50 research outputs found

    Online Admission Control and Embedding of Service Chains

    Full text link
    The virtualization and softwarization of modern computer networks enables the definition and fast deployment of novel network services called service chains: sequences of virtualized network functions (e.g., firewalls, caches, traffic optimizers) through which traffic is routed between source and destination. This paper attends to the problem of admitting and embedding a maximum number of service chains, i.e., a maximum number of source-destination pairs which are routed via a sequence of to-be-allocated, capacitated network functions. We consider an Online variant of this maximum Service Chain Embedding Problem, short OSCEP, where requests arrive over time, in a worst-case manner. Our main contribution is a deterministic O(log L)-competitive online algorithm, under the assumption that capacities are at least logarithmic in L. We show that this is asymptotically optimal within the class of deterministic and randomized online algorithms. We also explore lower bounds for offline approximation algorithms, and prove that the offline problem is APX-hard for unit capacities and small L > 2, and even Poly-APX-hard in general, when there is no bound on L. These approximation lower bounds may be of independent interest, as they also extend to other problems such as Virtual Circuit Routing. Finally, we present an exact algorithm based on 0-1 programming, implying that the general offline SCEP is in NP and by the above hardness results it is NP-complete for constant L.Comment: early version of SIROCCO 2015 pape

    Adaptive Knobs for Resource Efficient Computing

    Get PDF
    Performance demands of emerging domains such as artificial intelligence, machine learning and vision, Internet-of-things etc., continue to grow. Meeting such requirements on modern multi/many core systems with higher power densities, fixed power and energy budgets, and thermal constraints exacerbates the run-time management challenge. This leaves an open problem on extracting the required performance within the power and energy limits, while also ensuring thermal safety. Existing architectural solutions including asymmetric and heterogeneous cores and custom acceleration improve performance-per-watt in specific design time and static scenarios. However, satisfying applications’ performance requirements under dynamic and unknown workload scenarios subject to varying system dynamics of power, temperature and energy requires intelligent run-time management. Adaptive strategies are necessary for maximizing resource efficiency, considering i) diverse requirements and characteristics of concurrent applications, ii) dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal and energy constraints. This dissertation proposes such adaptive techniques for efficient run-time resource management to maximize performance within fixed budgets under unknown and dynamic workload scenarios. Resource management strategies proposed in this dissertation comprehensively consider application and workload characteristics and variable effect of power actuation on performance for pro-active and appropriate allocation decisions. Specific contributions include i) run-time mapping approach to improve power budgets for higher throughput, ii) thermal aware performance boosting for efficient utilization of power budget and higher performance, iii) approximation as a run-time knob exploiting accuracy performance trade-offs for maximizing performance under power caps at minimal loss of accuracy and iv) co-ordinated approximation for heterogeneous systems through joint actuation of dynamic approximation and power knobs for performance guarantees with minimal power consumption. The approaches presented in this dissertation focus on adapting existing mapping techniques, performance boosting strategies, software and dynamic approximations to meet the performance requirements, simultaneously considering system constraints. The proposed strategies are compared against relevant state-of-the-art run-time management frameworks to qualitatively evaluate their efficacy

    On Performance Optimization and Quality Control for Approximate-Communication-Enabled Networks-on-Chip

    Get PDF
    For many applications showing error forgiveness, approximate computing is a new design paradigm that trades application output accuracy for mitigating computation/communication effort, which results in performance/energy benefit. Since networks-on-chip (NoCs) are one of the major contributors to system performance and power consumption, the underlying communication is approximated to achieve time/energy improvement. However, performing approximation blindly causes unacceptable quality loss. In this article, first, an optimization problem to maximize NoC performance is formulated with the constraint of application quality requirement, and the application quality loss is studied. Second, a congestion-aware quality control method is proposed to improve system performance by aggressively dropping network data, which is based on flow prediction and a lightweight heuristic. In the experiments, two recent approximation methods for NoCs are augmented with our proposed control method to compare with their original ones. Experimental results show that our proposed method can speed up execution by as much as 29.42% over the two state-of-the-art works

    Application Centric Networks-On-Chip Design Solutions for Future Multicore Systems

    Get PDF
    With advances in technology, future multicore systems scaled to 100s and 1000s of cores/accelerators are being touted as an effective solution for extracting huge performance gains using parallel programming paradigms. However with the failure of Dennard Scaling all the components on the chip cannot be run simultaneously without breaking the power and thermal constraints leading to strict chip power envelops. The scaling up of the number of on chip components has also brought upon Networks-On-Chip (NoC) based interconnect designs like 2D mesh. The contribution of NoC to the total on chip power and overall performance has been increasing steadily and hence high performance power-efficient NoC designs are becoming crucial. Future multicore paradigms can be broadly classified, based on the applications they are tailored to, into traditional Chip Multi processor(CMP) based application based systems, characterized by low core and NoC utilization, and emerging big data application based systems, characterized by large amounts of data movement necessitating high throughput requirements. To this order, we propose NoC design solutions for power-savings in future CMPs tailored to traditional applications and higher effective throughput gains in multicore systems tailored to bandwidth intensive applications. First, we propose Fly-over, a light-weight distributed mechanism for power-gating routers attached to switched off cores to reduce NoC power consumption in low load CMP environment. Secondly, we plan on utilizing a promising next generation memory technology, Spin-Transfer Torque Magnetic RAM(STT-MRAM), to achieve enhanced NoC performance to satisfy the high throughput demands in emerging bandwidth intensive applications, while reducing the power consumption simultaneously. Thirdly, we present a hardware data approximation framework for NoCs, APPROX-NoC, with an online data error control mechanism, which can leverage the approximate computing paradigm in the emerging data intensive big data applications to attain higher performance per watt

    A lattice-theoretic framework for circular assume-guarantee reasoning

    Get PDF
    We develop an abstract lattice-theoretic framework within which we study soundness and other properties of circular assume-guarantee (A-G) rules constrained by side conditions. We identify a particular side condition, non-blockingness, which admits an intelligible inductive proof of the soundness of circular A-G reasoning. Besides, conditional circular rules based on non-blockingness turn out to be complete in various senses and stronger than a large class of sound conditional A-G rules. In this respect, our framework enlightens the foundations of circular A-G reasoning. Due to its abstractness, the framework can be instantiated to many concrete settings. We show several known circular A-G rules for compositional verification to be instances of our generic rules. Thus, we do the circularity-breaking inductive argument once to establish soundness of our generic rules, which then implies soundness of all the instances without resorting to technically complicated circularity-breaking arguments for each single rule. In this respect, our framework unifies many approaches to circular A-G reasoning and provides a starting point for the systematic development of new circular A-G rules.Wir entwickeln einen abstrakten verbandstheoretischen Rahmen in dem wir die Korrektheit und andere Eigenschaften bedingter zirkulaerer Assume-Guarantee- Regeln (A-G-Regeln) untersuchen. Wir isolieren eine besondere Nebenbedingung, non-blockingness, die zu einem verstaendlichen induktiven Beweis der Korrektheit zirkulaerer A-G-Regeln fuehrt. Ausserdem sind durch non-blockingness eingeschr aenkte zirkulaere Regeln vollstaendig und staerker als eine grosse Klasse von korrekten bedingten A-G-Regeln. So gesehen erhellt unsere Arbeit die Grundlagen des zirkulaeren A-G-Paradigmas.Aufgrund seiner Abstraktheit kann unser Rahmen zu vielen konkreten Formalismen instanziiert werden. Wir zeigen, dass mehrere bekannte A-G-Regeln zur kompositionalen Verifikation Instanzen unserer generischen Regeln sind. So ist der zirkularitaetsaufloesende Beweis der Korrektheit nur einmal fuer unsere generische Regeln zu fuehren, dann erben alle Instanzen Korrektheit, ohne dass noch einmal ein zirkularitaets-aufloesender Beweis noetig ist. In dieser Hinsicht stellt unser Rahmen eine einheitliche Plattform dar, die verschiedene Ausformungen des zirkulaeren A-G-Paradigmas umfasst und von der ausgehend systematisch neue zirkulaere A-G-Regeln entwickelt werden koennen
    corecore