10,519 research outputs found

    Non normal logics: semantic analysis and proof theory

    Full text link
    We introduce proper display calculi for basic monotonic modal logic,the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of display calculi, starting from a semantic analysis based on the translation from monotonic modal logic to normal bi-modal logic

    The lattice of Belnapian modal logics: Special extensions and counterparts

    Get PDF
    Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on:• introducing the classes (or rather sublattices) of so-called explosive, complete and classical Belnapian modal logics;• assigning to every normal modal logic three special conservative extensions in these classes;• associating with every Belnapian modal logic its explosive, complete and classical counterparts.We investigate the relationships between special extensions and counterparts, provide certain handy characterisations and suggest a useful decomposition of the lattice of logics containing BK

    Conservative Extensions and Satisfiability in Fragments of First-Order Logic : Complexity and Expressive Power

    Get PDF
    In this thesis, we investigate the decidability and computational complexity of (deductive) conservative extensions in expressive fragments of first-order logic, such as two-variable and guarded fragments. Moreover, we also investigate the complexity of (query) conservative extensions in Horn description logics with inverse roles. Aditionally, we investigate the computational complexity of the satisfiability problem in the unary negation fragment of first-order logic extended with regular path expressions. Besides complexity results, we also study the expressive power of relation-changing modal logics. In particular, we provide translations intto hybrid logic and compare their expressive power using appropriate notions of bisimulations

    Labelled calculi for lattice-based modal logics

    Full text link
    We introduce labelled sequent calculi for the basic normal non-distributive modal logic L and 31 of its axiomatic extensions, where the labels are atomic formulas of a first order language which is interpreted on the canonical extensions of the algebras in the variety corresponding to the logic L. Modular proofs are presented that these calculi are all sound, complete and conservative w.r.t. L, and enjoy cut elimination and the subformula property. The introduction of these calculi showcases a general methodology for introducing labelled calculi for the class of LE-logics and their analytic axiomatic extensions in a principled and uniform way

    The modal logic of arithmetic potentialism and the universal algorithm

    Full text link
    I investigate the modal commitments of various conceptions of the philosophy of arithmetic potentialism. Specifically, I consider the natural potentialist systems arising from the models of arithmetic under their natural extension concepts, such as end-extensions, arbitrary extensions, conservative extensions and more. In these potentialist systems, I show, the propositional modal assertions that are valid with respect to all arithmetic assertions with parameters are exactly the assertions of S4. With respect to sentences, however, the validities of a model lie between S4 and S5, and these bounds are sharp in that there are models realizing both endpoints. For a model of arithmetic to validate S5 is precisely to fulfill the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal Σ1\Sigma_1 theory. The main S4 analysis makes fundamental use of the universal algorithm, of which this article provides a simplified, self-contained account. The paper concludes with a discussion of how the philosophical differences of several fundamentally different potentialist attitudes---linear inevitability, convergent potentialism and radical branching possibility---are expressed by their corresponding potentialist modal validities.Comment: 38 pages. Inquiries and commentary can be made at http://jdh.hamkins.org/arithmetic-potentialism-and-the-universal-algorithm. Version v3 has further minor revisions, including additional reference

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness
    • …
    corecore