a non-linear transform of the statistical distribution needed by the logarithm

operation in the MFCC extraction process. Experiments then evaluate the performance of

the noise-adapted HMMs modified from the clean HMMs by parallel model combination

comparing with noise-matched HMMs prior to the conclusion of the chapter.

5.2 Parallel Model Combination

HMM adaptation with parallel model combination in this section is discussed on the

following assumptions [106] and an outline of parallel model combination is illustrated in

Figure 5.2.

• Speech and noise are independent

• Speech and noise are additive in the time domain

• The clean HMMs have been modelled as static parameters of MFCCs, i.e. dynamic

features are not included.

• Noise is modelled as a single-state HMM.
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Figure 5.2: Outline of parallel model combination

The noise-adapted HMMs, λ̂y, are produced by combining the clean HMMs, λx, with a

noise model, λ̂d, estimated from the noisy speech input according to a mismatch function

which is determined as the effect of noise in speech.

5.2.1 Mismatch Function

Discrete-time speech, xpnq, and random noise, dpnq, are additive in the time domain,

therefore, noisy speech, ypnq, is given as

ypnq “ xpnq ` dpnq (5.1)

Using an F -point STFT, the power spectrum of the noisy speech at the i-th frame is

derived as

| Yipfq |
2 “ pXipfq `Dipfqq pXipfq `Dipfqq

˚ (5.2)

“ | Xipfq |
2 ` | Dipfq |

2 `2 | Xipfq || Dipfq | cos pφpfqq (5.3)

where f “ 0, 1, . . . , F ´ 1 and φpfq represents the phase difference between the clean

speech and noise in frequency bin, f . Although [107, 108] have reported that this phase

difference term should not be ignored for precise calculation, φpfq can not be estimated

from the noisy speech input. Therefore, [107] has proposed to utilise a lookup table

of phase differences that is computed offline during a training process but this solution

requires a priori knowledge about noise at the training stage. Therefore, this brings a
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limitation into practical use. Alternatively, [108] has modelled the phase difference term

at each frequency bin as independent zero-mean Gaussian distributions from empirical

data. Thus, the phase difference term in Equation (5.3) should be set equal to zero in a

maximum likelihood sense, which gives,

| Yipfq |
2«| Xipfq |

2 ` | Dipfq |
2 (5.4)

|Dipfq|
2 in Equation (5.4) is estimated from the noisy speech input, ypnq, by using the

noise estimation algorithms discussed in Section 2.2 and it derives the following equation.

| Yipfq |
2«| Xipfq |

2 ` | D̂ipfq |
2 (5.5)

where |D̂ipfq|
2 denotes the estimated power spectrum of noise.

In the M -channel linear Mel-filterbank domain, the mismatch function is derived as

Y fb
i pmq “ Xfb

i pmq ` D̂
fb
i pmq, m “ 0, 1, . . . ,M ´ 1 (5.6)

where Y fb
i pmq, X

fb
i pmq and D̂fb

i pmq are the m-th linear Mel-filterbank coefficient of noisy

speech, clean speech and estimated noise respectively at the i-th frame. At this point,

the noise in the linear Mel-filterbank domain is modelled as Gaussian distribution with

mean vector, µ̂fbd , and covariance matrix, Σ̂fb
d given as

λ̂fbd “ N
´

D̂fb; µ̂fbd , Σ̂
fb
d

¯

(5.7)

µ̂fbd “
1

I

I´1
ÿ

i“0

d̂fbi (5.8)

“

”

µ̂d0, µ̂
d
1, . . . , µ̂

d
M´1

ıT
(5.9)
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Σ̂fb
d “

1

I ´ 1

I´1
ÿ

i“0

´

d̂fbi ´ µ̂fbd

¯´

d̂fbi ´ µ̂fbd

¯T
(5.10)

“

»

—

—

—

—

—

—

—

–

Σ̂d
00 Σ̂d

01 . . . Σ̂d
0pM´1q

Σ̂d
10 Σ̂d

11 . . . Σ̂d
1pM´1q

...
...

. . .
...

Σ̂d
pM´1q0 Σ̂d

pM´1q1 . . . Σ̂d
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.11)

where

D̂fb “

”

pd̂fb0 q
T , pd̂fb1 q

T , . . . , pd̂fbI´1q
T
ıT

(5.12)

d̂fbi “

”

D̂fb
i p0q, D̂

fb
i p1q, . . . , D̂

fb
i pM ´ 1q

ıT
(5.13)

where I denotes the number of frames in ypnq.

The clean HMMs, λx, are, however, in the non-linear MFCC domain. Therefore,

they need to be transformed to the linear Mel-filterbank domain in order to be combined

with the noise model, λ̂fbd , in the linear Mel-filterbank domain. The mean vectors and

covariance matrices of the clean HMMs, µx and Σx, are first transformed to the log

Mel-filterbank domain as

µlx “ C´1µx (5.14)

“

”

µlx0 , µ
lx
1 , . . . , µ

lx
M´1

ıT
(5.15)

Σl
x “ C´1ΣxpC

´1qT (5.16)

“

»

—

—

—

—

—

—

—

–

Σlx
00 Σlx

01 . . . Σlx
0pM´1q

Σlx
10 Σlx

11 . . . Σlx
1pM´1q

...
...

. . .
...

Σlx
pM´1q0 Σlx

pM´1q1 . . . Σlx
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.17)

where C´1 is the notation of the inverse of DCT matrix, C.

The model parameters of the clean HMMs in the log Mel-filterbank domain, µlx and

Σl
x, are next transformed to the linear Mel-filterbank domain in which the clean HMMs

and the noise model are combined in accordance with Equation (5.6). This transform

is, however, non-linear and thus, a technique to deal with the non-linear mapping of the



5.2 Parallel Model Combination 157

statistical parameters is required. Specifically, previous research has shown that a map-

ping of Gaussian distribution in the log spectral domain into log-normal distribution in

the linear spectral domain performs well [104] whereas [7,109] have successfully exploited

unscented transform to obtain the statistical distribution of clean HMMs in the linear

Mel-filterbank domain. Therefore, these two approaches to map the model parameters

between the linear domain and log domain are explored below.

5.2.2 Distribution Mapping between Gaussian and Log-Normal

To transform the statistical distribution in the log Mel-filterbank domain to the linear

Mel-filterbank domain, this section employs a mapping between a Gaussian distribution

in the log Mel-filterbank domain and a log-normal distribution in the linear Mel-filterbank

domain as follows.

The mean vectors and the covariance matrices of the clean HMMs in the log-Mel

filterbank domain, which have been derived by Equations (5.14) - (5.17), are first trans-

formed to the linear Mel-filterbank domain using the distribution mapping between Gaus-

sian and log-normal [104] as

µfbx “
“

µx0 , µ
x
1 , . . . , µ

x
M´1

‰T
(5.18)

Σfb
x “

»

—

—

—

—

—

—

—

–

Σx
00 Σx

01 . . . Σx
0pM´1q

Σx
10 Σx

11 . . . Σx
1pM´1q

...
...

. . .
...

Σx
pM´1q0 Σx

pM´1q1 . . . Σx
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.19)

where

µxm “ exp
`

µlxm ` Σlx
mm{2

˘

, m “ 0, 1, . . . ,M ´ 1

Σx
jk “ µxjµ

x
k

”

exp
´

Σlx
jk

¯

´ 1
ı

, j, k “ 0, 1, . . . ,M ´ 1
(5.20)

At this point the models corresponding to Xfb
i pmq and D̂fb

i pmq in the mismatch

function of Equation 5.6 are obtained as the parameter sets, (µfbx , Σfb
x ) and (µ̂fbd , Σ̂fb

d ),

therefore, the noise-adapted HMMs, λ̂y, are constituted by the mean vectors, µ̂fby , and
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the covariance matrices, Σ̂fb
y , which are derived as

λ̂y “ N
´

Yfb; µ̂fby , Σ̂
fb
y

¯

(5.21)

µ̂fby “ µfbx ` µ̂fbd (5.22)

“
“

µ̂y0, µ̂
y
1, . . . , µ̂

y
M´1

‰T
(5.23)

Σ̂fb
y “ Σfb

x ` Σ̂fb
d (5.24)

“

»

—

—

—

—

—

—

—

–

Σ̂y
00 Σ̂y

01 . . . Σ̂y
0pM´1q

Σ̂y
10 Σ̂y

11 . . . Σ̂y
1pM´1q

...
...

. . .
...

Σ̂y
pM´1q0 Σ̂y

pM´1q1 . . . Σ̂y
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.25)

where

Yfb “

”

pyfb0 q
T , pyfb1 q

T , . . . , pyfbI´1q
T
ıT

(5.26)

yfbi “

”

Y fb
i p0q, Y

fb
i p1q, . . . , Y

fb
i pM ´ 1q

ıT
(5.27)

Assuming the combined distribution remains a log-normal distribution [104], µ̂fby

and Σ̂fb
y are converted back to a Gaussian distribution in the log Mel-filterbank domain

to derive the mean vectors and the covariance matrices in the log Mel-filterbank domain,

µ̂ly and Σ̂l
y, as

µ̂ly “

”

µ̂ly0 , µ̂
ly
1 , . . . , µ̂

ly
M´1

ıT
(5.28)

Σ̂l
y “

»

—

—

—

—

—

—

—

–

Σ̂ly
00 Σ̂ly

01 . . . Σ̂ly
0pM´1q

Σ̂ly
10 Σ̂ly

11 . . . Σ̂ly
1pM´1q

...
...

. . .
...

Σ̂ly
pM´1q0 Σ̂ly

pM´1q1 . . . Σ̂ly
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.29)

where

µ̂lym “ log pµ̂ymq ´
1

2
log

˜

Σ̂y
mm

pµ̂ymq2
` 1

¸

(5.30)

Σ̂ly
jk “ log

˜

Σ̂y
jk

µ̂yj µ̂
y
k

` 1

¸

(5.31)
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These parameters are then transformed to the MFCC domain as

µ̂y “ Cµ̂ly (5.32)

Σ̂y “ CΣ̂l
yC

T (5.33)

Now the noise-adapted HMMs, λ̂y, which comprise a set of mean vectors, µ̂y, and co-

variance matrices, Σ̂y, are obtained.

5.2.3 Unscented Transform

Alternatively, this section discusses the unscented transform as an alternative to the

distribution mapping between Gaussian and log-normal to convert a set of clean speech

HMMs in the log Mel-filterbank domain, µlx and Σl
x, to the distribution in the linear

Mel-filterbank domain. The unscented transform first extracts sigma points from the

distribution, using µlx and Σl
x, and then sigma point matrices, Sl`x and Sl´x , are formed

as

Sl`x “

»

—

—

—

—

—

—

—

–

slx`00 slx`01 . . . slx`0pM´1q

slx`10 slx`11 . . . slx`1pM´1q

...
...

. . .
...

slx`
pM´1q0 slx`

pM´1q1 . . . slx`
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.34)

Sl´x “

»

—

—

—

—

—

—

—

–

slx´00 slx´01 . . . slx´0pM´1q

slx´10 slx´11 . . . slx´1pM´1q

...
...

. . .
...

slx´
pM´1q0 slx´

pM´1q1 . . . slx´
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.35)

where

slx`jk “

$

’

&

’

%

µlxj `
b

Σlx
jj j “ k

µlxj j ‰ k
(5.36)

slx´jk “

$

’

&

’

%

µlxj ´
b

Σlx
jj j “ k

µlxj j ‰ k
(5.37)
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where j, k “ 0, 1, . . . ,M ´ 1. Then, µlx, Sl`x and Sl´x are transformed to the linear

Mel-filterbank domain by taking exponent at each element as

µfbx “
“

µx0 , µ
x
1 , . . . , µ

x
M´1

‰T
(5.38)

Sfb`x “

»

—

—

—

—

—

—

—

–

sx`00 sx`01 . . . sx`0pM´1q

sx`10 sx`11 . . . sx`1pM´1q

...
...

. . .
...

sx`
pM´1q0 sx`

pM´1q1 . . . sx`
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.39)

Sfb´x “

»

—

—

—

—

—

—

—

–

sx´00 sx´01 . . . sx´0pM´1q

sx´10 sx´11 . . . sx´1pM´1q

...
...

. . .
...

sx´
pM´1q0 sx´

pM´1q1 . . . sx´
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.40)

where

µxm “ exp
´

µlxm

¯

(5.41)

sx`jk “ exp
´

slx`jk

¯

(5.42)

sx´jk “ exp
´

slx´jk

¯

(5.43)

A brief outline of this transform where M “ 1 is illustrated in Figure 5.3.

� �

exp

µlx
0 µx

0slx�
00 slx+

00 sx+
00sx�

00

Figure 5.3: An brief outline of unscented transform (M “ 1).

In the linear Mel-filterbank domain, sigma points from the noise model are also
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extracted and then sigma point matrices, Ŝfb`d and Ŝfb´d are formed as

Ŝfb`d “

»

—

—

—

—

—

—

—

–

ŝd`00 ŝd`01 . . . ŝd`0pM´1q

ŝd`10 ŝd`11 . . . ŝd`1pM´1q

...
...

. . .
...

ŝd`
pM´1q0 ŝd`

pM´1q1 . . . ŝd`
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.44)

Ŝfb´d “

»

—

—

—

—

—

—

—

–

ŝd´00 ŝd´01 . . . ŝd´0pM´1q

ŝd´10 ŝd´11 . . . ŝd´1pM´1q

...
...

. . .
...

ŝd´
pM´1q0 ŝd´

pM´1q1 . . . ŝd´
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.45)

where

ŝd`jk “

$

’

&

’

%

µ̂dj `
b

Σ̂d
jj j “ k

µ̂dj j ‰ k
(5.46)

ŝd´jk “

$

’

&

’

%

µ̂dj ´
b

Σ̂d
jj j “ k

µ̂dj j ‰ k
(5.47)

At this point the statistical distributions corresponding to Xfb
i pmq and D̂fb

i pmq in

the mismatch function of Equation 5.6 are obtained, therefore, a set of parameters for

the noisy speech distribution, i.e. the mean vector, µ̂fby , and sigma point matrices, Ŝfb`y

and Ŝfb´y , are derived as

µ̂fby “ µfbx ` µ̂fbd (5.48)

“
“

µ̂y0, µ̂
y
1, . . . , µ̂

y
M´1

‰T
(5.49)

Ŝfb`y “ Sfb`x ` Ŝfb`y (5.50)

“

»

—

—

—

—

—

—

—

–

ŝy`00 ŝy`01 . . . ŝy`0pM´1q

ŝy`10 ŝy`11 . . . ŝy`1pM´1q

...
...

. . .
...

ŝy`
pM´1q0 ŝy`

pM´1q1 . . . ŝy`
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.51)
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Ŝfb´y “ Sfb´x ` Ŝfb´y (5.52)

“

»

—

—

—

—

—

—

—

–

ŝy´00 ŝy´01 . . . ŝy´0pM´1q

ŝy´10 ŝy´11 . . . ŝy´1pM´1q

...
...

. . .
...

ŝy´
pM´1q0 ŝy´

pM´1q1 . . . ŝy´
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.53)

These are then transformed to the log Mel-filterbank domain as

µ̂ly “

”

µ̂ly0 , µ̂
ly
1 , . . . , µ̂

ly
M´1

ıT
(5.54)

Ŝl`y “

»

—

—

—

—

—

—

—

–

ŝly`00 ŝly`01 . . . ŝly`0pM´1q

ŝly`10 ŝly`11 . . . ŝly`1pM´1q

...
...

. . .
...

ŝly`
pM´1q0 ŝly`

pM´1q1 . . . ŝly`
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.55)

Ŝl´y “

»

—

—

—

—

—

—

—

–

ŝly´00 ŝly´01 . . . ŝly´0pM´1q

ŝly´10 ŝly´11 . . . ŝly´1pM´1q

...
...

. . .
...

ŝly´
pM´1q0 ŝly´

pM´1q1 . . . ŝly´
pM´1qpM´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.56)

where

µ̂lym “ log µ̂ym (5.57)

ŝly`jk “ log ŝy`jk (5.58)

ŝly´jk “ log ŝy´jk (5.59)

The difference between µ̂ly and the diagonal vector of Ŝl`y derives standard deviations

of the noisy speech distribution, σ̂l`y , as

σ̂l`y “

”

σ̂ly`0 , σ̂ly`1 , . . . , σ̂ly`M´1

ıT
(5.60)

where

σ̂ly`m “ ŝly`mm ´ µ̂
ly
m (5.61)

Similarly, the difference between µ̂ly and the diagonal vector of Ŝl´y also derives standard
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deviations of the noisy speech distribution, σ̂l´y , as

σ̂l´y “

”

σ̂ly´0 , σ̂ly´1 , . . . , σ̂ly´M´1

ıT
(5.62)

where

σ̂ly´m “ µ̂lym ´ ŝ
ly´
mm (5.63)

Covariance matrices of the noisy speech distribution, Σ̂l
y, are then derived, using the

average of σ̂l`y and σ̂l´y as

Σ̂l
y “ σ̂lypσ̂

l
yq
T (5.64)

where

σ̂ly “

”

σ̂ly0 , σ̂
ly
1 , . . . , σ̂

ly
M´1

ıT
(5.65)

σ̂lym “
1

2

´

σ̂ly`m ` σ̂ly´m

¯

(5.66)

Finally, DCTs are applied to µ̂ly and Σ̂l
y in order to obtain the noise-adapted HMMs

in the MFCC domain as

µ̂y “ Cµ̂ly (5.67)

Σ̂y “ CΣ̂l
yC

T (5.68)

Parallel model combination using either the distribution mapping or the unscented

transform can derive the noise-adapted HMMs as an online process by utilising clean

speech HMMs and an estimate of the noise power spectrum without a priori knowledge

as shown above. The only difference between the clean and noise-adapted HMMs is

the probability distribution of observation vectors within each state, therefore, the state

transition probabilities and the Gaussian mixture weights are unchanged. Thus, par-

allel model combination is expected to improve the decoding accuracy with less errors

in temporal state allocation as shown in Figure 5.1 unlike noise-matched HMMs. Si-

multaneously, it is also effective to improve the performance of the HMM-based speech

synthesis process.
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5.3 Experimental Results and Analysis

To evaluate the effectiveness of speech adaptation this section examines HMM-based

speech enhancement with noise-adapted HMMs. Experiments use speech from four speak-

ers in the GRID database, two males and two females, which is downsampled to 8 kHz.

From the 1000 utterances from each speaker, 800 are used for training and the remainder

are for testing. Tests are carried out in white noise and babble noise at SNRs from -5 dB

to 10 dB. In each experiment, the set of HMMs, Λ, is trained on an observation sequence,

O, that are extracted from clean speech. These are then adapted to model noisy speech

in the decoding process using parallel model combination. The noise-adapted HMMs are

exploited in the decoding process while the original clean speech HMMs are utilised in

the synthesis process.

5.3.1 Feature Vectors

The feature vector is formed as a combination of the MFCCs, the log-Mel-filterbank

aperiodicity (AP) coefficients and the fundamental frequency with the velocity and ac-

celeration derivatives as shown in Figure 4.20. Different configurations of the MFCC

coefficients are examined while the number of log-Mel-filterbank AP coefficients is fixed

at 40, and Table 5.1 shows the feature vector configurations examined in the following

experiments.

Config. Mel-FBK MFCCs AP Coefs Derivatives Frame Shift

MFCC16-8 16 8
40 ∆ & ∆2 5 ms & 1 ms

MFCC23-23 23 23

Table 5.1: Configurations of the acoustic features.

MFCC16-8 represents the case of using the truncation of high order coefficients,

which correspond to high frequency cosine bases, that has given the best decoding per-

formance in the previous experiments as shown in Figure 4.9. Alternatively, MFCC23-23

represents the case of no truncation applied, that has shown the best speech synthesis

performance in a noiseless condition in the previous experiments as shown in Table 4.11.

Discrete-time speech is first divided into 25 ms-length frames by applying a Hamming

window in which the frame shift is set equal to 5 ms and 1 ms. A 1024-point STFT is then
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applied to obtain the power spectrum and AP measure which are then input into a Mel-

filterbank. For MFCC calculation, the number of Mel-filterbank channels is set equal to

16 or 23 according to the test configurations in Table 5.1, and to 40 for the AP measure. A

logarithm is then applied to the filterbank energies followed by a discrete cosine transform

to produce 8-D or 23-D MFCC vectors, xi, and a 40-D aperiodicity vector, ai at the i-th

frame. A fundamental frequency contour, f0i, is estimated with PEFAC followed by a

logarithm to produce log f0i. These three components are assigned into a sequence of

the augmented feature vectors, O, along with their velocity derivatives, ∆xi, ∆ai, and

∆ log f0i, and acceleration derivatives, ∆2xi, ∆2ai, and ∆2 log f0i, as illustrated in Figure

4.20. The calculation of ∆xi and ∆2xi follows Equations (4.109) and (4.110), and ∆ai,

∆2ai, ∆ log f0i and ∆2 log f0i are also calculated in the same manner.

5.3.2 HMM training

CD-triphone HMMs with no language model applied are used in the experiments. In the

case of 5 ms-frame shift, the model configurations examined are listed in Table 5.2.

Configurations Frame Shift Acoustic Feature # States # HMMs LM

TRI N/8
5 ms

MFCC16-8
12 150-250 NO

TRI N/23 MFCC23-23

Table 5.2: Model configurations for the tests with feature vectors framed at 5 ms
interval.

TRI N/8, employs CD-triphone HMMs trained with a sequence of the feature vectors

configured as MFCC16-8 whereas the other, TRI N/23, uses CD-triphone HMMs which

are based on the feature vectors formed as MFCC23-23. Each model in the set of the

CD-triphone HMMs consists of 12 states and possible model sequences are constrained

only by triphone context and no language model is applied. The training process first

models around 700 CD-triphone HMMs for each speaker. Tree-based clustering is then

applied state-by-state to reduce the number of models to the range between 150 and 250

for each speaker with the MDL criterion [94].

In the case of the tests with the feature vectors framed at 1 ms interval, HMMs of

each configuration comprise 24 states as shown in Table 5.3.
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Configurations Frame Shift Acoustic Feature # States # HMMs LM

TRI N/8
1 ms

MFCC16-8
24 150-250 NO

TRI N/23 MFCC23-23

Table 5.3: Model configurations for the tests with feature vectors framed at 1 ms
interval.

5.3.3 HMM Adaptation

At the begining of the decoding stage, the trained HMMs, Λ, are modified to model

noisy test speech using parallel model combination. The noise power spectrum in the

noisy input speech at the i-th frame, |D̂ipfq|
2, is first estimated from the a priori SNR

derived by the decision-directed method with the bias reducing algorithm in Equation

(2.41), and it is then transformed to the linear Mel-filterbank coefficient vector, D̂fb
i “

”

D̂fb
i p0q, D̂

fb
i p1q, . . . , D̂

fb
i pM ´ 1q

ıT
, where M is the number of the filterbank channels,

in order to model the noise as a single state Gaussian distribution.

To apply parallel model combination, distribution parameters, i.e. mean vectors and

covariance matrices, of only static MFCC features are extracted from the clean HMMs

and then they are transformed to the linear Mel-filterbank domain, in which parallel

model combination is applied by Equations (5.48) - (5.53), using the unscented transform.

A preliminary experiment showed that the results using the log-normal transform are

similar to the case of using the unscented transform. Therefore, this experiment uses

only the unscented transform approach rather than doubling the results by also showing

those for the log-normal transform. After the parameter sets of the noisy speech models

are obtained by parallel model combination in the linear Mel-filterbank domain, they

are then transformed back to the MFCC domain in order to be exploited as a set of the

noise-adapted HMMs, Λ̂ at the decoding stage.

5.3.4 HMM Decoding

The HMM decoding process uses Λ̂ and a sequence of the static MFCC vectors extracted

from O in order to obtain the most likely model sequence including their state sequences

using the Viterbi algorithm discussed in Section 4.2.2.
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5.3.5 Decoding Results

Figure 5.4 shows the results of HMM decoding with the noise-adapted HMMs, Λ̂, com-

pared with the cases of using clean HMMs, Λ, and noise-matched HMMs Λy. Subplots
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Figure 5.4: The results in decoding accuracy. a) and b) show the results in white
noise and babble noise with the feature vectors framed at 5 ms interval. c) and d)
show the results in white noise and babble noise with the feature vectors framed at
1 ms interval.

(a) and (b) show decoding accuracy with the feature vectors framed at 5 ms interval in

white noise and babble noise while (c) and (d) show the results with the feature vectors

framed at 1 ms interval. Noise-matched HMMs with the truncation (TRI N/8 MATCH)

still show the best decoding accuracy, but noise-adapted HMMs (TRI N/8 ADAPT and
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TRI N/23 ADAPT) also show good noise robustness for practical use. Interestingly,

noise-adapted HMMs with no truncation (TRI N/23 ADAPT) have better noise robust-

ness than noise-adapted HMMs with the truncation (TRI N/8 ADAPT) in contrast to

the case of noise-matched HMMs in which TRI N/8 MATCH shows always higher decod-

ing accuracy than TRI N/23 MATCH. Synthesised speech by using clean HMMs with

no MFCC truncation applied has shown higher PESQ scores than the case of using clean

HMMs with the MFCC truncation in the preceding tests as shown in Table 4.11, but

low noise robustness of TRI N/23 MATCH in the decoding process has brought a cru-

cial disadvantage in HMM-based speech enhancement as shown in Figure 4.28. However,

TRI N/23 ADAPT reduces that disadvantage and has the prospect of giving better noise

robustness than TRI N/23 MATCH to enhanced speech.

TRI N/23 ADAPT does not bring deterioration in decoding accuracy even when

the frame shift of the feature vectors change to 1 ms from 5 ms as opposed to the case

of noise-matched HMMs. This also brings potential to achieve higher speech quality

in enhanced speech as compared with the case of using feature vectors framed at 5 ms

intervals.

5.3.6 HMM Synthesis and Speech Reconstruction

After obtaining model and state sequence of test speech by decoding, the clean HMMs can

now synthesise the speech features of the clean speech according to this model and state

sequence. The synthesised speech features, i.e. MFCC vectors, AP vectors and log f0,

are then transformed to the spectral envelopes and the aperiodicity measure in the time-

frequency domain and the fundamental frequency contour in order to reconstruct the

enhanced speech with STRAIGHT following the same procedure as Section 4.4.2.

5.3.6.1 Speech Quality

Figure 5.5 shows the objective speech quality of resultant enhanced speech in terms of

PESQ comparing with the enhanced speech using noise-matched HMMs in the decoding

process, the log MMSE method and no noise compensation (NNC). Subplots (a) and

(b) show PESQ scores of each HMM configuration with the feature vectors framed at

5 ms intervals in white noise and babble noise while (c) and (d) show the results with
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Figure 5.5: Objective speech quality of the enhanced speech in terms of PESQ. a)
and b) show the results in white noise and babble noise with the feature vectors
framed at 5 ms interval while c) and d) show the results using the feature vectors
framed at 1 ms interval.
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the feature vectors framed at 1 ms intervals. At an SNR of 10 dB with either noise

type, PESQ scores of noise-adapted HMMs are always higher than noise matched HMMs

although their decoding accuracy at that SNR are similarly high. This may be attributed

to the fact that the model and state sequences derived by the noise-adapted HMMs, Λ̂,

match the state allocation of the clean HMMs, Λ, which are used in the speech synthesis

process, whereas the sequences derived by the noise-matched HMMs, Λy, bring time

warping in reconstructed speech because of inconsistencies in state allocation between

Λy and Λ. Consequently, using Λ̂ raises the upper limit of PESQ scores, specifically, the

PESQ scores of enhanced speech with TRI N/23 ADAPT are competitive with the log

MMSE method even at high SNRs of around 5 dB, especially in the case of using feature

vectors framed at 1 ms interval.

Alternatively, TRI N/23 ADAPT is not as robust as noise-matched HMMs with the

MFCC truncation using 5 ms frame shifted feature vectors (TRI N/8 MATCH) to noise.

Overall, TRI N/23 ADAPT, which represents a practical system with no a priori

knowledge about the noise, shows significant improvement in PESQ at SNRs of 0 dB and

below in both white noise and babble noise.

5.3.6.2 Speech Intelligibility

Figure 5.6 shows the objective speech intelligibility of resultant enhanced speech in

terms of NCM compared with the enhanced speech using noise-matched HMMs, Λy,

in the decoding process and the log MMSE method. Subplots (a) and (b) show NCM

score of each HMM configuration with the feature vectors framed at 5 ms intervals in

white noise and babble noise while (c) and (d) show the results with the feature vectors

framed at 1 ms intervals. Noise-adapted HMMs, Λ̂, with no MFCC truncation applied

(TRI N/23 ADAPT) always show the best score in the HMM configurations over the

test conditions, and Λ̂ with the MFCC truncation (TRI N/8 ADAPT) also show better

NCM scores than Λy in spite of lower decoding accuracy in the decoding process. This

is again attributed to the match of state allocation between Λ̂ and Λ.

NCM scores for the noise adapted HMM-based methods, i.e. TRI N/8 ADAPT and

TRI N/23 ADAPT, are remarkably flat across SNRs between -5 dB and 10 dB and shows

significant improvement at low SNRs between -5 dB and 0 dB.
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Figure 5.6: Objective speech intelligibility of the enhanced speech in terms of NCM.
a) and b) show the results in white noise and babble noise with the feature vectors
framed at 5 ms interval while c) and d) show the results using the feature vectors
framed at 1 ms interval.
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5.4 Conclusion of the Chapter

HMM-based speech enhancement using noise-matched HMMs, which is evaluated in the

previous chapter, needs a priori noise information in the training process and creates

inconsistency in state allocation between clean HMMs and noise-matched HMMs, and

thus it cannot be used for practical applications of HMM-based speech enhancement. This

chapter first discussed the theory of HMM adaptation to model noisy speech using parallel

model combination to address the problems above. In parallel model combination, the

mismatch function between clean speech and noisy speech is determined in the linear Mel-

filterbank domain while HMMs had been modelled in the MFCC domain. Therefore, the

non-linearity between these domains needs to be resolved and the distribution mapping

between Gaussian and log-normal, and the unscented transform were discussed to tackle

this problem.

Experiments then evaluated the performance of HMM-based speech enhancement

with noise-adapted HMMs compared to the methods using noise-matched HMMs and log

MMSE, which represents the conventional filtering methods, in terms of PESQ and NCM

scores. The experimental analysis showed that HMM adaptation to model noisy speech

with parallel model combination seems effective in obtaining state sequences which match

the clean HMMs because the upper limits of PESQ and NCM scores were improved by

that. In terms of noise robustness, however, the effectiveness of the HMM adaptation was

limited to the configuration with no MFCC truncation because of difficulty in correctly

estimating the noise.

In summary, applying the HMM adaptation to noisy speech using CD-triphone

HMMs with no MFCC truncation (TRI N/23 ADAPT) improved PESQ and NCM at

high SNRs, e.g. 5 dB and above. Although the PESQ and NCM scores at SNRs below

0 dB of this configuration were lower than the configuration using noise-matched HMMs

with MFCC truncation (TRI N/8 MATCH), it still shows significant improvement as

compared with log MMSE at those SNRs and the benefit of the use of HMM adaptation

which eliminates the necessity of a priori knowledge about noise is advantageous.
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Chapter 6

Improvement to Hidden Markov

Model-Based Speech

Enhancement

HMM-based speech enhancement reconstructs noise-free speech from the input noisy

speech. The output speech, however, still has problems in terms of speech quality and

intelligibility, which are brought by the characteristics of the techniques in HMM-based

speech enhancement. This chapter first discusses problems attributed to the HMM de-

coding process and then the problems in the HMM synthesis process. A series of counter-

measures are then proposed and experiments in each section examine these against the

problems and effectiveness of those methods are evaluated prior to the final evaluation

of the proposed method in the next chapter.

6.1 Introduction

The experimental results in the previous chapter, i.e. Figure 5.5 and 5.6, show that

the proposed HMM-based speech enhancement under the real-world configurations can

achieve better performance at low SNRs such as 0 dB and below than the log MMSE

method representing the conventional filtering approaches. However, the PESQ and

NCM scores gradually decrease at lower SNRs, though ideally they should be kept at

the same level as at higher SNRs. This is caused by the decoding errors at the HMM
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decoding stage, and thus, a method to detect erroneous frames from the result of HMM

decoding needs to be applied so that the the speech segments which consist of erroneous

frames in the output speech can be identified and then those segments replaced with the

speech enhanced with a filtering method because the filtering method will produce more

representative speech than an incorrectly decoded speech.

Another problem in the proposed method is also shown in the experimental results

because the PESQ and NCM scores of the output speech at high SNRs are lower than

the log MMSE method. This is attributed to the upper limit of PESQ in HMM-based

speech synthesis shown in Table 4.15. Therefore, methods to improve the upper limit of

HMM-based speech synthesis also need to be discussed to raise the performance of the

proposed method over the noise conditions.

The remainder of this chapter first discusses a novel confidence measuring method to

identify erroneous frames resulting from decoding errors and then evaluates the enhanced

speech in which the speech segments comprising the low-confidence frames are replaced

with the speech enhanced with log MMSE. Secondly, methods to refine HMM-synthesised

speech are then discussed and evaluated prior to the conclusion of the chapter.

6.2 Confidence Measuring and Compensation for Decoding

Errors

The proposed method of mitigating HMM decoding errors is a two stage process of first

identifying errors and secondly applying compensation.

In the field of speech recognition, confidence measures have been utilised to evaluate

the recognition results and it is known that accurate confidence measures bring practi-

cal application benefits to detect out-of-vocabulary words, non-speech noises, potential

recognition mistakes and so on. [110] categorises various type of confidence measures

into a combination of predictor features, e.g. [111], posterior probability and utterance

verification. However, it reports that the overall performance of them remains fairly

poor and it limits their applications. Therefore, a new method for confidence measuring

that exploits a technique of HMM-based speech synthesis is first explored in this section

and then a method to compensate for the erroneous frames detected by the confidence
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measure is discussed in order to tackle the problem attributed to HMM decoding errors.

6.2.1 Overview of the Confidence Measure Estimation

Figure 6.1 illustrates the overview of the method to detect unreliable frames using a con-

fidence measure. A sequence of MFCC vectors of the noisy speech, Cy, is first extracted

Noisy Speech 

MFCC HMM Decoding 

HMM Synthesis 

Noise Adapted 
HMMs 

y(n)

Correlation 

Confidence 

s(i)

Cy

Cy

�̂y

�̂y
Ĉy

Ryŷ(i)

Pj

⇥

Figure 6.1: The overview of the proposed method for confidence measuring.

as

Cy “
“

pc0
yq
T , pc1

yq
T , . . . , pcI´1

y qT
‰T

(6.1)

ciy “ rcip0q, cip1q, . . . , cipM ´ 1qsT (6.2)

where cipmq denotes the m-th coefficient in the static MFCC vector of the noisy speech at

frame i (i.e., ciy). Cy is then decoded into a state sequence, spiq, using the noise adapted

HMMs, λ̂y. Although a set of clean HMMs, λx, is used for the speech synthesis process in

the proposed HMM-based speech enhancement, λ̂y is then used to synthesise an MFCC

vector sequence of HMM-based noisy speech, Ĉy, from spiq, and it is represented as.

Ĉy “
“

pĉ0
yq
T , pĉ1

yq
T , . . . , pĉI´1

y qT
‰T

(6.3)

ĉiy “ rĉip0q, ĉip1q, . . . , ĉipM ´ 1qsT (6.4)

where ĉipmq denotes the m-th coefficient in the static MFCC vector of the HMM-based

noisy speech at frame i (i.e., ĉiy).

The proposed confidence measure is based on a hypothesis that the decoding result
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at frame, i, is reliable if ĉiy is enough close to ciy while the frame is unreliable if ĉiy is far

from ciy. Therefore, frame-by-frame confidence is determined by correlation coefficient,

Ryŷpiq, as follows.

Ryŷpiq “
E rpcipmq ´ µiq pĉipmq ´ µ̂iqs

c

E
”

pcipmq ´ µiq
2
ı

E
”

pĉipmq ´ µ̂iq
2
ı

(6.5)

where µi and µ̂i are the mean values of ciy and ĉiy respectively.

Ryŷpiq determined by Equation (6.5) tends to be close to 1 for all the frames because

the dynamic range of MFCC is constrained by log operation. Therefore, correlation

coefficient, R1yŷpiq, determined as follows is more effective to measure the frame-by-frame

confidence.

biy “ C exp
`

C´1ciy
˘

(6.6)

“ rbip0q, bip1q, . . . , bipM ´ 1qsT (6.7)

b̂iy “ C exp
`

C´1ĉiy
˘

(6.8)

“

”

b̂ip0q, b̂ip1q, . . . , b̂ipM ´ 1q
ıT

(6.9)

R1yŷpiq “

E
”

`

bipmq ´ µ
b
i

˘

´

b̂ipmq ´ µ̂
b
i

¯ı

d

E
”

`

bipmq ´ µbi
˘2
ı

E
„

´

b̂ipmq ´ µ̂bi

¯2


(6.10)

where µbi and µ̂bi are the mean values of biy and b̂iy, and C and C´1 denote the DCT and

IDCT matrices. Now confidence of each frame is derived from R1yŷpiq.

6.2.2 Compensation of the Unreliable Samples

After the frame-by-frame confidence measure of the decoding result is obtained, the

phoneme-by-phoneme confidence measure, Pj , is then derived by taking the mean over

the frames within the j-th phoneme in the utterance using the phoneme boundary from

the HMM decoding as

Pj “

$

’

&

’

%

1 1
ij`1´ij

řij`1

k“ij
R1yŷpkq ě β

0 otherwise
(6.11)



6.2 Confidence Measuring and Compensation for Decoding Errors 177

where ij represents the start frame of the j-th phoneme and β is the threshold between

reliable (i.e., high confidence) and unreliable (i.e., low-confidence).

The time domain samples corresponding to the phonemes marked as unreliable pos-

sibly constitute wrong phonemes in the enhanced speech and thus, these samples are

replaced with the corresponding samples in the speech enhanced with a filtering method

such as log MMSE as illustrated in Figure 6.2. This operation may be effective to avoid

Noisy Speech 
y(n)

HMM-Based 
Enhancement 

Log MMSE 

Enhanced Speech 

Pj
x̂h(n)

x̂l(n)

x̂(n)

Figure 6.2: Compensation of the samples in the output speech corresponding to
unreliable phonemes with the corresponding samples in log MMSE.

outputting wrong speech, but the replaced samples include residual and musical noise

because of the characteristics of speech enhancement using filtering approach and the

enhanced speech cannot be noise-free any more at this moment. This means trade-off

between decoding errors and increased background noise, i.e. trade-off between speech

intelligibility and quality. Therefore, the threshold, β, needs to be determined carefully.

After the reliable/unreliable classification is applied to each phoneme, the corre-

sponding frames can be categorised into four conditions depending on an evaluation of

the decision as shown in Table 6.1. If the threshold of the decision is too high, the ratio

Low Confidence High Confidence

Frames during Correctly Decoded Phoneme False Positive True Negative
Frames during Wrongly Decoded Phoneme True Positive False Negative

Table 6.1: Evaluation of the decision.

of “False Positive” increases as more phonemes become classed as erroneous. This results

in the enhanced speech being contaminated with unnecessary residual and musical noise

at low SNRs. However, if the threshold is too low, the ratio of “False Negative” is as

high as the original decoding result and the output includes wrong speech at low SNRs.
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6.2.3 Experimental Results

The confidence measure and the replacement of low confidence segments discussed above

are examined by applying them to the results of the experiments in Section 5.3. Experi-

ments use speech from four speakers in the GRID database, two males and two females,

which is downsampled to 8 kHz. From the 1000 utterances from each speaker, 800 are

used for training and the remainder are for testing. Tests are carried out in white noise

and babble noise at SNRs from -5 dB to 10 dB. In each experiment, the feature vectors

of speech, O, are configured as MFCC23-23 in Table 5.1 with a 25 ms Hamming window

whose frame shift is set to 5 ms and extracted from the training set of clean speech. A

set of 12 state CD-triphone HMMs, TRI N/23, determined in Table 5.2 is trained on

O. These are then adapted to model noisy speech in the decoding process using parallel

model combination.

In the decoding process, only the static MFCC components in the noise adapted

HMMs are used to obtain state sequence, spiq, while the static and dynamic MFCC

components in the noise adapted HMMs are used to synthesise noisy MFCC vectors

which are compared with the MFCC vectors of original noisy speech for the confidence

measure. The dynamic components in the noise adapted HMMs are unchanged from the

clean HMMs.

6.2.3.1 Accuracy of Confidence Measure and Classification

Phoneme-by-phoneme confidence measure, Pj , is derived from the frame-by-frame confi-

dence measure, R1yŷpiq, calculated by Equation (6.10) and then the following performance

measures are calculated at different thresholds to evaluate the effectiveness of the confi-

dence measure.

Correct Frame Rate “
pNumber of True Positiveq ` pNumber of True Negativeq

Number of Frames

False Positive Rate “
Number of False Positive

Number of Frames

False Negative Rate “
Number of False Negative

Number of Frames
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Figure 6.3 shows the Correct Frame Rate (CFR) at different SNRs and threshold values.

Subplot (a) shows the test results in white noise in which the CFR at SNR of -5 dB
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Figure 6.3: Correct frame rate at different thresholds. a) shows the result in white
noise while b) is in babble noise.

is increased at the threshold between 0.7 and 0.92 while the CFR at higher SNRs is

not improved. Most of erroneous frames at high SNRs such as 10 dB and 5 dB are on

the boundaries between the phonemes, which are slightly shifted from the reference time

label, and the majority of the frames within the phonemes are correct as Figure 5.4 shows

the decoding accuracy at these SNRs amounts more than 90 %. Therefore, these partial

erroneous frames in a phoneme are not identified by Pj because of the averaging operation

over the phoneme in Equation (6.11), and consequently, the CFR is not improved from

the original decoding result (i.e., threshold, β “ 0). However, when SNR is equal to -5

dB, Figure 5.4 shows that 40 % of phonemes are substitution, insertion or deletion errors

in which the majority of frames are incorrect and thus, they are detectable by Pj . When

the threshold is set more than 0.8 at SNRs of 0 dB and above, the CFR falls exponentially

because of a significant increase of the False Positive Rate (FPR). Similarly, the CFR at

-5 dB substantially falls at the threshold more than 0.92.

Subplot (b) reports that the CFR at SNR of -5 dB is steeply raised at thresholds

between 0.6 and 0.95, and the increase amounts 14 pts. at the peak brought by the
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threshold set equal to 0.95. When SNR is equal to 0 dB, the CFR gradually increases

while the threshold is less than and equal to 0.9 and then it steeply goes down. When

SNR is 5 dB and 10 dB, the CFR keeps flat during the threshold being less than 0.7

and then exponentially falls. These results show that the proposed confidence measure

is effective at detecting the decoding errors specifically at SNRs less than 0 dB in babble

noise with very little deterioration in other noise conditions by setting the threshold

around 0.8. This seems to be attributed to the fact that the decoding errors in the

noise conditions of SNR less than 0 dB in babble noise are dominated by deletion errors

from the middle to the end of utterances, which are more likely to be discriminated by

comparing biy with b̂iy.

Figure 6.4 shows the FPR and the False Negative Rate (FNR) at different threshold

values and SNRs in white noise. Subplots (a), (b), (c) and (d) show the results at SNRs of

-5 dB, 0 dB, 5 dB and 10 dB respectively and both of the FPR and FNR are kept almost

flat during the threshold being less than and equal to 0.8. Therefore, the classification

of the frames into reliable and unreliable with the threshold equal to 0.8 seems not to

affect the decoding result.

Similarly, Figure 6.5 illustrates the FPR and FNR at different threshold values and

SNRs in babble noise. Subplots (a), (b), (c) and (d) show the results at SNRs of -5 dB,

0 dB, 5 dB and 10 dB respectively. In the case of SNR of -5 dB, the FNR decreases

by 7 pts. at the threshold set equal 0.8 while the FPR increases by 1 pt. When SNR

is 0 dB, both the decrease of the FNR and the increase of the FPR are equal to 2 pts.

Alternatively, when SNR is 5 dB and 10 dB, the FNR does not change while the FPR

increases by 2 pts. Therefore, the accuracy of the frame classification into reliable and

unreliable with the threshold value of 0.8 is poor at SNRs equal to 5 dB and above. In

those noise conditions, however, both PESQ and NCM scores of the enhanced speech

processed by the filtering methods are higher than the proposed method. Therefore, the

sample replacement according to this frame classification seems not to affect the output

even at high SNRs.
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Figure 6.4: False positive rate and false negative rate with different threshold values
at SNRs of a) -5 dB, b) 0 dB, c) 5 dB and d) 10 dB in white noise.
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Figure 6.5: False positive rate and false negative rate with different threshold values
at SNRs of a) -5 dB, b) 0 dB, c) 5 dB and d) 10 dB in babble noise.
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6.2.3.2 Effectiveness of Replacement of the Samples corresponding to unre-

liable phonemes

After the phoneme classification with the threshold set equal to 0.8, the time-domain

speech signal reconstructed with the proposed HMM-based speech enhancement is com-

bined with the time-domain speech enhanced with the log MMSE method according to

the result of the phoneme classification, i.e. the time-domain samples in the reconstructed

speech corresponding to unreliable phonemes are replaced with the corresponding sam-

ples in enhanced speech processed with the log MMSE method.

Figure 6.6 compares the performance of combined speech with HMM-based speech

and log MMSE in terms of PESQ and NCM. Subplot (a) compares PESQ scores in white

noise. The difference of the performance between HMM-based speech and combined

speech is very little because replaced phonemes are not many as it was expected from the

results in which both of the CFR, FPR and FNR changed little in Figures 6.3 and 6.4.

Subplot (b) compares PESQ scores in babble noise. PESQ score of combined speech at -5

dB is improved by 0.16. This is attributed to the increase of the CFR shown in Figure 6.3

and the decrease of the FNR shown in Figure 6.5. Therefore, the PESQ score seems more

sensitive against decoding errors than residual and musical noise at this noise level. The

PESQ scores of combined speech at 0 dB and above are not different from HMM-based

speech though Figure 6.5 shows the FPR of approximately 2.5 %. Therefore, it seems

sample replacement with this FPR does not give significant influence to PESQ score.

Alternatively, considering objective intelligibility, NCM scores of combined speech

shown in subplots (c) and (d) are lower than HMM-based speech, and those differences

become larger at lower SNRs. Specifically, at -5 dB in babble noise, NCM score of

combined speech falls by 0.2 from HMM-based speech though the CFR increases by

5 pts. according to Figure 6.3. These results bring a notion that NCM score is more

sensitive against background noise than decoding errors.

To illustrate decoding errors and compensation, Figure 6.7 shows narrowband spec-

trograms of female speech of ”Bin Blue At L Three Again“. Subplot (a) shows natural

clean speech, Subplot (b) represents noisy speech contaminated with white noise at an

SNR of -5 dB and Subplots (c), (d) and (e) show enhanced speech with HMM-based



184 Chapter 6

−5 0 5 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

SNR [dB]

P
E
S
Q

(a) White Noise

 

 

HMM Only
Combined
LOG MMSE

−5 0 5 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

SNR [dB]

P
E
S
Q

(b) Babble Noise

 

 

HMM Only
Combined
LOG MMSE

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

N
C
M

(c) White Noise

 

 

HMM Only
Combined
LOG MMSE

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

N
C
M

(d) Babble Noise

 

 

HMM Only
Combined
LOG MMSE

Figure 6.6: Performance of combined speech at different SNRs comparing with
HMM-based speech and log MMSE. a) and b) compare PESQ scores at different
SNRs in white noise and babble noise while c) and d) compare NCM scores at
different SNRs in babble noise.
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enhancement, log MMSE and combined speech respectively. This example shows that

the combined speech contains residual noise of log MMSE though the HMM-based speech

does not contain decoding errors. This is brought by false positive classification of the

confidence measure.

Figure 6.8 shows narrowband spectrograms of the same speech as Figure 6.7. How-

ever, Subplot (b) shows noisy speech contaminated with babble noise at an SNR of -5

dB and Subplots (c), (d) and (e) show enhanced speech with HMM-based enhancement,

log MMSE and combined speech respectively. In this example, the HMM-based speech

contains a deletion error and the combined speech replaces the error segment with log

MMSE by the true positive classification of the confidence measure. Unnecessary resid-

ual noise is, however, added at the tail of the combined speech due to the false positive

classification.

In summary, the experiments in this section showed that combining HMM-based

speech with log MMSE according to the proposed confidence measure is effective to raise

PESQ scores in particular noise conditions. This process, however, decreases NCM scores

by intaking residual and musical noise in speech processed with log MMSE.

6.3 Refinement of HMM-Based Speech Synthesis with

Global Variance

Quality of HMM-based speech with no decoding errors is the baseline of the performance

of the proposed HMM-based speech enhancement. Therefore, it is important to refine the

process of HMM-based speech synthesis. Although statistical parametric speech synthe-

sis, including HMM-based speech synthesis, has demonstrated various advantages such

as flexibility and small footprint [9,50], the synthesised speech quality is still not as good

as the quality of natural speech and unit selection TTS approaches [112]. The deterio-

ration in quality of HMM-based speech are largely attributed to the process of vocoder,

acoustic modelling and over-smoothing [9], and acoustic modelling has thoroughly been

studied and evaluated in Chapter 4, including the whole-word/sub-word models, the

number of states, the number of models clustered by MDL criterion , different configura-

tions of the speech features with dynamic derivatives and framing interval of the speech
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False Positive 

Figure 6.7: Narrowband spectrograms of female speech of ”Bin Blue At L Three
Again“. Subplots (a), (b), (c), (d) and (e) show natural clean speech, noisy speech
contaminated with white noise at SNR of -5 dB, enhanced speech with HMM-based
enhancement, log MMSE and combined speech respectively.
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False Positive 

Deletion Error 

True Positive 

Figure 6.8: Narrowband spectrograms of female speech of ”Bin Blue At L Three
Again“. Subplots (a), (b), (c), (d) and (e) show natural clean speech, noisy speech
contaminated with babble noise at SNR of -5 dB, enhanced speech with HMM-based
enhancement, log MMSE and combined speech respectively.
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features. Therefore, this section discusses the problem associated with the vocoder and

over-smoothing in order to improve the baseline performance of HMM-based speech.

6.3.1 Deterioration by STRAIGHT

The proposed method of HMM-based speech enhancement adopts STRAIGHT as a

vocoder in its reconstruction process and it is true that the performance of STRAIGHT

possibly limits the quality of enhanced speech. Therefore, the following experiment is con-

ducted to separate the limitation brought by STRAIGHT from the deterioration caused

by HMM-based speech synthesis.

The experiment uses clean natural speech from four speakers in the GRID database,

two males and two females, which is downsampled to 8 kHz. From the 1000 utterances

from each speaker, 800 are used for training and the remainder are for testing. Firstly,

the spectral envelope and aperiodicity of the test set in the time-frequency domain are ex-

tracted with the setting of 25 ms Hamming window, 5 ms frame shift and 1024-point FFT

while the fundamental frequency contour of the test set is obtained with PEFAC. This

parameter set of natural speech is then retransformed to the time-domain by STRAIGHT

to evaluate the influence that STRAIGHT gives.

Conversely, in HMM-based speech synthesis, STRAIGHT reconstructs speech from

the spectral envelope and aperiodicity synthesised from the trained HMMs, error-free

state sequences of the test set and the fundamental contour obtained by PEFAC. The

configuration of acoustic feature vectors and HMMs is same as the experiments in Section

6.2.3, and error-free state sequences are obtained by forced alignment using reference

transcription labels of the test set.

Table 6.2 compares PESQ and NCM scores between speech reconstructed by

STRAIGHT from the natural speech parameter set and the HMM-based parameter set.

The reconstructed speech from the natural speech parameter set scored 3.37 in PESQ

and 0.96 in NCM while it would obtain 4.5 for PESQ and 1.0 for NCM if the recon-

struction process of the STRAIGHT vocoder had no deterioration. Therefore, it is true

that the process of STRAIGHT affects PESQ and NCM scores in HMM-based speech

synthesis. However, the scores of speech reconstructed from the HMM-based parameter

set are much lower than the natural speech parameter set, and this means that the con-
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straint on the performance of HMM-based speech synthesis is dominated by the process

to synthesise the HMM-based speech parameters rather than the reconstruction process

of the STRAIGHT vocoder. Therefore, the remainder of this section focusses on mitiga-

Natural speech features HMM-based speech features

PESQ 3.37 2.45
NCM 0.96 0.70

Table 6.2: PESQ and NCM scores of speech reconstructed by STRAIGHT from
natural speech parameters and HMM-based speech parameters

tion of over-smoothing, which is the other main cause of the deterioration in quality of

HMM-based speech mentioned above, to refine the HMM-based speech.

6.3.2 Over-smoothing

The parameters of HMM-based speech are synthesised by maximising their output prob-

abilities according to the statistically trained models with the constraints between static

and dynamic features, i.e finding the parameters satisfying Equations (4.84), (4.86) and

(4.90). The statistical averaging operation in this process often produces over-smoothing

of the resulting parameters by which detailed characteristics of speech are missed. Con-

sequently, the synthesised speech sounds muffled as compared with natural speech [9].

The speech synthesis algorithm considering global variance (GV) [113] has been

reported as one of the most successful approaches to emphasise spectral formants from

HMM-based parameters [9, 50,112,114]. Therefore, this method is explored as follows.

6.3.2.1 Global Variance

When a sequence of static features, C, in a sequence of augmented observation features,

O, is determined as

C “
“

cT0 , c
T
1 , . . . , c

T
N´1

‰T
(6.12)

cn “ rcnp0q, cnp1q, . . . , cnpM ´ 1qsT (6.13)



190 Chapter 6

where cnpmq represents the m-th coefficient of the static feature in the n-th frame, a GV

vector of the static feature, vpCq, is derived as

vpCq “ rvp0q, vp1q, . . . , vpM ´ 1qsT (6.14)

vpmq “
1

N ´ 1

N´1
ÿ

n“0

pcnpmq ´ µcpmqq
2 (6.15)

µcpmq “
1

N

N´1
ÿ

n“0

cnpmq (6.16)

(6.17)

GVs are calculated across all the training utterances and they are then modelled as a

Gaussian distribution as

P pvpCq | λgvq “ N pvpCq;µgv,Σgvq (6.18)

“
1

a

p2πqM |Σgv|
ep´

1
2
pvpCq´µgvq

T Σ´1
gv pvpCq´µgvqq (6.19)

where λgv represents the parameter set of the GV model which consists of the mean

vector, µgv, and the diagonal covariance matrix, Σgv. HMMs, λ, and GV model, λgv,

are independently trained, and the HMM-based synthesis process generates the static

feature, Ĉ, to satisfy the following equation instead of Equation (4.90).

Ĉ “ arg max
C

tN pWC;µq̂,Σq̂q ¨N pvpCq;µgv,Σgvq
α
u (6.20)

where µq̂ and Σq̂ are the mean vector and the diagonal covariance matrix of the Gaussian

distribution at state, q̂, of λ, matrix, W, contains the regression coefficients to transform

the static vectors into the augmented vectors and α is the GV weight, which is usually set

equal to the ratio of the vector dimensions between O and vpCq, to control the balance

between the HMM and GV probabilities. The GV probability in Equation (6.20) plays

a role to retain the dynamic range of Ĉ close to the dynamic range of the training data

set and thus, works as a penalty to prevent over-smoothing [9].
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6.3.2.2 Experimental Results

HMM-based speech synthesis considering the GV probability, i.e Equation (6.20), is

examined as follows. Experiments uses speech from four speakers in the GRID database,

two males and two females, which is downsampled to 8 kHz. From the 1000 utterances

from each speaker, 800 are used for training and the remainder are for testing. In the

experiment, the feature vectors of speech, O, are configured as MFCC23-23 in Table 5.1

with a 25 ms Hamming window whose frame shift is set to 5 ms and extracted from the

training set of clean speech. A set of 12 state CD-triphone HMMs, TRI N/23, determined

in Table 5.2 is trained on O to form λ, and global variance model, λgv, is also formed by

calculating µgv and Σgv from variance vector, vpCq, of all the utterances in the training

set, which is determined by Equation (6.14).

State sequences of clean speech of the test set, which have no decoding errors, are

then obtained by using forced alignment to synthesise the clean speech parameters which

satisfy Equation (6.20).

Table 6.3 compares PESQ and NCM between HMM-based speech with and without

the GV model. This result shows HMM-based speech using the GV model increases PESQ

HMM HMM+GV

PESQ 2.45 2.50
NCM 0.70 0.70

Table 6.3: PESQ and NCM scores of HMM-based speech with and without the GV
model.

by 0.05, but the score of NCM is not improved by the GV model. The effectiveness of

the GV model in this test may possibly be limited by the characteristics of the test set

in which the length of each utterance is less than three seconds. In the case of using GV

model, the algorithm tries to generate the parameters which always have a particular

fixed variance. However, short time utterances such as GRID database generally have

less variance in their speech features than longer utterances because they contain less

variety of phonemes [115]. Consequently, the algorithm gives unmatched variance to

the synthesised speech features and it causes the process not to work effectively. Figure

6.9 shows the spectral surface of female speech, ”Bin Blue At L Three Again“, in the
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time-frequency domain. Subplots (a), (b) and (c) show natural speech, HMM-based

Figure 6.9: Spectral surface of female speech, ”Bin Blue At L Three Again“, in the
time-frequency domain. a), b) and c) show natural speech, HMM-based speech and
HMM-based speech with the GV model respectively.

speech and HMM-based speech with the GV model respectively. This shows the spectral

envelopes of HMM-based speech are compensated to be closer to the trajectory of the

natural speech by the GV model though over-smoothing still exists.

HMM-based speech with the GV model is then examined in white noise and babble

noise at SNRs between -5 dB and 10 dB. State and model sequences are obtained by HMM

decoding with the noise-adapted HMMs. Clean speech features are then synthesised by

using the clean HMMs and the GV model. PESQ and NCM scores are compared with

HMM-based speech without the GV model and with log MMSE in Figure 6.10. Subplots

(a) and (b) show PESQ scores in white noise and babble noise at different SNRs whereas

subplots (c) and (d) illustrate the performance in terms of NCM in white noise and babble

noise. The effect of using the GV model on PESQ is more remarkable at higher SNRs



6.3 Refinement of HMM-Based Speech Synthesis with Global Variance 193

−5 0 5 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

SNR [dB]

P
E
S
Q

(a) White Noise

 

 

HMM
HMM+GV
Log MMSE

−5 0 5 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

SNR [dB]

P
E
S
Q

(b) Babble Noise

 

 

HMM
HMM+GV
Log MMSE

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

N
C
M

(c) White Noise

 

 

HMM
HMM+GV
Log MMSE

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

N
C
M

(d) Babble Noise

 

 

HMM
HMM+GV
Log MMSE

Figure 6.10: Performance of HMM-based speech with the GV model in noisy con-
ditions compared with HMM-based speech without GV and Log MMSE. a) and b)
show PESQ scores in white noise and babble noise at different SNRs while c) and
d) illustrate NCM scores in white noise and babble noise.
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because the compensation for over-smoothing in error frames are not useful. Conversely,

NCM scores of HMM-based speech tend to become lower by keeping the variance of

the synthesised speech the fixed value. HMM-based speech with GV, however, sounds

explicitly clear in a subjective sense as compared with HMMs without GV. Moreover,

PESQ scores applied to HMM-based speech empirically tend to be lower than subjective

hearing impression. This seems to be attributed to a characteristic of reconstruction-

based speech enhancement brought by the decoding process where the time allocation of

each phoneme is possibly different from the original speech. Although the difference is

not large in terms of human auditory perception, PESQ detects it and which results in

lower scores. Therefore, it is also important to evaluate the performance with subjective

listening tests which are carried out in the next chapter in addition to objective tests.

6.4 Conclusion of the Chapter

This chapter first discussed confidence measuring to first identify and then to compen-

sate for the influence of decoding errors. A novel method to measure frame-by-frame and

phoneme-by-phoneme confidence was studied and then enhanced speech was produced by

combining HMM-based speech with log MMSE according to the phoneme-by-phoneme

confidence and evaluated. The proposed confidence measure and combined speech im-

proved PESQ scores at low SNRs, specifically in babble noise. The benefit was, however,

limited and NCM scores were decreased by residual and musical noise brought by log

MMSE segments.

In the latter part of the chapter, HMM-based speech synthesis using the GV model

was explored to improve the baseline quality of the proposed HMM-based speech en-

hancement. The evaluation in clean and noisy conditions showed improvement in PESQ

over noise conditions. Those rises, however, seem to be much less than a subjective hear-

ing impression and thus, detailed subjective listening tests are carried out for further

evaluation of the proposed HMM-based speech enhancement in the next chapter.
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Chapter 7

Evaluation of the Proposed

HMM-Based Speech

Enhancement

The proposed method of HMM-based speech enhancement has firstly been discussed and

evaluated with different acoustic and language models in Chapter 4. Secondly it has been

put into more practical use by applying HMM adaptation in Chapter 5, and then the

techniques to tackle HMM decoding errors and over-smoothing in the synthesised speech

parameters are discussed in Chapter 6. Now it is time to carry out a full evaluation of

speech quality and intelligibility of the proposed method. This chapter first evaluates the

performance of the proposed method objectively in terms of PESQ and NCM as well as

the previous chapters, and then carries out subjective listening tests.

7.1 Introduction

The fundamental process in the proposed HMM-based speech enhancement has been

explored in Chapter 4 and HMM adaptation to noisy speech is then applied in Chapter

5 in order to improve HMM decoding accuracy and time warping in the resultant model

and state sequences in practical conditions. Moreover, Chapter 6 discussed the methods

to tackle decoding errors and to improve the baseline performance, and thus, the aim of

this chapter is to carry out a comprehensive evaluation of those techniques.
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The experiments in Chapter 4 have shown that HMM-based speech enhancement

performs best with noise-matched whole-word HMMs and language model. Next best

is noise-matched context-dependent-triphone CD-triphone HMMs with no grammar in

terms of PESQ and NCM (Figures 4.28 and 4.29). They have also shown that acoustic

models trained by sequences of MFCC vectors with truncation of the high order coeffi-

cients have a tendency to obtain higher PESQ scores at low SNRs than acoustic models

trained with MFCC vectors with no truncation because of their superiority in noise

robustness in HMM decoding. Conversely, acoustic models trained with non truncated

MFCC vectors obtain higher scores at high SNRs than acoustic models with MFCC trun-

cation because of their superiority in the performance of HMM-based speech synthesis

with correct state sequences.

Then, the tests in Chapter 5, which focus on CD-triphone HMMs for practical use,

have shown that HMM decoding accuracy using acoustic features of MFCC vectors with

no truncation is improved to the same level as decoding with acoustic features of trun-

cated MFCCs by applying HMM adaptation to noisy speech (Figure 5.4). Consequently,

HMM-based speech enhancement with non truncated MFCCs performs better than using

MFCC truncation over the SNR range between -5 dB and 10 dB (Figures 5.5 and 5.6).

Therefore, for the tests in this chapter, the acoustic features are configured as shown in

Table 7.1 considering the preceding empirical findings and practical use. The number of

Type of HMMs: Context Dependent Triphone (CD-triphone HMMs)

HMMs for Decoding: Noise-Adapted HMMs, Λ̂
HMMs for Synthesis: Clean HMMs, Λ
Number of HMM States: 12
Language Model: No
Speech Features: MFCCs, Aperiodicity and log f0

Filterbank Channels: 23
MFCC Truncation: No
Aperiodicity Coefficients: 40
f0 Estimation: PEFAC
Dynamic Features: ∆ and ∆2

Frame Length: 25 ms
Frame Interval: 5 ms
Window Type: Hamming
FFT: 1024 Point FFT

Table 7.1: The common configuration of HMMs and acoustic features for the tests.
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HMM states, the number of filterbank channels, the f0 estimation method and the frame

interval in Table 7.1 are determined considering the empirical results of Tables 4.8 and

4.11 and Figures 3.10, 5.5 and 5.6.

Furthermore, the test results in Chapter 6 show that combining HMM-based speech

with log MMSE according to the phoneme-by-phoneme confidence measure improves

PESQ at SNR of -5 dB in babble noise (Figure 6.6), and HMM-based speech synthesis

considering the GV model also improves the PESQ scores over the SNR range between

-5 dB and 10 dB in white noise and babble noise (Figure 6.10). Therefore, HMM-based

enhanced speech with the GV model (HMM+GV) and HMM+GV combined with log

MMSE according to the phoneme-by-phoneme confidence measure (HMM+GV+CMB)

are also evaluated in addition to the basic HMM-based enhanced speech (HMM) as shown

in Table 7.2.

HMM: Basic HMM-Based enhanced speech

HMM+GV : HMM-Based enhanced speech with the GV model

HMM+GV+CMB:
HMM+GV combined with the log MMSE method according
to the phoneme-by-phoneme confidence measure

Table 7.2: Configurations of HMM-based speech enhancement for the tests.

The remainder of this chapter first describes the procedure to obtain enhanced speech

by the proposed HMM-based speech enhancement for use in subsequent objective and

subjective tests. This procedure has been discussed across several chapters and it is now

presented in a clear single form. Next objective tests for each method in terms of PESQ

and NCM are then carried out followed by subjective listening tests for speech quality

and intelligibility.

7.2 Test Procedure

Tests in this chapter use speech from four speakers in the GRID database, two males

and two females, which is downsampled to 8 kHz. From the 1000 utterances from each

speaker, 800 are used for training and the remainder are for testing. The performance

of the proposed HMM-based speech enhancement is examined in white noise and babble
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noise at SNRs between -5 dB and 10 dB. The procedure to enhance noisy speech by the

proposed HMM-based speech enhancement is formed by the following processes.

• Feature Extraction

• HMM Training

• HMM Adaptation

• HMM Decoding

• Speech Parameter Synthesis

• Confidence Measuring

• Speech Reconstruction

Each of these processes is explained in the following subsections.

7.2.1 Feature Extraction

At the first stage of the proposed HMM-based speech enhancement, sequences of MFCCs,

Cx, and sequences of aperiodicity coefficients, Ca, are first extracted from the training

speech and test speech as

Cx “
“

pcx0q
T , pcx1q

T , . . . , pcxI´1q
T
‰T

(7.1)

cxi “ rxip0q, xip1q, . . . , xip22qsT (7.2)

Ca “
“

pca0q
T , pca1q

T , . . . , pcaI´1q
T
‰T

(7.3)

cai “ raip0q, aip1q, . . . , aip39qsT (7.4)

where xiplq and aipmq are the l-th coefficient of the MFCCs and the m-th coefficient

of the aperiodicity coefficients at the i-th frame of the speech. These speech feature

sequences are then combined to construct a unified speech feature sequence, C, as

C “
“

cT0 , c
T
1 , . . . , c

T
I´1

‰T
(7.5)

ci “
“

pcxi q
T , pcai q

T
‰T

(7.6)
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Then the sequence of the static speech features, C, derives a sequence of the aug-

mented speech features, O, by adding the velocity and acceleration derivatives of each

feature as

O “ WC (7.7)

“
“

oT0 ,o
T
1 , . . . ,o

T
I´1

‰T
(7.8)

(7.9)

where W denotes a matrix of the regression coefficients referred to as Equation (4.79) to

transform the sequence of the static features into the sequence of the augmented features

including their first and second order dynamic features, and

oi “
“

pcxi q
T , p∆cxi q

T , p∆2cxi q
T , pcai q

T , p∆cai q
T , p∆2cai q

T
‰T

(7.10)

where ∆ and ∆2 are the notations of a velocity derivative and acceleration derivative.

This structure of O is referred to as Figure 4.20 but the sequence of the fundamental

frequencies is not included here because the fundamental frequency contour is extracted

directly from the test speech by using PEFAC to reconstruct speech rather than synthe-

sising it from the statistical model.

With the preceding procedure, the observation sequence, O, of the training speech

is extracted in the clean condition whereas O of the test speech is extracted in each noisy

condition.

7.2.2 HMM Training

Observation sequences, O, extracted from the training speech and their reference tran-

scripts are then used to train a set of CD-triphone HMMs, Λ “ tλ1, λ2, . . . , λDu. The

Viterbi algorithm first renews the estimate of state sequence, q̂, as

q̂ “ arg max
qPQ

P pq | O,λq (7.11)

where λ represents a sequence of the initial HMMs corresponding to the transcript of the

training speech, q is the initial state sequence and Q denotes the group which comprises
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all the possible state sequences to achieve λ during O. Using the renewed state sequence,

q̂, the Baum-Welch algorithm then renews the parameters of λk P λ (k P t1, 2, . . . , Du)

as

λ̃k “ arg max
λk

P pO | λkq, for @λk P λ (7.12)

After the initial HMM parameters and the initial state sequence are replaced with the

renewed model parameters and state sequence, all the λk P λ are optimised by an iteration

of Equations (7.11) and (7.12).

Then the number of the HMMs, D, is reduced to around 200 for each speaker by

MDL-based clustering [94] in order to avoid underfitting and overfitting, and finally, the

clustered models are trained with the preceding procedure.

7.2.3 HMM Adaptation

The HMMs trained with the clean speech are then adapted to the noisy test speech at the

next stage, HMM adaptation process. In this process, the noise power spectrum of the

noisy test speech at i-th frame, |D̂ipfq|
2, is first estimated by unbiased MMSE estimation

[116] and then it is transformed to the Mel-filterbank domain to form a sequence of the

Mel-filterbank coefficient vectors of the noise, D̂fb, as

D̂fb “

”

pd̂fb0 q
T , pd̂fb1 q

T , . . . , pd̂fbI´1q
T
ıT

(7.13)

d̂fbi “

”

D̂fb
i p0q, D̂

fb
i p1q, . . . , D̂

fb
i p22q

ıT
(7.14)

where D̂fb
i pmq represents the m-th Mel-filterbank coefficient of |D̂ipfq|

2.

The noise model of the test speech λ̂fbd is configured as a single-state-single-gaussian

model and the model parameters are derived as

µ̂fbd “
1

I

I´1
ÿ

i“0

d̂fbi (7.15)

Σ̂fb
d “

1

I ´ 1

I´1
ÿ

i“0

´

d̂fbi ´ µ̂fbd

¯´

d̂fbi ´ µ̂fbd

¯T
(7.16)

where µ̂fbd and Σ̂fb
d are the mean vector and the covariance matrix of λ̂fbd respectively.

Simultaneously, the mean vectors and the covariance matrices of the static MFCC
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feature in the s-th state (s “ 1, 2, ¨ ¨ ¨ , 12) of the trained HMMs, λk (k “ 1, 2, . . . , D), are

denoted as µs,k and Σs,k, and these are transformed to the linear Mel-filterbank domain

by the unscented transform discussed in Section 5.2.3 to obtain µfbs,k and Σfb
s,k.

The parallel model combination then adapts µfbs,k and Σfb
s,k to the noisy speech as

µ̂fbs,k “ µfbs,k ` µ̂fbd (7.17)

Σ̂fb
s,k “ Σfb

s,k ` Σ̂fb
d (7.18)

The noise-adapted mean vectors and covariance matrices in the linear Mel-filterbank

domain, µ̂fbs,k and Σ̂fb
s,k are finally transformed back to the MFCC domain by the unscented

transform in order to constitute the noise-adapted HMMs λ̂k.

7.2.4 HMM Decoding

The HMM decoding process uses a set of the CD-triphone HMMs adapted to the noisy

test speech, Λ̂ “ tλ̂1, λ̂2, . . . , λ̂Du, and a sequence of the static MFCC vectors, Cx,

extracted from the test speech in order to obtain the most likely model sequence including

their state sequences, ŝpiq as.

ŝpiq “ arg max
qPQΠ

P pq | Π,Cxq (7.19)

where Π is a group which consists of all the possible CD-triphone model sequences

during the observation and QΠ represents a group which comprises all the possible state

sequences which achieve @λ̂ P Π. Equation (7.19) is solved by the Viterbi algorithm

discussed in Section 4.2.2.

7.2.5 Speech Parameter Synthesis

The next stage utilises ŝpiq and Λ to synthesise the clean speech features of the test

speech, i.e. the sequences of the MFCCs, Ĉx, and the aperiodicity coefficients, Ĉa, sta-

tistically. This process is attained as follows. A sequence of the HMM-based speech

parameters including their dynamic features, Ô, and a sequence of the static HMM-
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based speech parameters, Ĉ, are first defined as

Ĉ “
“

ĉT0 , ĉ
T
1 , . . . , ĉ

T
I´1

‰T
(7.20)

ĉi “
“

pĉxi q
T , pĉai q

T
‰T

(7.21)

Ô “
“

ôT0 , ô
T
1 , . . . , ô

T
I´1

‰T
(7.22)

ôi “
“

pĉxi q
T , p∆ĉxi q

T , p∆2ĉxi q
T , pĉai q

T , p∆ĉai q
T , p∆2ĉai q

T
‰T

(7.23)

where

ĉxi “ rx̂ip0q, x̂ip1q, . . . , x̂ip22qsT (7.24)

ĉai “ râip0q, âip1q, . . . , âip39qsT (7.25)

where x̂iplq and âipmq represent the l-th coefficient of the synthesised MFCCs and the

m-th coefficient of the synthesised aperiodicity coefficients at the i-th frame. Then Ĉ is

synthesised as

Ĉ “ arg max
C1

P
`

WC1 | ŝpiq,Λ
˘

(7.26)

“ arg max
C1

 

N pWC1;µq̂,Σq̂q
(

(7.27)

where

µq̂ “

”

µTq̂0 ,µ
T
q̂1 , ¨ ¨ ¨ ,µ

T
q̂I´1

ıT
(7.28)

Σq̂ “ diag
”

σTq̂0 ,σ
T
q̂1 , ¨ ¨ ¨ ,σ

T
q̂I´1

ıT
(7.29)

where µq̂i is the mean vector of the HMM state at the i-th frame corresponding to spiq

while σq̂i represents a diagonal elements of the covariance matrix of the HMM state at

the i-th frame. Therefore, the Newton-Raphson algorithm [117] is applied to find Ĉ

satisfying

B logN pWĈ;µq̂,Σq̂q

BĈ
“ 0 (7.30)

Alternatively, for the test configurations of HMM+GV and HMM+GV+CMB in
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Table 7.2, the following is solved instead of Equation (7.27) to synthesise Ĉ.

Ĉ “ arg max
C1

 

N
`

WC1;µq̂,Σq̂

˘

¨N
`

vpC1q;µgv,Σgv

˘α(
(7.31)

where µgv and Σgv are the mean vector and covariance matrix of the GV model, which

has been discussed in Section 6.3.2.1, α is set equal to the ratio of the vector dimension

between Ô and Ĉ, and vpC1q is determined as

vpĈ1q “ rvp0q, vp1q, . . . , vp23` 40´ 1qsT (7.32)

vpmq “
1

62

I´1
ÿ

i“0

pĉipmq ´ µĉpmqq
2 (7.33)

µĉpmq “
1

63

I´1
ÿ

i“0

ĉipmq (7.34)

ĉipmq “

$

’

&

’

%

x̂ipmq m “ 0, 1, . . . , 22

âipm´ 22q m “ 23, 24, . . . , 62
(7.35)

After the most likely Ĉ is obtained, ĉxi and ĉai for @i, which are referred to as

Equations (7.20) and (7.21), are then extracted from Ĉ to construct the sequence of the

HMM-based MFCCs, Ĉx and the sequence of the HMM-based aperiodicity coefficients,

Ĉa, as

Ĉx “
“

pĉx0q
T , pĉx1q

T , . . . , pĉxI´1q
T
‰T

(7.36)

Ĉa “
“

pĉa0q
T , pĉa1q

T , . . . , pĉaI´1q
T
‰T

(7.37)

Additionally, a sequence of the MFCCs of the HMM-based noisy speech, Ĉy, is also

derived by replacing a set of clean HMMs, Λ, with a set of noise-adapted HMMs, Λ̂, in

the preceding procedure for the test configuration of HMM+GV+CMB in which Ĉy is

required for the confidence measuring.

7.2.6 Confidence Measuring

The test configuration of HMM+GV+CMB applies the confidence measure discussed in

Section 6.2 to mitigate the influence of HMM decoding errors at this stage.

A sequence of MFCCs extracted from test speech, Cx, is first compared with the
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sequence of the MFCCs synthesised by the noise-adapted HMMs, Ĉy to obtain frame-

by-frame confidence of ŝpiq as

ui “ C exp
`

C´1cxi
˘

(7.38)

“ ruip0q, uip1q, . . . , uip22qsT (7.39)

ûi “ C exp
`

C´1ĉyi
˘

(7.40)

“ rûip0q, ûip1q, . . . , ûip22qsT (7.41)

Ruûpiq “
E rpuipmq ´ µiq pûipmq ´ µ̂iqs

c

E
”

puipmq ´ µiq
2
ı

E
”

pûipmq ´ µ̂iq
2
ı

(7.42)

where C and C´1 denote the DCT and IDCT matrices, and

µi “
1

23

22
ÿ

m“0

uipmq (7.43)

µ̂i “
1

23

22
ÿ

m“0

ûipmq (7.44)

Phoneme-by-phoneme confidence is then derived as

Pj “

$

’

&

’

%

1 1
ij`1´ij

řij`1

k“ij
Ryŷpkq ě β

0 otherwise
(7.45)

where ij represents the start frame of the j-th phoneme in ŝpiq, and β is set equal to 0.8

with respect to the empirical results shown in Figures 6.3, 6.4 and 6.5.

7.2.7 Speech Reconstruction

At the final stage of the proposed HMM-based speech enhancement, the sequences of the

synthesised speech features, Ĉx and Ĉa, are first transformed to the linear Mel-filterbank
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domain as

X̂fb “ exp
´

C´1Ĉx
¯

(7.46)

“

”

px̂fb0 q
T , px̂fb1 q

T , . . . , px̂fbI´1q
T
ıT

(7.47)

Âfb “ exp
´

C´1Ĉa
¯

(7.48)

“

”

pâfb0 q
T , pâfb1 q

T , . . . , pâfbI´1q
T
ıT

(7.49)

where

x̂fbi “ rx̂ip0q, x̂ip1q, . . . , x̂ip22qsT (7.50)

âfbi “ râip0q, âip1q, . . . , âip39qsT (7.51)

where x̂iplq represents the energy in the l-th Mel-filterbank channel of the HMM-based

speech at the i-th frame while âipmq is the m-th coefficient of the aperiodicity coefficients

of the HMM-based speech at the i-th frame in the linear Mel-filterbank domain. These are

then transformed to the time-frequency domain to obtain the spectral surface, X̂pf, iq,

and the aperiodicity, Âpf, iq, where f denotes FFT bin index (f “ 0, 1, . . . , 512), by

using the method applying channel normalisation and cubic spline interpolation which is

referred to as Section 4.4.2.

Incidentally, the fundamental frequency contour, f0piq, is extracted from the test

speech by using PEFAC because the fundamental frequency contour synthesised by

HMMs cannot trace rapid changes as illustrated in Figure 4.25.

All the speech features required by the STRAIGHT vocoder, i.e. X̂pf, iq, Âpf, iq and

f0piq, are now acquired and the enhanced time-domain speech, x̂pnq, is reconstructed.

Additionally, the test configuration of HMM+GV+CMB combines x̂pnq with speech

enhanced by log MMSE, x̂1pnq, according to the phoneme-by-phoneme confidence, Pj , as

x̂cmbpnq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

P1x̂pnq ` p1´ P1qx̂
1pnq n1 ď n ă n2

P2x̂pnq ` p1´ P2qx̂
1pnq n2 ď n ă n3

...
...

PJ x̂pnq ` p1´ PJqx̂
1pnq nJ ď n

(7.52)
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where nj is the sample index corresponding to the beginning of the j-th phoneme in x̂pnq

and J is the number of phonemes in x̂pnq.

7.3 Objective Evaluation

Test speech enhanced by the preceding procedure is objectively evaluated in this section

in terms of PESQ for speech quality and NCM for speech intelligibility comparing with

baseline performance given by no noise compensation (NNC), and the conventional fil-

tering approaches to speech enhancement represented by log MMSE (LOG) [36] and the

subspace method (SUB) [40].

The test configurations for the proposed HMM-based speech enhancement are re-

ferred to as Tables 7.1 and 7.2, i.e. HMM, HMM+GV and HMM+GV+CMB.

7.3.1 Speech Quality

Table 7.3 and Figure 7.1 show the PESQ scores of the different configurations of the

proposed method (HMM, HMM+GV and HMM+GV+CMB) at SNRs from -5 dB to 10

dB in white noise and babble noise comparing with baseline performance (NNC) and the

conventional filtering approaches (LOG and SUB).

Noise NNC HMM HMM+GV HMM+GV+CMB LOG SUB

White Noise
10 dB 1.93 2.26 2.31 2.30 2.65 2.57
5 dB 1.64 2.19 2.22 2.21 2.34 2.33
0 dB 1.43 2.04 2.07 2.04 1.96 2.04
-5 dB 1.27 1.72 1.74 1.69 1.48 1.59

Babble Noise
10 dB 2.33 2.28 2.34 2.33 2.59 2.46
5 dB 2.01 2.13 2.20 2.18 2.26 2.12
0 dB 1.73 1.88 1.94 1.94 1.90 1.75
-5 dB 1.46 1.62 1.65 1.73 1.37 1.28

Table 7.3: PESQ scores at SNRs of 10 dB, 5 dB, 0 dB and -5 dB in white noise and
babble noise

In white noise, NNC is always marked the lowest score over the SNR range, and the

HMM-based Methods (HMM, HMM+GV and HMM+GV+CMB) are marked the highest
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Figure 7.1: PESQ scores of the proposed HMM-based speech enhancement at dif-
ferent SNRs comparing with log MMSE and the subspace method. a) shows the
performance in white noise while b) shows the performance in babble noise.

scores at SNRs of 0 dB and below whereas their scores are lower than the conventional

approaches (LOG and SUB) at SNRs of 5 dB and above.

In babble noise, the HMM-based methods (HMM, HMM+GV and

HMM+GV+CMB) show the highest performance at SNRs of 0 dB and below as

well as the case of white noise. Specifically, the superiority to other methods becomes

more remarkable at -5 dB while the scores of filtering methods (LOG and SUB) become

lower than NC.

Comparing the performance among the configurations of HMM-based methods,

HMM+GV always achieves higher scores than HMM in both white noise and babble

noise. This is attributed to effectiveness of the global variance model in compensa-

tion for over-smoothing of the HMM-based speech parameters. The difference between

HMM+GV and HMM+GV+CMB is not substantial at SNRs of 0 dB and above. The

score of HMM+GV+CMB is, however, superior to HMM+GV at -5 dB in babble noise

as opposed to the case of white noise in which the score of HMM+GV+CMB becomes

lower than HMM+GV at -5 dB. This is interesting because combining the HMM-based

speech with log MMSE in babble noise is more effective than in white noise even though
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the performance of log MMSE is higher in white noise than in babble noise. This is

attributed to the fact that the accuracy of HMM decoding at SNR of -5 dB is much

lower in babble noise than in white noise (Figure 5.4) and it brings a loss of speech to

the output which can effectively be supplemented with log MMSE with the confidence

measure.

7.3.2 Speech Intelligibility

Table 7.4 and Figure 7.2 show the NCM scores of the different configurations of the

proposed method (HMM, HMM+GV and HMM+GV+CMB) at SNRs from -5 dB to 10

dB in white noise and babble noise comparing with baseline performance (NNC) and the

conventional filtering approaches (LOG and SUB).

Noise NNC HMM HMM+GV HMM+GV+CMB LOG SUB

White Noise
10 dB 0.87 0.69 0.68 0.68 0.87 0.93
5 dB 0.76 0.68 0.67 0.67 0.78 0.86
0 dB 0.60 0.66 0.65 0.63 0.64 0.74
-5 dB 0.41 0.60 0.58 0.52 0.46 0.56

Babble Noise
10 dB 0.86 0.70 0.68 0.67 0.87 0.92
5 dB 0.70 0.69 0.67 0.62 0.72 0.80
0 dB 0.52 0.65 0.63 0.51 0.53 0.62
-5 dB 0.32 0.57 0.56 0.38 0.31 0.38

Table 7.4: NCM scores at SNRs of 10 dB, 5 dB, 0 dB and -5 dB in white noise and
babble noise

HMM and HMM+GV show a characteristic to have stable performance over the

SNR range in both white noise and babble noise with slight reduction at -5 dB while the

scores of other methods fall more rapidly. These characteristics bring the highest scores

to HMM at lower SNRs, i.e. -5 dB in white noise and 0 dB and -5 dB in babble noise.

Comparing the performance among the configurations of HMM-based methods

(HMM, HMM+GV and HMM+GV+CMB), HMM always shows slight higher scores

than HMM+GV as opposed to the performance in terms of PESQ. The performance of

HMM+GV+CMB is influenced by HMM+GV at higher SNRs whereas it is more domi-

nated by the performance of log MMSE at lower SNRs. Consequently, the performance
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Figure 7.2: NCM scores of the proposed HMM-based speech enhancement at dif-
ferent SNRs comparing with log MMSE and the subspace method. a) shows the
performance in white noise while b) shows the performance in babble noise.

of HMM+GV+CMB is always worse than HMM and HMM+GV in both white noise and

babble noise in terms of NCM implying the compensation for over-smoothing with the

global variance model and for decoding errors are not effective to improve NCM score.

7.4 Subjective Evaluation

Subjective listening tests are now carried out in addition to the objective comparative

evaluation in the previous section. Test speech enhanced by the preceding procedure

(HMM, HMM+GV and HMM+GV+CMB) is subjectively evaluated in this section by

listening tests for speech quality and intelligibility comparing with baseline performance

given by no noise compensation (NNC), and logMMSE (LOG), which represents the

conventional filtering approach to speech enhancement.

7.4.1 Speech Quality

For subjective evaluation of speech quality, three-way mean opinion score (MOS) listen-

ing tests in which a subject listens to speech once and then grades it as 5 (Excellent),

4 (Good), 3 (Fair), 2 (Poor) or 1 (Bad) in terms of each of background noise, speech
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distortion and overall quality are carried out for 10 subjects. An utterance is first ran-

domly selected from the test speech (200 utterances ˆ 4 speakers) and contaminated

with white noise or babble noise at an SNR of -5 dB, 0 dB, 5 dB or 10 dB. The speech is

then enhanced by one of HMM, HMM+GV, HMM+GV+CMB, LOG or NNC and then

a subject listens to it through headphones (Sennheiser: HD-495) at a noise-free condition

in a quiet room in order to grade the enhanced speech by the three-way MOS test. Test

guidance including all the information needed for the test is given to the subjects prior to

the start of the test and the subjects can adjust the volume level of speech to comfortable

level during the test. This test is repeated for 120 utterances for each subject. Figure

7.3 shows the user interface of the three-way MOS listening test.

Figure 7.3: The user interface of the three-way MOS listening test.

Tables 7.5 - 7.7 and Figure 7.4 show the scores of the three-way MOS listening test for

each configurations of the proposed HMM-based speech enhancement (HMM, HMM+GV

and HMM+GV+CMB), log MMSE (LOG) and no noise compensation (NNC) in white

noise and babble noise. The tables and figure also show the performance of LOG and no

noise compensation NNC as a representative of the conventional filtering-based methods

and the baseline performance with which the performance of the proposed methods are

compared.
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Noise NNC HMM HMM+GV HMM+GV+CMB LOG

White noise
10 dB 1.95 4.67 4.62 4.71 3.29
5 dB 1.33 4.57 4.71 4.43 2.81
0 dB 1.33 4.57 4.62 3.71 2.52
-5 dB 1.00 4.48 4.57 3.00 1.71

Babble Noise
10 dB 2.29 4.24 4.71 4.29 2.86
5 dB 1.90 4.57 4.57 4.48 2.48
0 dB 1.57 4.43 4.71 4.57 2.33
-5 dB 1.29 4.24 4.48 3.90 1.86

Table 7.5: Subjective listening scores focused on background noise at SNRs from -5
dB to 10 dB in white noise and babble noise.

Noise NNC HMM HMM+GV HMM+GV+CMB LOG

White noise
10 dB 3.86 3.67 3.81 3.43 3.86
5 dB 3.48 3.71 3.52 3.33 3.24
0 dB 3.19 3.38 3.05 3.38 2.95
-5 dB 2.67 3.19 3.14 3.14 2.38

Babble Noise
10 dB 4.05 3.57 3.81 3.43 3.57
5 dB 4.05 3.33 3.62 3.67 3.33
0 dB 3.29 3.71 3.76 3.71 3.05
-5 dB 3.29 3.43 3.30 3.24 2.43

Table 7.6: Subjective listening scores focused on signal distortion at SNRs from -5
dB to 10 dB in white noise and babble noise.

Noise NNC HMM HMM+GV HMM+GV+CMB LOG

White noise
10 dB 2.71 3.90 4.05 4.00 3.57
5 dB 2.10 3.95 3.95 3.52 3.00
0 dB 2.05 3.86 3.67 3.48 2.76
-5 dB 1.43 3.67 3.52 3.14 1.95

Babble Noise
10 dB 3.14 3.62 4.05 3.86 3.14
5 dB 2.81 3.67 4.10 4.05 2.71
0 dB 2.33 3.86 4.24 4.00 2.71
-5 dB 2.10 3.57 3.78 3.48 2.00

Table 7.7: Subjective listening scores as the overall grade of speech at SNRs from -5
dB to 10 dB in white noise and babble noise.
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Figure 7.4: Test scores of the three-way MOS listening test with different configura-
tions of speech enhancement. a) and b) show the scores with respect to background
noise in white noise and babble noise. c) and d) show the scores focused on signal
distortion while e) and f) represent overall speech quality.
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Table 7.5 and Subplots (a) and (b) in Figure 7.4 show the listening scores focused on

background noise of enhanced speech. In this criterion, HMM and HMM+GV keep very

high grades between 5 (Excellent) and 4 (Good) over the range of SNRs. LOG performs

explicitly lower than HMM and HMM+GV and the scores fall further at lower SNRs

even though they are always higher than NNC over the SNR range. HMM+GV+CMB

is graded as high as HMM and HMM+GV at SNRs of 5 dB and above but it reduces

the score at lower SNRs by being combined with log MMSE specifically in white noise.

This is attributed to a rise of false positive errors of confidence measure. False positive

errors replace HMM-based speech with log MMSE at speech segments which do not need

to be replaced. This is equivalent to adding noise into clean speech and consequently, it

reduces the score.

Table 7.6 and Subplots (c) and (d) in Figure 7.4 show the scores with respect to

the signal distortion of enhanced speech in white noise and babble noise. The grade

of HMM-based speech enhancement, i.e. HMM, HMM+GV and HMM+GV+CMB, is

comparable to NNC, which is not degraded in terms of speech distortion, even at high

SNRs such as 5 dB and above in addition to showing the robustness against noise. The

proposed methods are also superior to log MMSE over the SNR range, but 10 dB in

white noise, in this criterion as well.

The overall evaluation is represented by Table 7.7 and Subplots (e) and (f) in Fig-

ure 7.4 showing that the performance of the proposed HMM-based speech enhancement

surpasses log MMSE and NNC overwhelmingly over all the noise conditions. Specifically,

HMM+GV keeps the performance in around the grade of 4 (Good) over the SNR range.

The difference in overall performance between HMM and HMM+GV is not significant in

white noise but more effectiveness of using the global variance model is shown in babble

noise. It seems that the only factor which potentially gives different characteristics to

the output, depending on noise conditions, is the HMM decoding results. It is, how-

ever, not identified from a comparison of the decoding results in white noise with those

in babble noise shown in Figure 5.4. The scores of HMM+GV+CMB are always lower

than HMM+GV but the significant decline in the noise intrusiveness score in white noise

(Subplot A) is reduced in the overall evaluation.

In order to evaluate significant differences among the algorithms, two-way analy-
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sis of variance (ANOVA) over the algorithms and noise is applied and then a multiple

comparison tests according to Tukey’s least significant difference (LSD) test [118] are ex-

amined. Table 7.8 shows pairwise comparison of p-values of the four algorithms (HMM

/ HMM+GV / HMM+GV+CMB / LOG) and NNC over all SNR conditions. The first

column of the table shows each pair of the algorithms while the second, third and fourth

columns correspond to the background noise scores, the distortion scores and the overall

scores.

Pairs of Algorithms Background Noise Signal Distortion Overall

NNC / HMM 0.0000 0.9997 0.0000
NNC / HMM+GV 0.0000 0.9860 0.0000
NNC / HMM+GV+CMB 0.0000 0.9549 0.0000
NNC / LOG 0.0000 0.0004 0.0000
HMM / HMM+GV 0.2094 0.9549 0.8627
HMM / HMM+GV+CMB 0.0000 0.8969 0.8939
HMM / LOG 0.0000 0.0002 0.0000
HMM+GV / HMM+GV+CMB 0.0000 0.9997 0.3214
HMM+GV / LOG 0.0000 0.0029 0.0000
HMM+GV+CMB / LOG 0.0000 0.0059 0.0000

Table 7.8: Pairwise p-values of the algorithms over all SNR conditions.

In terms of the subjective scores of background noise, all the combinations of the

algorithms except the pair of HMM with HMM+GV show significant effect (p ă 0.005).

This implies that each algorithm can be effective in reducing background noise because

p-values of each algorithm paired with NNC are nearly zero, but the effectiveness of

HMM and HMM+GV is similar. Focusing on the scores of signal distortion, only the

combinations paired with LOG show significant effect. This means speech enhanced by

HMM-based algorithms can retain the speech signal effectively whereas the log MMSE

algorithm produces more signal distortion. p-values of the overall scores show that HMM,

HMM+GV and HMM+GV+CMB are not significantly different to each other though all

of the four algorithms are significantly effective as enhancing the speech.

7.4.2 Speech Intelligibility

For subjective evaluation of speech intelligibility, subjective word recognition tests in

which a subject listens to speech once and then selects words in the utterance are carried
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out for 10 subjects. An utterance is first randomly selected from the GRID test speech

(200 utterances ˆ 4 speakers) and contaminated with white noise or babble noise at

an SNR of -5 dB or 0 dB (Noise conditions at SNRs of 5 dB and 10 dB are omitted

since a preliminary experiment has shown that speech intelligibility is not affected at

SNRs of 5 dB and above). The speech is then enhanced by one of HMM, HMM+GV,

HMM+GV+CMB, LOG or NNC and then a subject listens to it through headphones

(Sennheiser: HD-495) at a noise-free condition in a quiet room in order to select words

in the utterance to which he/she listened. Test guidance including all the information

needed for the test is given to the subjects prior to the start of the test and the subjects

can adjust the volume level of speech to comfortable level during the test. This test is

repeated for 60 utterances for each subject. Figure 7.5 shows the user interface of the

subjective word recognition test in which the word options are placed in accordance with

the GRID grammar, i.e. verb Ñ blue Ñ preposition Ñ alphabet Ñ number Ñ adverb.

Figure 7.5: The user interface of the subjective word recognition test.

This user interface also includes questions for the speech quality test in addition to

the questions for the speech intelligibility test to measure speech quality and intelligibil-

ity in parallel for rationalisation purpose. Therefore, the subjects measure only speech

quality for 60 utterances whose SNR are 5 dB or 10 dB while they measure both speech

quality and intelligibility for the other 60 utterances whose SNR are -5 dB or 0 dB. This

makes different test conditions depending on SNR of utterances. However, at given SNR,
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all methods of enhancement are evaluated identically.

The test results are evaluated as Correct Answer Rate, Wcorrect, which is determined

as follows as a subjective speech intelligibility.

Wcorrect “
The number of words recognised correctly in a utterance

The number of words in a utterance
(7.53)

Table 7.9 and Figure 7.6 show Wcorrect of the subjective word recognition test for

each configurations of the proposed HMM-based speech enhancement in different noise

conditions. They also show the performance of LOG and NNC which represent the con-

ventional filtering-based approach to speech enhancement and the baseline performance

respectively for comparison.

Noise NNC HMM HMM+GV HMM+GV+CMB LOG

White noise
0 dB 0.87 0.88 0.84 0.78 0.91
-5 dB 0.73 0.78 0.81 0.80 0.77

Babble Noise
0 dB 0.94 0.90 0.94 0.81 0.95
-5 dB 0.88 0.82 0.84 0.78 0.76

Table 7.9: Correct answer rates of the subjective word recognition test at SNRs of
-5 dB and 0 dB in white noise and babble noise.

The test results show that HMM-based speech enhancement keeps intelligibility flat

at SNRs between -5 dB and 0 dB as compared with LOG and NNC as well as the objective

scores in NCM. This characteristic brings higher Correct Answer Rate of HMM-based

methods at -5 dB in both white noise and babble noise than LOG, but lower at 0 dB.

The results also show that in babble noise, NNC shows better intelligibility than

the enhanced speech at SNRs between -5 dB and 0 dB. It seems to be attributed to the

difference of frequency bands between noise and speech. Specifically, test utterances of

female speech are relatively easy to be recognised correctly even at -5 dB in babble noise

since the babble noise in the test set is dominated by male voice.

Comparing the performance among HMM-based methods, HMM+GV obtains higher

Correct Answer Rate than HMM at -5 dB in white noise and -5 dB and 0 dB in babble

noise. The difference is, however, not significant. HMM+GV+CMB shows always lower
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Figure 7.6: Correct answer rates of the subjective word recognition test at SNRs of
-5 dB and 0 dB in a) white noise and b) babble noise.

intelligibility than HMM+GV in both white noise and babble noise. This gives a notion

that to achieve higher decoding accuracy is more effective than to compensate the erro-

neous decoding results to improve the performance of HMM-based speech enhancement.

In order to evaluate significant differences among the algorithms, two-way ANOVA

over the algorithms and noise is applied and then a multiple comparison tests according

to Tukey’s LSD test are examined. Table 7.10 shows pairwise comparison of p-values of

the four algorithms (HMM / HMM+GV / HMM+GV+CMB / LOG) and NNC over all

SNR conditions. p-values show that all of the algorithms except HMM+GV+CMB do

not have significant difference in comparison to NNC. This implies that the intelligibility

of the enhanced speech produced by HMM, HMM+GV and LOG is no better than NNC.

However, the intelligibility using HMM+GV+CMB brings more deterioration in speech

intelligibility.

7.5 Conclusion of the Chapter

This chapter has examined the proposed HMM-based speech enhancement by objective

and subjective tests to evaluate total performance of the proposed method comparing
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Pairs of Algorithms p-values

NNC / HMM 0.4004
NNC / HMM+GV 0.5524
NNC / HMM+GV+CMB 0.0006
NNC / LOG 0.9993
HMM / HMM+GV 0.9993
HMM / HMM+GV+CMB 0.1674
HMM / LOG 0.5524
HMM+GV / HMM+GV+CMB 0.0969
HMM+GV / LOG 0.7060
HMM+GV+CMB / LOG 0.0017

Table 7.10: Pairwise p-values of the algorithms over all SNR conditions.

with baseline performance given by no noise compensation and methods representing the

conventional filtering approach to speech enhancement.

The objective tests have shown that the proposed HMM-based speech enhancement

has significant superiority to the conventional methods in terms of PESQ, which repre-

sents an objective score of speech quality, at low SNR conditions such as 0 dB and below

in white noise and babble noise. Additionally, the performance in PESQ is further im-

proved over the noise conditions by applying the compensation for over-smoothing in the

HMM-based speech parameters by global variance model. Moreover, the compensation

for decoding errors using the proposed confidence measure works effectively in terms of

PESQ when the enhanced speech has losses of speech by decoding errors.

Alternatively, in terms of NCM which represents an objective score of speech intelli-

gibility, the performance of the proposed HMM-based speech enhancement keeps stable

over the noise conditions and consequently, it is superior to the conventional methods at

low SNR conditions such as -5 dB in white noise and 0 dB and below in babble noise.

NCM score is, however, reduced by applying the compensation for either decoding errors

or over-smoothing.

The subjective tests for speech quality and intelligibility have also been carried out.

These tests have revealed the superiority of the proposed speech enhancement more

explicitly. The overall evaluation of the proposed HMM-based methods in the three-way

MOS listening test surpass both log MMSE, which represents the conventional filtering-

based methods, and no noise compensation over all the noise conditions. Similarly, the
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subjective word recognition also showed the superiority of the proposed methods in speech

intelligibility to log MMSE in low SNR conditions such as -5 dB.

Incidentally, it is discovered that PESQ tends to give relatively harsh scores to

HMM-based speech enhancement as compared with the scores given to log MMSE from

comparison of the test results between subjective and objective tests. This is considered

to be attributed to the time alignment process in the PESQ computation in which time

delay values between original and degraded signals are gauged [99]. In this sense of

time allocation in the enhanced signals, reconstruction-based speech enhancement has

disadvantageous nature as compared with the filtering-based approaches because the

time allocation of enhanced speech is formed from only statistical information in the

decoding process while the filtering-based methods exploit the original signal. However,

at least it seems that the proposed HMM-based speech enhancement has overwhelming

superiority to the conventional methods in enhancing speech which has been degraded

by additive noise as shown by the subjective test results.
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Chapter 8

Conclusions and Further Work

As stated at the beginning of the thesis, the purpose of this work was to develop a

novel method to enhance speech signals degraded by additive noise in which the only

accessible information is monaural noisy speech. This chapter concludes the thesis by

first reviewing the work discussed in this thesis and then identifying the key findings.

Finally, suggestions of further work are presented.

8.1 Review

This section reviews the work discussed in this thesis. Chapter 1 first introduced the

area of speech enhancement problems that need to be addressed. The basic architecture

of the proposed method was then presented.

A variety of the conventional methods for speech enhancement including the spec-

tral subtraction, Wiener filters, statistical-model-based filtering methods and subspace

algorithms which are based on the filtering approaches are discussed in Chapter 2. Exper-

imental analysis has then shown that the log MMSE method, which represents the statis-

tical model-based filtering methods, generally shows the best performance as the overall

evaluation in terms of PESQ. The experiments also demonstrated that the filtering-based

methods can leave musical noise, residual noise and distortion at low SNRs such as 0 dB

and below which are attributed to underestimation and overestimation of the noise in

the filtering-based methods. The reconstruction-based approaches to speech enhance-

ment including corpus and inventory-based speech enhancement and model-based speech
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enhancement are then discussed prior to Chapter 3.

The proposed HMM-based speech enhancement is achieved by using a speech pro-

duction model to reconstruct clean speech from speech features synthesised statistically.

Therefore, Chapter 3 first discussed the human speech production process and properties

of the speech signal attributed to the production process. The source-filter model was

then discussed with respect to the preceding human speech production process and the

properties of speech signals. Alternatively, the sinusoidal model and the HNM, which

is one of variants of the sinusoidal model, have also been studied as another approach

to model voiced speech. These models are based on the notion where voiced speech

is modelled as a summation of harmonic sinusoids. The sinusoidal model showed very

good quality in speech production at a brief speech reconstruction experiment. However,

it turned out that the features required by the sinusoidal model to produce speech are

less suitable for building statistical models than the source filter model because of their

variability. Consequently, the STRAIGHT vocoder, which is a variant of the source-

filter model using the mixed-excitation model, was selected for the speech reconstruction

process in the proposed HMM-based speech enhancement from the aspect of its good

performance as a speech production model. At the end of the chapter, different methods

to estimate the fundamental frequency of speech are explored and the experiments have

shown that PEFAC has a distinct advantage over RAPT and YIN in performance for

estimating the fundamental frequency of speech in noisy condition.

Then, the topic reached the detail of HMM-based speech enhancement in Chapter 4.

The chapter first gave an overview of HMMs and the theories were then extended to the

practical applications such as ASR and HMM-based speech synthesis. The latter part

of the chapter explored HMM-based speech enhancement, achieved by combining the

techniques of HMM training, HMM decoding and HMM synthesis with the STRAIGHT

speech production model. Experiments evaluated the performance of speech enhance-

ment with different sets of configurations, comparing with the log MMSE method which

represents the conventional filtering methods. The experimental analysis has shown that

using the context-dependent triphone HMMs with no grammar constraints with 5 ms-

frame interval achieves quality and intelligibility sufficiently close to that with grammar

constrained whole-word models in terms of PESQ and NCM, which represent objec-
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tive measure of speech quality and intelligibility, but puts no restrictions on the input

speech. Compared to conventional methods of speech enhancement, it turned out that

HMM-based speech enhancement shows higher PESQ and NCM scores at lower SNRs.

The first experiment of HMM-based speech enhancement carried out in Chapter 4

had exploited a priori knowledge of noise at the HMM training stage in order to use

noise-matched HMMs in the decoding process. Chapter 5 first discussed the problems

brought by employing noise-matched HMMs and then studied the theory of HMM adap-

tation to model noisy speech using parallel model combination to address the problems.

In parallel model combination, the mismatch function between clean speech and noisy

speech is determined in the linear Mel-filterbank domain while HMMs had been modelled

in the MFCC domain. Therefore, the non-linearity between these domains needs to be

resolved and the distribution mapping between Gaussian and log-normal, and the un-

scented transform were discussed to tackle this problem. Experiments then evaluated the

performance of HMM-based speech enhancement with noise-adapted HMMs compared

to the methods using noise-matched HMMs and log MMSE. The experimental analysis

showed that HMM adaptation to model noisy speech with parallel model combination

is effective to achieve both noise robust decoding and to obtain state sequences which

match the clean HMMs as a practical method. Consequently, the upper limits of PESQ

and NCM scores were raised.

The method to improve the decoding accuracy was discussed in Chapter 5 but when

decoding errors occur, wrong speech segments are produced in the reconstructed speech.

This may reduce speech intelligibility of the output speech. Therefore, the former part

of Chapter 6 discussed confidence measuring to first identify and then to compensate

for the influence of decoding errors. A novel method to measure frame-by-frame and

phoneme-by-phoneme confidence was studied and then enhanced speech was produced

by combining HMM-based speech with log MMSE according to the phoneme-by-phoneme

confidence and evaluated. The proposed confidence measure and combined speech im-

proved PESQ scores at low SNRs, specifically in babble noise. The benefit was, how-

ever, limited and NCM scores were rather decreased by introducing log MMSE segments

which include residual and musical noise. To improve the performance of the proposed

HMM-based speech enhancement from another point of view, the chapter then explored
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a method to reduce over-smoothing in the synthesised parameters by using the global

variance model. The evaluation in clean and noisy conditions showed that the method

using the global variance is effective to improve the baseline performance of the proposed

method in terms of PESQ.

Finally, the proposed HMM-based speech enhancement was examined by objective

and subjective tests in Chapter 7 to evaluate total performance of the proposed method

comparing with baseline performance given by no noise compensation and log MMSE

representing the conventional filtering approach. The objective tests have shown that

the proposed HMM-based speech enhancement has significant superiority to the conven-

tional methods in terms of PESQ at low SNR conditions in white noise and babble noise.

Additionally, the performance in PESQ is further improved over the noise conditions by

applying the global variance model. The objective tests were also evaluated in terms of

NCM, which represents an objective score of speech intelligibility. The performance of

the proposed HMM-based speech enhancement kept stable over the noise conditions and

consequently, it brought the proposed method superiority to the conventional methods

at low SNR conditions. Then the subjective tests for speech quality and intelligibil-

ity have been carried out. These tests have revealed the superiority of the proposed

speech enhancement further explicitly. The overall evaluation of the proposed HMM-

based methods in the three-way MOS listening test surpassed both log MMSE and no

noise compensation over all the noise conditions. Similarly, the subjective word recogni-

tion test also showed an advantage of the proposed methods in speech intelligibility to

log MMSE in low SNR conditions such as -5 dB.

8.2 Key Findings

The main finding of this work is that HMM-based speech enhancement can produce

enhanced speech that is either better or comparable to speech produced from conventional

methods of speech enhancement. Specifically, the HMM-based enhancement is more

effective at low SNRs where conventional methods break down. Several other key findings

have also been discovered and are highlighted below.
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8.2.1 Speech Production Model and Features

The STRAIGHT vocoder was employed as the speech production model in this work and

this model has shown good performance with the parameters synthesised from statisti-

cal models (i.e., HMMs). Originally, STRAIGHT requires a smoothed time-frequency

spectral surface, a time-frequency aperiodicity measure and a fundamental frequency

contour of speech for speech reconstruction [71]. To apply statistical models of speech to

the STRAIGHT speech production model, Mel-cepstrum-based acoustic features, which

are known to model speech effectively [88], such as Mel-Generalised Cepstrum-Based

Line Spectrum Pair (MGC-LSP), have successfully been applied to various text-to-speech

(TTS) applications, in which MGC-LSP vectors synthesised from trained HMMs are con-

verted to the set of STRAIGHT features and then reconstructed by STRAIGHT [119].

The work proposed in this thesis, however, needs more statistically discriminative acous-

tic features because this work also requires the HMM decoding process to acquire a model

and state sequence from noisy speech unlike TTS applications. Therefore, MFCCs, which

have successfully been applied to practical ASR applications [89, 90], were employed as

the spectral feature in this work to achieve good performance at low SNR conditions. As

a result it was found that using MFCCs as a speech feature for accurate HMM decoding

and using STRAIGHT for high quality speech reconstruction is effective to achieve high

quality HMM-based speech enhancement even at low SNR conditions such as -5 dB.

8.2.2 Unconstrained Speech Input

Statistical models of speech were configured as context-dependent (CD)-triphone HMMs

in this work to avoid any speech constraints placed on the enhancement system that

whole-word models or explicit language models would impose. CD-triphone HMMs re-

solve the lack of variety which monophone models hold. Additionally, they can avoid

either overfitting or underfitting by employing the tree-based clustering [94] which also

enables untrained models to be classified into the clusters. Therefore, the restriction of

vocabulary which is a one of the biggest problem on whole-word HMMs is also resolved.

Since the possible sequences of CD-triphone HMMs are constrained by the context of

speech, i.e. the previous phoneme and the next phoneme, the decoding accuracy of CD-



226 Chapter 8

triphone HMMs with no language model is comparable to whole-word HMMs using a

language model as shown in Figure 4.18. Moreover, Table 4.15 has reported that the

performance of CD-triphone on speech synthesis is also the same level as whole-word

HMMs. Therefore, using CD-triphone HMMs is an important choice from the aspect of

both performance and practicality.

8.2.3 Noise Robustness

The techniques to adapt clean HMMs to model noisy speech, which include parallel model

combination, the Gaussian-log normal mapping and the unscented transform are also

vital to achieve good performance and practicality. HMM adaptation using parallel model

combination has enabled this work to be robust to noise without noise information and

noise matched models a priori, and it also raised the baseline performance by resolving

the problem brought by inconsistency in the state allocation between clean HMMs and

noise-matched HMMs which is referred to as Figure 5.1. The effectiveness of the HMM

adaptation is shown in Figures 5.5 and 5.6.

8.2.4 Further Impruvement in Speech Quality

To give further refinement to the proposed method, compensation for over-smoothing in

the synthesised parameters were then applied. Specifically, the speech synthesis algorithm

using the global variance model, referred to as Equation (6.20), was implemented to

emphasise the formants in the synthesised parameters and then examined. The test

results have shown that this refinement is effective to raise the baseline performance of

the system in terms of both PESQ and subjective quality tests as shown in Figure 7.1 and

Table 7.7. Additionally, a new method to mitigate the influence of decoding errors was

also applied. This method is a two stage process of first identifying errors and secondly

applying compensation. The overview of the first stage is illustrated in Figure 6.1 while

the stage 2 is depicted in Figure 6.2. As a total evaluation, this method improved neither

objective nor subjective performance as shown Figures 7.1 - 7.6 because as long as some

segments in HMM-based speech, which does not contain background noise, are replaced

with non-clean speech, improvement of the quality and intelligibility is not be expected

regardless of whether the confidence measure is true or false. However, the first stage of
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the method, i.e. the process to identifying decoding errors, has shown meaningful results,

especially at low SNRs such as -5 dB as shown in Figure 6.3, and it may have a use other

applications.

In conclusion, this work achieved HMM-based speech enhancement which shows

significantly high performance by integrating the preceding techniques.

8.3 Further Work

This section proposes some suggestions for further work which may improve the proposed

method of HMM-based speech enhancement.

8.3.1 DNN-HMM

Recently, Deep Neural Network (DNN) with multiple hidden layers has successfully been

applied to speech processing applications. For example, ASR which uses context depen-

dent deep neural network hidden Markov Models (CD-DNN-HMMs) has been proposed

and has shown that it significantly outperforms HMMs while statistical parametric speech

synthesis which replaces the decision tree-based clustering process with DNN has been

presented for text-to-speech applications [120, 121]. Applying these technique to this

work can be challenging topic to achieve technical breakthrough.

8.3.2 Speech Production Model

Recent research has evaluated a wide range of vocoders and reported an experimental

comparison [66]. The report was aimed at statistical parametric speech synthesis (SPSS)

but it can be a good reference to examine and employ other speech production mod-

els apart from STRAIGHT for HMM-based speech enhancement. An improved speech

production model is likely to improve the resulting speech at both high and low SNRs.

8.3.3 Non-Stationary Noise Model

In the noise adaptation process, the current work has assumed that the noise data is

stationary over the entire length of the utterance. Therefore, the decoding accuracy

may be improved by employing a time varying non-stationary noise model specifically in
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babble noise or other non-stationary noise.
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