
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Admissibility of Π2-inference rules: Interpolation, model completion, and contact
algebras

Bezhanishvili, N.; Carai, L.; Ghilardi, S.; Landi, L.
DOI
10.48550/arXiv.2201.06076
10.1016/j.apal.2022.103169
Publication date
2023
Document Version
Final published version
Published in
Annals of Pure and Applied Logic
License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)
Link to publication

Citation for published version (APA):
Bezhanishvili, N., Carai, L., Ghilardi, S., & Landi, L. (2023). Admissibility of Π2-inference rules:
Interpolation, model completion, and contact algebras. Annals of Pure and Applied Logic,
174(1), Article 103169. https://doi.org/10.48550/arXiv.2201.06076,
https://doi.org/10.1016/j.apal.2022.103169

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 May 2024

https://doi.org/10.48550/arXiv.2201.06076
https://doi.org/10.1016/j.apal.2022.103169
https://dare.uva.nl/personal/pure/en/publications/admissibility-of-2inference-rules-interpolation-model-completion-and-contact-algebras(8decda14-c996-41c7-b83e-cd372bf79fe8).html
https://doi.org/10.48550/arXiv.2201.06076
https://doi.org/10.1016/j.apal.2022.103169


Annals of Pure and Applied Logic 174 (2023) 103169
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Admissibility of Π2-Inference Rules: interpolation, model 
completion, and contact algebras

Nick Bezhanishvili a, Luca Carai b,∗, Silvio Ghilardi c, Lucia Landi c

a Institute for Logic, Language and Computation, University of Amsterdam, P.O. Box 94242, 1090 GE 
Amsterdam, the Netherlands
b Dipartimento di Matematica, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 
Fisciano (SA), Italy
c Dipartimento di Matematica Federigo Enriques, Università degli Studi di Milano, Via Cesare Saldini 50, 
20133 Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2022
Received in revised form 11 July 
2022
Accepted 11 July 2022
Available online 18 July 2022

MSC:
03B45
03C10
06E25
54E05

Keywords:
Non-standard rules
Admissibility
Interpolation
Uniform interpolation
Model completions
Contact algebras

We devise three strategies for recognizing admissibility of non-standard inference 
rules via interpolation, uniform interpolation, and model completions. We apply our 
machinery to the case of symmetric implication calculus S2IC, where we also supply 
a finite axiomatization of the model completion of its algebraic counterpart, via the 
equivalent theory of contact algebras. Using this result we obtain a finite basis for 
admissible Π2-rules.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The use of non-standard rules has a long tradition in modal logic starting from the pioneering work of 
Gabbay [21], who introduced a non-standard rule for irreflexivity. While standard inference rules can be 
identified with universally quantified Horn formulas, non-standard rules correspond to formulas that allow 
extra universally quantified variables in their premises. Non-standard rules have been employed in temporal 
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logic in the context of branching time logic [9] and for axiomatization problems [22] concerning the logic of 
the real line in the language with the Since and Until modalities. General completeness results for modal 
languages that are sufficiently expressive to define the so-called difference modality have been obtained in 
[38]. For the use of the non-standard density rule in many-valued logics we refer to [33] and [36].

Recently, there has been a renewed interest in non-standard rules in the context of the region-based 
theories of space [37]. One of the key algebraic structures in these theories is that of contact algebras. These 
algebras form a discriminator variety, see, e.g., [5]. Compingent algebras are contact algebras satisfying two 
∀∃-sentences (aka Π2-sentences) [5,18]. De Vries [18] established a duality between complete compingent 
algebras and compact Hausdorff spaces. This duality led to new logical calculi for compact Hausdorff spaces 
in [3] for a two-sorted modal language and in [5] for a uni-modal language with a strict implication. Key 
to these approaches is a development of logical calculi corresponding to contact algebras. In [5] such a 
calculus is called the strict symmetric implication calculus and is denoted by S2IC. The extra Π2-axioms of 
compingent algebras then correspond to non-standard Π2-rules, which turn out to be admissible in S2IC. 
This generates a natural question of investigating admissibility of Π2-rules in S2IC studied in [5] and in 
general in logical calculi corresponding to varieties of modal algebras. In fact, rather little is known about 
the problem of recognizing admissibility for such non-standard rules, although this problem has already 
been raised in [38]. This is the question that we address in this paper.

We undertake a systematic study of admissibility of Π2-rules. As far as we are aware, this is a first 
attempt to study admissibility in the context of non-standard inference rules. In fact, we show that there 
are tools already available in the literature on modal logic that can be fruitfully employed for this aim: these 
tools include algorithms for deciding conservativity, as well as algorithms for computing local and global 
interpolants. We devise three different strategies for recognizing admissibility of Π2-rules over some system 
S. The definition of Π2-rules that we consider is taken from [5] and is close to that of Balbiani et al. [3].

The first strategy applies to a logic S with the interpolation property. We show that Π2-rules are effectively 
recognizable in S in case S has the interpolation property and conservativity is decidable in S. The second 
strategy applies to logics admitting local and global uniform interpolants, respectively. Global interpolants 
are strictly related to model completions and to axiomatizations of existentially closed structures [26], 
thus establishing a direct connection between Π2-rules and model-theoretic machinery. Directly exploiting 
this connection leads to our third strategy. We apply the third strategy to our main case study to show 
admissibility of various Π2-rules in S2IC, thus recovering admissibility results from [5] as special cases (we 
also show that the admissibility problem for S2IC is co-NExpTime-complete). The model completion we use 
to this aim is that of the theory of contact algebras. Finally, we prove the technically most challenging result 
of the paper: that the model completion of contact algebras is finitely axiomatizable. As a consequence of 
this result we obtain a finite basis for admissible Π2-rules in S2IC.

This paper is an extended version of [7]. It contains new results concerning additional methods for 
determining admissibility and computing complexity bounds. We also answer the problem left open in [7]
of finding a finite axiomatization of the model completion of contact algebras.

2. Preliminaries

A modal signature Σ is a finite signature comprising Boolean operators ∧, ∨, →, ↔, ¬, ⊥, 	 as well as 
additional operators of any arity called the modal operators. Out of Σ-symbols and out of a countable set 
of variables x, y, z, . . . , p, q, r, . . . one can build the set of propositional Σ-formulas. Σ-formulas might be 
indicated both with the greek letters ϕ, ψ, . . . and the latin capital letters F, G, . . . . Notations such as F (x)
mean that the Σ-formula F contains at most the variables from the tuple x; the notation F (ϕ/x) means 
the simultaneous componentwise substitution of the tuple of formulas ϕ for the tuple of variables x.
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A modal system S (over the modal signature Σ) is a set of Σ-formulas comprising tautologies, the 
distribution axioms1 for each modal operator �

�[ϕ, . . . , ψ → ψ′, . . . , ϕ] → (�[ϕ, . . . , ψ, . . . , ϕ] → �[ϕ, . . . , ψ′, . . . , ϕ])

and closed under the rules of modus ponens (MP) (from ϕ and ϕ → ψ infer ψ), uniform substitution (US) 
(from F (x) infer F (ψ/x)), and necessitation (N) (from ψ infer �[ϕ, . . . , ψ, . . . , ϕ]).

We write 
S ϕ or S 
 ϕ to mean that ϕ ∈ S. If 
S ϕ → ψ holds, we say that ψ is a local consequence of ϕ
(modulo S). We shall also need the global consequence relation ϕ 
S ψ: this relation holds when ψ belongs 
to the smallest set of formulas containing S and ϕ that is closed under modus ponens and necessitation 
(notice that closure under uniform substitution is not required).

We say that S is decidable iff the relation 
S ϕ is decidable. We also say that S is locally tabular iff for 
every finite tuple of propositional variables x there are finitely many formulas ψ1(x), . . . , ψn(x) such that 
for every further formula ϕ(x) there is some i = 1, . . . , n such that 
S ϕ ↔ ψi.

We say that S has the (local) interpolation property iff for every pair of Σ-formulas ϕ(x, y), ψ(y, z) such 
that 
S ϕ → ψ there is a formula θ(y) such that 
S ϕ → θ and 
S θ → ψ. Similarly, we say that S
has the global interpolation property iff for every pair of Σ-formulas ϕ(x, y), ψ(y, z) such that ϕ 
S ψ there 
is a formula θ(y) such that ϕ 
S θ and θ 
S ψ. Using Lemma 2.1 below it is easily seen that the local 
interpolation property implies the global interpolation property (the converse however does not hold, even 
over S4, see [31,32]).

Let us call a definable modality or simply a modality any formula M(x) (where only the variable x occurs) 
such that x 
S M(x) and 
S M(x1 ∧ x2/x) ↔ M(x1/x) ∧M(x2/x) (notice that 
S M(	/x) follows as a 
consequence).

Lemma 2.1 (Deduction). If ϕ 
S ψ holds, there is a modality M(x) such that 
S M(ϕ/x) → ψ.

Proof. The required modality depends on the derivation and is built up inductively as follows. For length 1 
derivations consisting of axioms or of ϕ, we take M(x) to be x. If ψ is obtained from ψ′ → ψ and ψ′ via 
modus ponens, then by induction we have modalities M1(x), M2(x) such that 
S M1(ϕ/x) → (ψ′ → ψ) and 

S M2(ϕ/x) → ψ′. Then we get 
S M1(ϕ/x) ∧M2(ϕ/x) → ψ and M1(x) ∧M2(x) is our desired modality. 
If ψ is obtained by the necessitation rule, it is of the kind �[θ, . . . , ψ′, . . . , θ] and we have by induction a 
modality M(x) such that 
S M(ϕ/x) → ψ′; we then get by necessitation and normality


S �[θ, . . . ,M(ϕ/x), . . . , θ] → �[θ, . . . , ψ′, . . . , θ].

Since 
S ⊥ → θ, by iterated applications of necessitation and normality, we obtain


S �[⊥, . . . ,M(ϕ/x), . . . ,⊥] → �[θ, . . . ,M(ϕ/x), . . . , θ]

and also


S �[⊥, . . . ,M(ϕ/x), . . . ,⊥] → �[θ, . . . , ψ′, . . . , θ]

by transitivity of implication. Thus, 
S �[⊥, . . . , M(ϕ/x), . . . , ⊥] → ψ. It is straightforward to see that 
�[⊥, . . . , M(x), . . . , ⊥] is a modality. �
1 Extension to non-normal operators needs to be investigated.
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Lemma 2.2 (Replacement). For every n-tuple of variables x := x1, . . . , xn, for every formula ϕ(x, y), and 
for every pair of n-tuples of formulas ψ := ψ1, . . . , ψn, ψ′ := ψ′

1, . . . ψ
′
n we have that

n∧
i=1

ψi ↔ ψ′
i 
S ϕ(ψ/x, y) ↔ ϕ(ψ′/x, y).

As a consequence, by Lemma 2.1, there is a modality M(x) (depending on ϕ, ψ, ψ′) such that


S

n∧
i=1

M(ψi ↔ ψ′
i/x) ∧ ϕ(ψ/x, y) → ϕ(ψ′/x, y).

Proof. We prove the statement by induction on ϕ. If ϕ is a propositional variable or its main connective is 
a Boolean connective, the statement is trivial. If the main connective of ϕ is a Box operator, it is sufficient 
to see that the following replacement rule

from ψ ↔ ψ′ infer �[θ, . . ., ψ, . . ., θ] ↔ �[θ, . . ., ψ′, . . ., θ]

is derivable. In fact, if 
S ψ ↔ ψ′, then 
S ψ → ψ′ and 
S �[θ, . . . , ψ, . . . , θ] → �[θ, . . . , ψ′, . . . , θ] follow. 
Analogously, �[θ, . . . , ψ′, . . . , θ] → �[θ, . . . , ψ, . . . , θ] and finally �[θ, . . . , ψ, . . . , θ] ↔ �[θ, . . . , ψ′, . . . , θ]. �

We say that S has a universal modality iff Σ contains a unary operator [∀] and S includes the following 
formulas:

[∀]ϕ → ϕ, [∀]ϕ → [∀][∀]ϕ,

ϕ → [∀]¬[∀]¬ϕ, [∀](ϕ → ψ) → ([∀]ϕ → [∀]ψ),∧
i[∀](ϕi ↔ ψi) → (�[ϕ1, . . . , ϕn] ↔ �[ψ1, . . . , ψn]) (for all � ∈ Σ).

For systems with universal modalities, Lemmas 2.1 and 2.2 can be simplified as follows:

Lemma 2.3 (Deduction-Replacement). Let S have a universal modality; then

(i): ϕ 
S ψ holds iff 
S [∀]ϕ → ψ;
(ii): the following formulas are provable

n∧
i=1

[∀](ψi ↔ ψ′
i) ∧ ϕ(ψ/x, y) → ϕ(ψ′/x, y)

for every pair of n-tuples of formulas ψ := ψ1, . . . , ψn, ψ′ := ψ′
1, . . . , ψ

′
n.

We finally introduce Π2-rules, which are the main objects of study of this paper.

Definition 2.4. Let F (x, p), G(x) be two formulas. A Π2-rule ρ is the set of pairs of formulas (ψ, θ) such that

ψ = F (ϕ/x, p) → χ and θ = G(ϕ/x) → χ

where ϕ is a tuple of formulas, χ is a formula, and the propositional letters in p do not occur in ϕ or χ. In 
that case we say that θ is obtained from ψ by an application of the rule ρ. We denote the rule ρ as follows

(ρ)
F (ϕ/x, p) → χ

G(ϕ/x) → χ
.
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The definition of Π2-rules follows the one of [5] and is close to that of Balbiani et al. [3]. We now consider 
the effect of the addition of Π2-rules to a system S.

Definition 2.5 (Proofs with Π2-rules). Let Θ be a set of Π2-rules. For a formula ϕ, we say that ϕ is derivable
in S using the Π2-rules in Θ, and write 
S+Θ ϕ, provided there is a proof ψ1, . . . , ψn such that ψn = ϕ and 
each ψi is an instance of an axiom of S, or is obtained either by (MP), (N) or by an application of a rule 
ρ ∈ Θ from some previous ψj ’s.

We are interested in characterizing those Π2-rules that can be freely used in a system without affecting 
its deductive power.

Definition 2.6. A Π2-rule ρ is admissible in the system S if for each formula ϕ, from 
S+ρ ϕ it follows that 

S ϕ. The admissibility problem for Π2-rules is the following: given a Π2-rule ρ and a system S, decide 
whether it is admissible or not in S.

In the rest of the paper we will study admissibility of Π2-rules.

3. Conservative extensions

In this section we describe how to determine whether a Π2-rule is admissible via conservative extensions. 
Conservative extensions in modal logics were investigated in [25] and in description logics in [24,30,8]; we 
recall here the related definition:

Definition 3.1. Let ϕ1(x), ϕ2(x, y) be Σ-formulas; we say that ϕ1(x) ∧ϕ2(x, y) is a conservative extension of 
ϕ1(x) in S iff for every further Σ-formula ψ(x), we have that


S ϕ1 ∧ ϕ2 → ψ ⇒ 
S ϕ1 → ψ.

The conservativity problem for S is the following: given ϕ1(x) and ϕ2(x, y) decide whether ϕ1(x) ∧ϕ2(x, y)
is a conservative extension of ϕ1(x) in S.

Theorem 3.2. Assume that S has the interpolation property. Then a Π2-rule ρ of the form

F (ϕ/x, p) → χ

G(ϕ/x) → χ

is admissible in S iff G(x) ∧ F (x, p) is a conservative extension of G(x) in S.

Proof. For the left-to-right side, assume that ρ is admissible and that 
S F (x, p) ∧G(x) → H(x). Then we 
have 
S F (x, p) → (G(x) → H(x)), and by admissibility 
S G(x) → (G(x) → H(x)) which is the same as 

S G(x) → H(x). This shows that G(x) ∧ F (x, p) is a conservative extension of G(x) in S.

For the converse, assume that G(x) ∧ F (x, p) is a conservative extension of G(x) in S and that


S F (ϕ(y)/x, p) → χ(y) .

Let x = x1, . . . , xn; since we have

n∧
(xi ↔ ϕi(y)) 
S F (x, p) ↔ F (ϕ(y)/x, p),
i=1
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by applying the Replacement Lemma 2.2, we obtain a modality M(x) such that


S

n∧
i=1

M(xi ↔ ϕi(y)) ∧ F (x, p) → F (ϕ(y)/x, p).

Thus, by transitivity of implication, we have


S

n∧
i=1

M(xi ↔ ϕi(y)) ∧ F (x, p) → χ(y);

that is equivalent to


S F (x, p) →
(

n∧
i=1

M(xi ↔ ϕi(y)) → χ(y)
)
.

By the interpolation property, there is θ(x) such that


S F (x, p) → θ(x) and 
S θ(x) →
(

n∧
i=1

M(xi ↔ ϕi(y)) → χ(y)
)
. (1)

The former entailment implies 
S G(x) ∧F (x, p) → θ(x) and so, by conservativity, we get 
S G(x) → θ(x). 
From the second entailment of (1), by transitivity, we then obtain


S G(x) →
(

n∧
i=1

M(xi ↔ ϕi(y)) → χ(y)
)
.

Applying the replacements ϕi(y)/xi, we finally get


S G(ϕ(y)/x) → χ(y),

showing that ρ is admissible. �
Remark 3.3. We underline that, without interpolation, the right-to-left implication of Theorem 3.2 may fail. 
In fact, let S be a locally tabular logic without interpolation (see [31,32] for examples) and suppose that 
interpolation fails for the entailment 
S F (x, p) → H(x, w). Let G(x) be the conjunction of the x-formulas 
implied by F (up to logical equivalence, there are only finitely many of them). Then G ∧ F is obviously 
conservative over G. However, the relative Π2-rule

F (ϕ/x, p) → χ

G(ϕ/x) → χ

is not admissible. Indeed, if it were, from 
S F (x, p) → H(x, w) we would obtain 
S G(x) → H(x, w)
implying that G(x) is an interpolant.

Thus, we have obtained the following:

Corollary 3.4. If S has the interpolation property and conservativity is decidable in S, then Π2-rules are 
effectively recognizable in S.
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Remark 3.5. It is proved in [25] that the conservativity problem is NexpTime-complete in the modal 
systems K,S5 and that it is in ExpSpace and NexpTime-hard in S4. All these logics have the interpolation 
property [32], so according to the results of this section, the same lower and upper bounds apply to the 
admissibility problem for Π2-rules.

4. Uniform interpolants

We now present another strategy to determine the admissibility of Π2-rules via (local and global) uniform 
interpolation: this is a strengthening of ordinary interpolation.

Definition 4.1. A uniform local pre-interpolant of a formula ϕ(x, y) wrt the variables x is a formula ∃lxϕ
such that: (i) in ∃lxϕ at most the variables y occur; (ii) for every formula ψ(y, z), we have


S ∃lxϕ → ψ iff 
S ϕ → ψ . (2)

Since 
S ϕ → ∃lxϕ holds as a special case by taking ψ equal to ∃lxϕ, if a uniform local pre-interpolant 
exists for every ϕ, then S has the interpolation property. The converse implication holds in case the logic 
is locally tabular, because in that case one can take as ∃lxϕ the conjunction of all formulas ψ(y) which are 
implied by ϕ.2 Uniform interpolants rarely exist, they are well studied in the literature [26].

In case uniform local pre-interpolants exist, we have a trivial criterion for conservativity (and consequently 
for admissibility of Π2-rules). This was already pointed out in [25], we repeat the same observation in our 
context.

Proposition 4.2. If the local uniform pre-interpolant ∃lpF exists, then a Π2-rule ρ of the form

F (ϕ/x, p) → χ

G(ϕ/x) → χ

is admissible in S iff


S G → ∃lpF. (3)

Proof. Notice that the hypothesis of Theorem 3.2 that S has the interpolation property can be replaced by 
the hypothesis that ∃lpF exists. Indeed, the interpolant required in the proof of the theorem can be taken 

to be ∃lpF . Hence Theorem 3.2 applies: ρ is admissible in S iff G(x) ∧ F (x, p) is a conservative extension of 
G(x) in S. By (2), this holds precisely iff 
S G → ∃lpF . �

In the remaining part of this section, we will be interested in global uniform interpolants: these are 
obtained by replacing in (2), local consequence relation by global consequence relation. In more detail:

Definition 4.3. A uniform global pre-interpolant of a formula ϕ(x, y) wrt the variables x is a formula ∃gxϕ
such that: (i) in ∃gxϕ at most the variables y occur; (ii) for every formula ψ(y, z), we have

∃gxϕ 
S ψ iff ϕ 
S ψ. (4)

2 It should be clear however that local tabularity alone is not sufficient for existence of local uniform pre-interpolants, because 
the set of formulas of the kind ψ(y, z) implied by ϕ is not finite, modulo equivalence in S: ordinary interpolation is needed for the 
conjunction over the finite set {ψ(y) | ϕ → ψ} to be a local uniform pre-interpolant.



8 N. Bezhanishvili et al. / Annals of Pure and Applied Logic 174 (2023) 103169
Since we will exclusively be interested in global uniform interpolants, we will write ∃xϕ for ∃gxϕ and 
when we speak of uniform interpolants, we will always mean global uniform interpolants. We write ∀xϕ for 
¬∃x¬ϕ; notice that, for every formula ψ(y, z), we have

ψ 
S ∀xϕ iff ψ 
S ϕ. (5)

Existence of local and global interpolants are independent: for instance, in the basic modal logic K local 
uniform interpolants exist and global uniform interpolants do not exist [28]. For the converse phenomena, 
it is sufficient to recall once more the counterexamples from [31,32] (notice that, in the locally tabular case, 
uniform local/global interpolants collapse to the corresponding ordinary local/global interpolants).

There is no evident reason why global uniform interpolants could lead to recognizability of Π2-rules, as 
it happens for the local uniform interpolants case (see Proposition 4.2 above). We will nevertheless show 
that this is the case when global uniform interpolants are accompanied by universal modalities.

In the remaining part of this section and in the next section, we assume that our modal system S has 
a universal modality. We may view our modal signature Σ as a first-order signature and Σ-formulas as 
terms of this signature. For a modal system S, an S-algebra is a Boolean algebra with operators (one 
operator of suitable arity for each � ∈ Σ) satisfying ϕ = 	 for every S-axiom ϕ. We call an S-algebra 
simple iff the universal first-order sentence ∀x ([∀]x = 	 ∨ [∀]x = ⊥) holds. This agrees with the standard 
definition from universal algebra, because it can be shown that congruences in an S-algebra bijectively 
correspond to [∀]-filters, i.e., filters F satisfying the additional condition that a ∈ F implies [∀]a ∈ F . A 
standard Lindenbaum construction proves the algebraic completeness theorem, namely that for every ϕ we 
have S 
 ϕ iff the identity ϕ = 	 holds in all S-algebras (and hence iff ϕ = 	 holds in all simple S-algebras, 
because S-algebras are a discriminator variety [27]).

We need also some definitions from unification theory. A formula [∀]ϕ(x) is said to be unifiable in S iff 
there is a substitution σ mapping the x := x1, . . . , xn to some formulas σ(x) := σ(x1), . . . , σ(xn) such that 

S [∀]ϕ(σ(x)/x). Such a substitution is said to be a unifier of [∀]ϕ in S. The unifier is said to be projective
iff we have in addition

[∀]ϕ(x) 
S
∧
i

(xi ↔ σ(xi)).

Notice that, by Lemma 2.2, this implies

[∀]ϕ(x) 
S ψ ↔ ψ(σ(x)/x) (6)

for every formula ψ(x).

Theorem 4.4. Let S have a universal modality. Then every formula [∀]ϕ which is unifiable in S has a 
projective unifier.3

Proof. This result follows from the proof of the unitarity of unification in discriminator varieties, see [10]
or also [35]. We give here a direct simple proof, obtained by a slight generalization of an argument from [1].

Let [∀]ϕ be unifiable; then there is a substitution σ such that 
S [∀]ϕ(σ(x)/x). Consider the substitution 
π mapping a variable x to

([∀]ϕ ∧ x) ∨ (¬[∀]ϕ ∧ σ(x)).

3 Despite this strong result, unifiability itself turns out to be undecidable for common modal systems with a universal modality, 
see [40].
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This substitution clearly enjoys the property (6), so we only need to check that it is a unifier for [∀]ϕ. 
Consider now a simple S-algebra A and a valuation V of the propositional formulas into the support of A. 
By induction, it is easy to see that for every formula ψ we have the following:

- if V ([∀]ϕ) = 	, then V (π(ψ)) = V (ψ);
- if V ([∀]ϕ) = ⊥, then V (π(ψ)) = V (σ(ψ)).

In particular, for ψ = [∀]ϕ, we have that if V ([∀]ϕ) = 	, then V (π([∀]ϕ)) = V ([∀]ϕ) = 	 and if V ([∀]ϕ) = ⊥, 
then V (π([∀]ϕ)) = V (σ([∀]ϕ)) = 	. Thus, for every simple algebra A and for every valuation V on the 
support of A, we have that V (π([∀]ϕ)) = 	 (notice that in a simple S-algebra, the only elements of the 
kind [∀]a are just 	 and ⊥). Since S is a discriminator variety, it is generated by its simple algebras, hence 
we have that π unifies [∀]ϕ. �

We need a technical lemma, showing a ‘Beck-Chevalley’ condition, namely that uniform interpolants are 
stable under substitution, in the following sense: suppose that the (global) uniform interpolant ∃xϕ of ϕ(x, y)
exists. This is a formula in the variables y := y1, . . . , ym, so that for a tuple of formulas ψ := ψ1, . . . , ψm, it 
makes sense to consider the formula (∃xϕ)(ψ/y). But then one can consider the formula ϕ(x, ψ/y) and the 
uniform interpolant ∃xϕ(x, ψ/y): if the ψ do not contain the x, the following lemma ensures that the two 
formulas are the same (modulo provable equivalence in S).

Lemma 4.5. Suppose that the formulas ψ do not contain the variables x and suppose that the uniform 
interpolant ∃xϕ of ϕ(x, y) exists. Then (∃xϕ)(ψ/y) is the uniform interpolant ∃xϕ(x, ψ/y).

Proof. We need to show that for every formula θ not involving the x, we have

(∃xϕ)(ψ/y) 
S θ iff ϕ(x, ψ/y) 
S θ.

Notice that since the y are used just as placeholders for substitutions, after a suitable renaming, we can 
freely suppose that the y do not occur in θ and in the ψ.

The left-to-right side comes from ϕ(x, y) 
S ∃xϕ, by applying the substitution mapping the y to the ψ. 
For the other side, assume that ϕ(x, ψ/y) 
S θ; by Lemma 2.2, we have (supposing that ψ := ψ1, . . . , ψm)

∧
i

(ψi ↔ yi) 
S ϕ(x, y) ↔ ϕ(x, ψ/y)

hence also

ϕ ∧
∧
i

(ψi ↔ yi) 
S θ

and

ϕ 
S M

(∧
i

(ψi ↔ yi)
)

→ θ

(for a suitable modality M). By the definition of a global uniform interpolant, we get

∃xϕ 
S M

(∧
(ψi ↔ yi)

)
→ θ
i
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and finally

(∃xϕ)(ψ/y) 
S θ

applying the substitution mapping the y to the ψ. �
Putting together Theorem 4.4 and Lemma 4.5, we can prove our characterization of Π2-rules in the 

presence of a universal modality and of uniform global interpolants.

Theorem 4.6. Suppose that S has uniform global interpolants and a universal modality. Then the rule ρ is 
admissible in S iff


S [∀]∀p(F (x, p) → z) → (G(x) → z). (7)

Proof. Suppose first that (7) holds and assume that the antecedent F (ϕ/x, p) → χ of the rule is provable 
in S. It follows from (5) and necessitation that


S [∀]∀p(F (ϕ/x, p) → χ).

Consider the substitution mapping the x to the ϕ and z to χ. By Lemma 4.5, applying such a substitution 
to ∀p(F (x, p) → z) yields a formula that is equivalent in S to ∀p(F (ϕ/x, p) → χ). Thus, (7) implies that


S [∀]∀p(F (ϕ/x, p) → χ) → (G(ϕ/x) → χ).

Therefore, 
S G(ϕ/x) → χ by modus ponens. This shows that ρ is admissible.
Conversely, suppose that ρ is admissible. Consider the formula

[∀]∀p(F (x, p) → z). (8)

This formula is unifiable. Indeed, a unifier is the substitution mapping z to 	 and the remaining variables 
to themselves.4 Thus, it has a projective unifier according to Theorem 4.4. Let us now make this projective 
unifier explicit. The variables occurring in (8) are the x and z. So, suppose that the unifier maps the 
x componentwise into certain formulas ϕ and z to a certain formula χ. Thus we have, according to the 
definition of a unifier


S [∀]∀p(F (ϕ/x, p) → χ).

Applying the reflexivity axiom for [∀] and (5), we get 
S F (ϕ/x, p) → χ, i.e.,


S G(ϕ/x) → χ

by the admissibility of ρ. Applying (6), we obtain

[∀]∀p(F (x, p) → z) 
S (G(x) → z) ↔ (G(ϕ/x) → χ)

and also

[∀]∀p(F (x, p) → z) 
S (G(x) → z)

by modus ponens. This implies (7) by Lemma (2.3)(i) and the transitivity axiom for [∀]. �
4 Notice that this argument requires Lemma 4.5 too, applied to the formula F (x, p) → z.



N. Bezhanishvili et al. / Annals of Pure and Applied Logic 174 (2023) 103169 11
We summarize the results of this section into the following:

Theorem 4.7. Suppose that S is decidable. Π2-rules are effectively recognizable in S in case that either

(i): S has computable local uniform interpolants or
(ii): S has a universal modality and computable global uniform interpolants.

The two conditions above are independent: in fact (i) applies also to modal systems (like K) without 
the universal modality. On the one hand, in the presence of a universal modality, the existence of uniform 
global interpolants is weaker than the existence of local uniform intepolants (if we have both local uniform 
interpolants and a universal modality, we can define ∃gxϕ as ∃lx[∀]ϕ). On the other hand, it is easy to check 
that in case we have both local uniform interpolants and a universal modality, the conditions for admissibility 
supplied by Theorem 4.6 and Proposition 4.2 are equivalent. For verifying this notice that if (7) is provable, 
then (3) is also provable, taking ∃lxF as z (because 
S F → ∃lxF ). The converse implication can be proved 
in ‘natural deduction style’ as follows: assume [∀]∀gp(F (x, p) → z) and G(x): then, it is possible to deduce 
F (x, p) → z by ∀gp(F (x, p) → z) 
S F (x, p) → z and Lemma 2.3(i); by existential quantifier introduction, 
you can get ∃lxF (x, p) → z and finally z by (3) and implication elimination (modus ponens).

5. Model completions

Uniform global interpolants are closely connected to model completions [26,34]. This connection paves 
an alternative way for recognizing admissibility of Π2-rules via algebraic and semantic methods.

5.1. An admissibility criterion

Before continuing, we need to recall a few results (restated as Theorems 5.1 and 5.4 below) from [5]. 
Since, in order to adapt them to our context, we need a slight generalization of these results, we provide 
the proofs in full detail.

With each Π2-rule ρ (see Definition 2.4), we associate the following ∀∃-statement in the first-order
language of S-algebras:

Π(ρ) := ∀x, z
(
G(x) � z ⇒ ∃y : F (x, y) � z

)
.

We denote by TS the equational first-order theory of simple non-degenerate S-algebras (an S-algebra is 
non-degenerate iff ⊥ 
= 	).

Theorem 5.1. Suppose that S has a universal modality. For each set Θ of Π2-rules and each formula ψ, we 
have

TS ∪ {Π(ρ) | ρ ∈ Θ} |= ψ = 	 ⇐⇒ 
S+Θ ψ.

Proof. The right-to-left direction is a trivial induction on the length of a proof witnessing 
S+Θ ψ. For the 
other direction, we need a modified version of Lindenbaum’s construction. Suppose that �S+Θ ψ. For each 
rule ρi ∈ Θ, we add a countably infinite set of fresh propositional letters to the set of existing propositional 
letters. Then we build the Lindenbaum algebra B over the expanded set of propositional letters, where the 
elements are the equivalence classes [ϕ] under provable equivalence in S + Θ. Next we construct a maximal 
[∀]-filter M of B such that [¬[∀]ψ] ∈ M and for every rule ρi ∈ Θ
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(ρi)
Fi(ϕ/x, p) → χ

Gi(ϕ/x) → χ

and formulas ϕ, χ:

(†) if [Gi(ϕ) → χ] /∈ M , then there is a tuple p such that [Fi(ϕ, p) → χ] /∈ M .

To construct M , let Δ0 := {[¬[∀]ϕ]}, a consistent set. We enumerate all formulas ϕ as (ϕk : k ∈ N) and 
all tuples (i, ϕ, χ) where i ∈ N and ϕ, χ are as in the particular rule ρi, and we build the sets Δ0 ⊆ Δ1 ⊆
· · · ⊆ Δn ⊆ · · · as follows (notice that, according to the construction below, for all n and θ ∈ Δn, we have 

S+Θ θ ↔ [∀]θ).

• For n = 2k, if �S+Θ
∧

Δn → [∀]ϕk, let Δn+1 = Δn ∪ {¬[∀]ϕk}; otherwise let Δn+1 = Δn.
• For n = 2k + 1, let (l, ϕ, χ) be the k-th tuple. If �S+Θ

∧
Δn → (Gl(ϕ) → χ), let Δn+1 = Δn ∪

{¬[∀](Fl(ϕ, p) → χ)}, where p is a tuple of propositional letters for ρl not occurring in ϕ, χ, and any of 
θ with θ ∈ Δn (we can take p from the countably infinite additional propositional letters which we have 
reserved for the rule ρl). Otherwise, let Δn+1 = Δn.

Let M be

{ [θ] | there are θ1, . . . , θn ∈
⋃
n∈N

Δi such that 
S+Θ θ1 ∧ · · · ∧ θn → θ}.

That M is a proper [∀]-filter not containing [ψ] follows from the fact that �S+Θ
∧

Δn → ⊥. This is clear for 
n = 0 and for any positive even n. For odd n = 2k+1, suppose that 
S+Θ

∧
Δk → [∀](Fl(ϕ, p) → χ) and that 

�S+Θ
∧

Δk → (Gl(ϕ) → χ). Then, by the reflexivity axiom [∀]ϕ → ϕ, we have 
S+Θ Fl(ϕ, p) → (
∧

Δk → χ)
and also (applying the rule ρl of the k-th tuple) 
S+Θ Gl(ϕ) → (

∧
Δk → χ), yielding a contradiction.

Also, by the even steps of the construction of the sets Δn, it contains either [[∀]θ] or [¬[∀]θ] for every 
θ, thus M is a maximal [∀]-filter. Finally, the odd steps of the construction of the sets Δn ensure that M
satisfies (†): in fact, if [Gi(ϕ) → χ] /∈ M , then by step n = 2k + 1, we have [¬[∀](Fl(ϕ, p) → χ)] ∈ M and 
if also [Fi(ϕ, p) → χ] ∈ M , then [[∀](Fi(ϕ, p) → χ)] ∈ M (because M is a [∀]-filter) and so M would not be 
proper, a contradiction. Therefore, we can conclude that M satisfies all the desired properties.

By (†), the quotient of B by M satisfies each Π(ρi). This quotient is a simple algebra, because M is 
maximal as a [∀]-filter. Moreover, since [¬[∀]ψ] ∈ M , we have that [¬[∀]ψ] maps to 	, so [[∀]ψ] maps to ⊥
in the quotient. Thus, [ϕ] does not map to 	 in the quotient, and hence TS ∪ {Π(ρ) | ρ ∈ Θ} 
|= ψ = 	. �

We will use &, or, ∼, and ⇒ to denote first-order connectives in order to distinguish them from Boolean 
algebra operations. 

∧
and 

∨
will denote finite first-order conjunctions and disjunctions.

Definition 5.2. Given a quantifier-free first-order formula Φ(x) in the language of S-algebras, we associate 
with it the term (aka the propositional modal formula) Φ∗(x) as follows:

(t(x) = u(x))∗ = [∀](t(x) ↔ u(x))

(∼Ψ)∗(x) = ¬Ψ∗(x)

(Ψ1(x) & Ψ2(x))∗ = Ψ∗
1(x) ∧ Ψ∗

2(x).

The following lemma is immediate:

Lemma 5.3. Let B be a simple S-algebra and let Φ(x) be a quantifier-free formula. Then we have

B |= Φ(a/x) iff B |= (Φ(a/x))∗ = 	,
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for every tuple a from B.

Theorem 5.4 (Admissibility Criterion). A Π2-rule ρ is admissible in S iff for each simple S-algebra B there 
is a simple S-algebra C such that B is a substructure of C and C |= Π(ρ).

Proof. (⇒) Suppose that the rule ρ

(ρ)
F (ϕ/x, p) → χ

G(ϕ/x) → χ

is admissible in S. It is sufficient to show that there exists a model C of the theory

T = TS ∪ {Π(ρ)} ∪ Δ(B)

where Δ(B) is the diagram of B [15, p. 68]. Suppose for a contradiction that T has no models, hence is 
inconsistent. Then, by compactness, there exists a quantifier-free first-order formula Ψ(x) and a tuple x of 
variables corresponding to some a ∈ B such that

TS ∪ {Π(ρ)} |= ∼Ψ(a/x) and B |= Ψ(a/x).

By Theorem 5.1, S + ρ is complete with respect to the simple S-algebras satisfying Π(ρ). Therefore, by 
Lemma 5.3, we have TS ∪ {Π(ρ)} |= (∼Ψ(x))∗ = 	 and also 
S+ρ (∼Ψ(x))∗, where (−)∗ is the translation 
given in Definition 5.2. By admissibility, 
S (∼Ψ(x))∗. Thus, for the valuation v into B that maps x to a, 
we have v((∼Ψ(x))∗) = 1, so v(Ψ∗(x)) = 0. This contradicts the fact that B |= Ψ(a/x). Consequently, T
must be consistent, and hence it has a model.

(⇐) Suppose 
S F (ϕ, p) → χ with p not occurring in ϕ, χ. Let B be a simple S-algebra and let v
be a valuation on B. By assumption, there is a simple S-algebra C such that B is a substructure of C
and C |= Π(ρ). Let i : B ↪→ C be the inclusion. Then v′ := i ◦ v is a valuation on C. For any c ∈ C, 
let v′′ be the valuation that agrees with v′ except for the fact that it maps the p into the c. Since 

S F (ϕ/x, p) → χ, by the algebraic completeness theorem5 we have v′′(F (ϕ/x, p) → χ) = 	. This means 
that for all c ∈ C, we have F (v′(ϕ), c) ≤ v′(χ). Therefore, C |= ∀y

(
F (v′(ϕ), y) ≤ v′(χ)

)
. Since C |= Π(ρ), 

we have C |= G(v′(ϕ)) ≤ v′(χ). Thus, as G(v′(ϕ)) ≤ v′(χ) holds in C, we have that G(v(ϕ)) ≤ v(χ) holds 
in B. Consequently, v(G(ϕ) → χ) = 	. Applying the algebraic completeness theorem again yields that 

S G(ϕ) → χ because B is arbitrary, and hence ρ is admissible in S. �
5.2. Admissibility and model completeness

We now investigate the connections between admissibility and model completions.

Theorem 5.5. Suppose that the universal theory TS has a model completion T �
S . Then a Π2-rule ρ is admis-

sible in S iff T �
S |= Π(ρ).

Proof. Applying Theorem 5.4, we show that T �
S |= Π(ρ) holds iff every simple S-algebra B can be embedded 

into some simple S-algebra C which satisfies Π(ρ). This is shown below using the fact that Π(ρ) is a Π2-
sentence. Recall that models of T �

S are just the existentially closed simple S-algebras (see [15, Proposition 
3.5.15]).

5 This is Theorem 5.1 for Θ = ∅.
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Suppose for the left to right direction that T �
S |= Π(ρ) holds and let B be any simple S-algebra. Then B

embeds into an existentially closed simple S-algebra C (this is a general model-theoretic fact [15]). Thus, C
is a model of T �

S and hence C |= Π(ρ).
Conversely, suppose that every simple S-algebra B can be embedded into some simple S-algebra C which 

satisfies Π(ρ). Pick B such that B |= T �
S and let Π(ρ) be ∀x∃yH(x, y), where H is quantifier-free. Let b be 

a tuple from the support of B. Let C be an extension of B such that C |= Π(ρ). Then C |= ∃yH(b, y). As B
is existentially closed, this immediately entails that B |= ∃yH(b, y). Since the b was arbitrary, we conclude 
that B |= Π(ρ), as required. �
Remark 5.6. Theorems 4.6 and 5.5 are in fact equivalent statements: indeed the existence of global uniform 
interpolants and the existence of a model completion for TS are equivalent statements (as can be deduced 
from slight modifications of the results in [26,34]) and if one considers how quantifiers are eliminated in T �

S
via global uniform interpolants [26], one can translate the statements of Theorems 4.6 and 5.5 into each 
other. We nevertheless point out that the two theorems are proved via completely different tools (namely 
unification theory and model theoretic techniques): this is quite a notable fact.

According to Theorem 5.5, checking whether a Π2-rule is admissible now amounts to checking whether 
T �
S |= Π(ρ) holds. The latter can be done via quantifier elimination in T �

S . We give sufficient conditions for 
this to be effective.

Corollary 5.7. Let S be decidable and locally tabular. Assume also that simple S-algebras enjoy the amalga-
mation property. Then admissibility of Π2-rules in S is effective.

Proof. Local tabularity of S implies local finiteness6 of TS . For universal locally finite theories in a finite 
language, amalgamability is a necessary and sufficient condition for existence of a model completion [29,39]. 
Quantifier elimination in T �

S is effective because there are only finitely many non-equivalent formulas in a 
fixed finite number of variables, because of Lemma 5.3 and because of the following folklore lemma. �
Lemma 5.8. The quantifier-free formula R(x) provably equivalent in T �

S to an existential formula ∃yH(x, y)
is the strongest quantifier-free formula G(x) implied (modulo TS) by H(x, y).

Proof. Recall that TS and T �
S are co-theories [15], i.e. they prove the same universal formulas. Thus we have 

the following chain of equivalences:

TS 
 H(x, y) → G(x)
T �
S 
 H(x, y) → G(x)

T �
S 
 ∃yH(x, y) → G(x)
T �
S 
 R(x) → G(x)

TS 
 R(x) → G(x)

yielding the claim. �
The usefulness of Corollary 5.7 lies in the fact that its only real requirement is the amalgamation property, 

besides local tabularity. Whenever local tabularity holds, finitely presented algebras are finite, thus it is 
sufficient to establish amalgamability for finite algebras: in fact, two algebras B1, B2 amalgamate over a 

6 Recall that a class of algebras is locally finite if every finitely generated algebra in this class if finite, see [14, Section 14.2] for 
the connection between local finiteness and local tabularity.
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common subalgebra A iff TS ∪Δ(B1) ∪Δ(B2) is consistent iff (by compactness and local finiteness) there are 
amalgamating finite subalgebras B0

1, B0
2 of B1, B2, respectively. Whenever a “useful” duality is established, 

amalgamation of finite algebras turns out to be equivalent to co-amalgamation for finite frames, which is 
usually much easier to check. We will now give a few simple examples and counterexamples.

Example 5.9. If the modal signature contains only the universal modality [∀], we have the locally tabular 
logic S5. Finite simple non-degenerate S5-algebras are dual to finite nonempty sets and onto maps, for which 
co-amalgamation trivially holds (by standard pullback construction), see, e.g., [14, Thm. 14.23].

Example 5.10. The logic of the difference modality [17,38] has in addition to the global modality a unary 
operator D subject to the axioms

[∀]ϕ ↔ (ϕ ∧ ¬D¬ϕ), ϕ → ¬D¬Dϕ, DDϕ → ϕ ∨Dϕ.

This logic axiomatizes Kripke frames where the accessibility relation is inequality. Local finiteness can be 
established for instance by the method of irreducible models [23]. Amalgamation however fails. To see this, 
notice that the simple frames for this logic are sets endowed with a relation E such that w1 
= w2 → w1Ew2. 
Now let X = {x1, . . . , x5}, Y = {y1, . . . , y5} and Z = {z1, z2}. Let xiEXxj iff i 
= j for 1 ≤ i, j ≤ 5, yiEY yj
iff i 
= j for 1 ≤ i, j ≤ 5 and ziEZzj for i, j = 1, 2. Let also f : X → Z and g : Y → Z be such that 
f(x1) = f(x2) = f(x3) = g(y1) = g(y2) = z1 and f(x4) = f(x5) = g(y3) = g(y4) = g(y5) = z2. Then it is 
easy to see that f and g are p-morphisms. If a co-amalgam exists, then there must exist a frame (U, EU)
and onto p-morphims h : U → X and j : U → Y such that f ◦ h = g ◦ j. However, an easy argument shows 
that U should contain more than 5 points. Moreover, for u, v ∈ U with u 
= v we should have uEUv. But 
then there will be distinct points in U mapped by h to some xi, which would entail that xi is reflexive, 
which is a contradiction.

6. Symmetric strict implication and contact algebras

In this section we apply the results of Section 5 (in particular, Corollary 5.7) to the case of contact 
algebras. We first review some material from [5]. Let us consider the modal signature comprising, besides 
the universal modality [∀], a binary operator �, which we call strict implication, subject to the following 
axioms (we keep the same enumeration as in [5] and add axiom (A0) which is seen as a definition of [∀]
in [5]).

(A0) [∀]ϕ ↔ (	 � ϕ),
(A1) (⊥ � ϕ) ∧ (ϕ � 	),
(A2) [(ϕ ∨ ψ) � χ] ↔ [(ϕ � χ) ∧ (ψ � χ)],
(A3) [ϕ � (ψ ∧ χ)] ↔ [(ϕ � ψ) ∧ (ϕ � χ)],
(A4) (ϕ � ψ) → (ϕ → ψ),
(A5) (ϕ � ψ) ↔ (¬ψ � ¬ϕ),
(A8) [∀]ϕ → [∀][∀]ϕ,
(A9) ¬[∀]ϕ → [∀]¬[∀]ϕ,

(A10) (ϕ � ψ) ↔ [∀](ϕ � ψ),
(A11) [∀]ϕ → (¬[∀]ϕ � ⊥).
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Inference rules are modus ponens (for →) and necessitation (for [∀]). It can be shown (see [5]) that this 
system (called symmetric strict implication calculus S2IC) matches our requirements from Section 2.7

We recall that a symmetric strict implication algebra (S2I-algebra for short) is a pair B = (B, �), where 
B is a Boolean algebra and �: B×B → B a binary operation validating the axioms (A0)-(A11) [5, Section 
3]. Then axioms (A0), (A8)-(A11) yield that [∀] : B → B is an S5-operator on B such that for each a ∈ B

we have [∀]a = 1 � a. Then the variety of S2I-algebras is semi-simple (every subdirectly irreducible algebra 
is simple) and simple S2I-algebras are those S2I-algebras B = (B, �) where we have that a � b is either 0
or 1. This entails that S2IC is locally tabular (in algebraic terms, the variety of S2I-algebras is locally finite). 
For the proofs of all these facts we refer to [5, Section 3]. Thus, in a simple non-degenerate S2I-algebra, 
the operation � is in fact the characteristic function of a binary relation. Given a simple S2I-algebra B we 
define ≺ by setting

a ≺ b iff a � b = 1.

Then ≺ satisfies the following axioms:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a.

Conversely, if ≺ is a binary relation on B satisfying (S1)–(S6), we define �: B ×B → B by

a � b =
{

1 if a ≺ b

0 otherwise.

Then (B, �) is a simple S2I-algebra (i.e., satisfies (A0)–(A11) and � has values in {0, 1}). Moreover,

[∀]a =
{

1 if a = 1
0 if a 
= 1.

Finally, we note that this correspondence is one-to-one [5, Section 3].
Non-degenerate Boolean algebras endowed with a relation ≺ satisfying the above conditions (S1)-(S6) 

are called contact algebras.8 The class of all contact algebras and the corresponding first-order theory are 
both denoted by Con. The above considerations suggest translations from the theory of simple S2I-algebras 
into the theory of contact algebras, and vice versa. We are interested in detailing the translations at the 
level of quantifier-free formulas.

• Translation τ1 from contact algebras to simple S2I-algebras. We define τ1(t ≺ u) to be t � u = 1 and 
τ1(t = u) to be t = u; the translation τ1 operates identically on Boolean connectives.

7 Strictly speaking, since � turns disjunctions into conjunctions in the first argument, to match those requirements we should 
replace the connective � with an equivalent binary modality � related to � via the definition x � y := �[¬x, y].
8 It is more common to use in contact algebras the contact relation δ [37], which is given by aδb iff a ⊀ ¬b. However, we stick 

with our notation to stay close to our main reference [5].
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• Translation τ2 from simple S2I-algebras to contact algebras. We translate a quantifier-free formula ϕ in 
three steps. In the first step we eliminate all [∀] symbols using axiom (A0) and then we flatten ϕ by 
repeatedly applying the following transformation:

ϕ �−→ ∃x (x = t � u & ϕ(x/t � u)).

After this step and after moving the existential quantifiers to the front, the formula to be translated 
has the form

∃x1, . . . , xn

(
n∧

i=1
(xi = ti � ui) & ψ

)

where ψ is a quantifier-free formula in the language of Boolean algebras. In the second step, we translate 
this formula into the following formula in the language of contact algebras

∃x1, . . . , xn

(
n∧

i=1
[(xi = 1 & ui ≺ ti) or (xi = 0 & ui ⊀ ti)] & ψ

)
. (9)

In the last step, we apply the distributivity law to (9), thus obtaining an exponentially large disjunction; 
from each disjunct, the existential quantifiers can be removed by replacing xi with 1 or 0. The final 
result will be our τ2(ϕ).

The following proposition follows from the above considerations:

Proposition 6.1. Let TS2I be the theory of simple S2I-algebras. For all quantifier-free formulas ϕ1, ϕ2 in the 
languages of contact and of simple S2I-algebras, respectively, we have that:

(i): Con |= ϕ1 implies TS2I |= τ1(ϕ1);
(ii): TS2I |= ϕ2 implies Con |= τ2(ϕ2);
(iii): TS2I |= ϕ1 ⇔ τ2(τ1(ϕ1)) and Con |= ϕ2 ⇔ τ1(τ2(ϕ2)).

Since, as outlined above, the theory of non-degenerate simple S2I-algebras is essentially the same (in fact, 
it is a syntactic variant) as the universal theory Con of contact algebras, we shall investigate the latter in 
order to apply Corollary 5.7.9 What we have to show in order to check the hypotheses of such a corollary 
is just that Con is amalgamable.

To prove amalgamability, we need a duality theorem. In [6,13,19] a duality theorem is established for 
the category of contact algebras and ≺-maps (a map μ : (B, ≺) → (C, ≺) among contact algebras is said 
to be a ≺-map iff it is a Boolean homomorphism such that a ≺ b implies μ(a) ≺ μ(b)). We will make use 
of that theorem but will modify it, because for amalgamation we need a duality for contact algebras and 
embeddings in the model theoretic sense (this means that an embedding is an injective map that not only 
preserves but also reflects the relation ≺). We first recall the duality theorem of [6], giving just minimal 
information that is indispensable for our purposes.

We say that a binary relation R on a topological space X is closed if R is a closed subset of X×X in the 
product topology. Let StR be the category having (i) as objects the pairs (X, R), where X is a (non-empty) 
Stone space and R is a closed, reflexive and symmetric relation on X, and (ii) as arrows the continuous 

9 Notice also that computing quantifier elimination in the model completions (once we proved that such model completions 
exist by Corollary 5.7) commutes with the translations, by Proposition 6.1 and Lemma 5.8. This observation will be used in 
Subsection 6.1.
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maps f : (X, R) → (X ′, R′) which are stable (i.e. such that xRy implies f(x)R′f(y) for all points x, y in the 
domain of f). We define a contravariant functor

(−)� : StRop → Cons

into the category Cons of contact algebras and ≺-maps as follows:

• for an object (X, R), the contact algebra (X, R)� has Clop(X) the clopens of X as carrier set (with 
union, intersection and complement as Boolean operations) and its relation ≺ is given by C ≺ D iff 
R[C] ⊆ D (here we used the abbreviation R[C] = {x ∈ X | sRx for some s ∈ C});

• for a stable continuous map f : (X, R) → (X ′, R′), the map f� is the inverse image along f .

Theorem 6.2 ([6,19]). The functor (−)� establishes an equivalence of categories.

We now intend to restrict this equivalence to the category Cone of contact algebras and embeddings. To 
achieve this aim we need to identify a suitable subcategory StRe of StR. Now StRe has the same objects 
as StR, however a stable continuous map f : (X1, R1) → (X2, R2) is in StRe iff it satisfies the following 
additional condition:

∀x, y ∈ X2 [xR2y ⇔ ∃x̃, ỹ ∈ X1 s.t. f(x̃) = x, f(ỹ) = y & x̃R1ỹ]. (10)

Notice that, since R2 is reflexive, it turns out that a map satisfying (10) must be surjective. We call the 
stable maps satisfying (10) regular stable maps, because it can be shown that these maps are just the regular 
epimorphisms in the category StR.

Theorem 6.3. The functor (−)�, suitably restricted in its domain and codomain, establishes an equivalence 
of categories between StRe and Cone.

Proof. We need to show that f satisfies condition (10) above iff f� is an embedding between contact algebras, 
i.e. iff it satisfies the condition

(R1[f−1(U)] ⊆ f−1(V ) ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2) (11)

where Clop(X2) is the set of clopens of the Stone space X2. We transform condition (11) up to equivalence. 
First notice that, by the adjunction between direct and inverse image, (11) is equivalent to

(f(R1[f−1(U)]) ⊆ V ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2). (12)

Now, in compact Hausdorff spaces closed relations and continuous functions map closed sets to closed sets, 
hence f(R1[f−1(U)]) is closed and so, since clopens are a base for closed sets, (12) turns out to be equivalent 
to

f(R1[f−1(U)]) = R2[U ] ∀ U ∈ Clop(X2). (13)

We now claim that (13) is equivalent to

f(R1[f−1({x})]) = R2[{x}] ∀x ∈ X2. (14)

In fact, (14) implies (13) because all operations f(−), R[−], f−1(−) preserve set-theoretic unions. The 
converse implication holds because of Esakia’s lemma below applied to the down-directed system 
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{U ∈ Clop(X2) | x ∈ U}. Notice that Esakia’s lemma applies because f ◦ R1 ◦ fop and R2 are symmet-
ric relations, since R1 and R2 are symmetric (here we view f and f−1 = fop as relations via their graphs).

Now it is sufficient to observe that (14) is equivalent to the conjunction of (10) and stability. �
We will now prove a version of Esakia’s lemma for our spaces. Esakia’s lemma normally speaks about 

the inverse of a relation R, but here we need a version which holds for R-images because our relation is 
symmetric.

Lemma 6.4. (Esakia’s lemma, [20, Lemma 3.3.12]) Let X be a compact Hausdorff space and R a point-
closed10 symmetric binary relation on X. Then for each downward directed family C = {Ci}i∈I of nonempty 
closed subsets of X, we have R[

⋂
i∈I

Ci] =
⋂
i∈I

R[Ci].

Proof. The inclusion R[
⋂
i∈I

Ci] ⊆
⋂
i∈I

R[Ci] is trivial. Now suppose x ∈
⋂
i∈I

R[Ci]. Then x ∈ R[Ci] for each Ci

and, by symmetry, R[x] ∩ Ci is nonempty for each i ∈ I. But as the Ci’s are downward directed, all the 
finite intersections R[x] ∩Ci1 ∩ · · · ∩Cin (with ij ∈ I for j ∈ {1, . . . , n}) are nonempty. By compactness, the 
infinite intersection (which equals R[x] ∩

⋂
i∈I

Ci) is nonempty and so, by symmetry, x ∈ R[
⋂
i∈I

Ci]. �

Whenever there is a regular stable map f : (Y, R′) → (X, R), we say that (Y, R′) covers (X, R). The 
following lemma gives an interesting example of a cover and will be useful in Subsection 6.1 below. Let us 
call contact frames the objects of StR. A singleton in a contact frame (Y, R) is a point y ∈ Y such that 
R[y] = {y}. A contact frame (Y, R) is said to be a 1-step contact frame iff it does not contain singletons 
and it satisfies the following condition for all x, y, z ∈ Y :

xRy & yRz ⇒ (x = y or y = z or x = z). (15)

Thus the points in a 1-step contact frame can be partitioned into 2-element subsets {y1, y2} such that 
y1 
= y2 and the only elements accessible from yi (i = 1, 2) are {y1, y2}.

Lemma 6.5. Every finite contact frame (X, R) is covered by a 1-step contact frame of at most quadratic size.

Proof. We first get rid of singletons by ‘duplicating’ them: this means that we move to a cover where 
a singleton x is duplicated into a pair 〈x1, x2〉 and R(xi, xj) holds for i, j ∈ {1, 2} (let us still call this 
duplicating cover (X, R)). We let Y to be the set of ordered distinct pairs 〈x1, x2〉 from X such that 
R(x1, x2) holds in (X, R). We let R′(〈x1, x2〉, 〈y1, y2〉) hold iff {x1, x2} = {y1, y2}. This turns (Y, R′) into a 
1-step contact frame. The cover map f : (Y, R′) → (X, R) takes 〈x1, x2〉 to x1. �

Now we are ready to show that Corollary 5.7 applies.

Theorem 6.6. The universal theory Con of contact algebras has the amalgamation property. Therefore, as it 
is also locally finite, Con has a model completion.

Proof. As we observed in Section 5, it is sufficient to prove amalgamation for finite algebras (by local 
finiteness and by the compactness argument based on Robinson diagrams mentioned in Section 5). Finite 
algebras are dual to discrete Stone spaces, hence it is sufficient to show the following.

10 A binary relation R on a topological space X is said to be point-closed if ∀x ∈ X R[x] is closed in X. A closed relation in a 
compact Hausdorff space maps closed sets to closed sets via R[−], hence it is point-closed.
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(+) Given finite nonempty sets XA, XB , XC endowed with reflexive and symmetric relations RA, RB , RC

and given regular stable maps f : (XB , RB) → (XA, RA), g : (XB , RB) → (XA, RA), there exist (XD, RD)
(with reflexive and symmetric RD) and regular stable maps π1 : (XD, RD) → (XB , RB), π2 : (XD, RD) →
(XC , RC), such that f ◦ π1 = g ◦ π2.

Statement (+) is easily proved by taking as (XD, RD), π1, π2 the obvious pullback with the two projec-
tions. �

Theorem 6.6 gives the possibility of applying Corollary 5.7 to recognize admissible rules. We give here 
another algorithm, slightly different from that of Corollary 5.7. We recall that Con� is the theory of ex-
istentially closed contact algebras [15]. The following result (given that Con is locally finite) is folklore (a 
detailed proof of the analogous statement for Brouwerian semilattices is in the arXiv version of [12] as [11, 
Proposition 2.16]).

Theorem 6.7. Let (B, ≺) be a contact algebra. We have that (B, ≺) is existentially closed iff for any fi-
nite subalgebra (B0, ≺) ⊆ (B, ≺) and for any finite extension (C, ≺) ⊇ (B0, ≺) there exists an embedding 
(C,≺) ↪→ (B,≺) such that the following diagram commutes

(B0,≺) (B,≺)

(C,≺)

Example 6.8. Consider the Π2-rule:

(ρ9)
(p � p) ∧ (ϕ � p) ∧ (p � ψ) → χ

(ϕ � ψ) → χ

This rule is admissible in S2IC [5, Theorem 6.15]. We will now give an alternative and more automated proof 
of this result. Translating Π(ρ9) into the equivalent language of contact algebras, we obtain (see statement 
(S9) from Section 6.3 of [5])

x ≺ y ⇒ ∃z (z ≺ z & x ≺ z ≺ y). (16)

According to Theorem 5.5, we have to show that (16) is provable in Con�. Note that (16) expresses interesting 
(order-)topological properties. It is valid on (X, R) iff R is a Priestley quasi-order [6, Lemma 5.2]. Also it is 
valid on a compact Hausdorff space X iff X is a Stone space [4, Lemma 4.11].

If we follow the procedure of Corollary 5.7 (which is based on Lemma 5.8), we first compute the quantifier-
free formula equivalent in Con� to ∃z (z ≺ z & x ≺ z ≺ y) by taking the conjunction of the (finitely many) 
quantifier-free first-order formulas ϕ(x, y) which are implied (modulo Con) by z ≺ z & x ≺ z ≺ y: this is, 
up to equivalence, x ≺ y. Now, in order to show the admissibility of (ρ9) it is sufficient to observe that 
Con |= x ≺ y ⇒ x ≺ y.

As an alternative, we can rely on Theorem 6.7 and show that (16) is true in every existentially closed 
contact algebra. To this aim, it is sufficient to enumerate all contact algebras B0 generated by two elements 
a, b such that B0 |= a ≺ b and to show that all such algebras embed in a contact algebra C generated by three 
elements a, b, c such that C |= c ≺ c & a ≺ c ≺ b (this can be done automatically for instance using a model 
finder tool). Both of the above procedures are heavy and not elegant, but they are nevertheless mechanical 
and do not require ingenious ad hoc constructions (such as e.g., the construction of [5, Lemma 5.4]).
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6.1. Complexity issues

In this subsection, we will adopt the algorithm suggested by Corollary 5.7 and Lemma 5.8 to get a 
co-NExpTime upper bound for deciding admissibility of Π2-rules in S2IC.

In order to do that, we first need to study closer the satisfiability problem for quantifier-free formulas 
in the language of contact algebras. First notice that atomic formulas in such a language are all equivalent 
to formulas of the kind t ≺ u, where t, u are Boolean terms: this is because atoms of the kind t = 0 are 
equivalent to t ≺ ¬t, by the axioms of contact algebras. Second, we introduce a more manageable Kripke 
style equivalent semantics for satisfiability in finite contact algebras (since finitely generated contact algebras 
are finite and contact algebras axioms are all universal, to test satisfiability of a quantifier-free formula it is 
sufficient to inspect finite contact algebras).

A Kripke model over a contact frame (X, R) is a valuation V : Prop → ℘(X) from the set of propositional 
variables into the power set of X; we use the notation M = (X, R, V ) for such a Kripke model. For x ∈ X

and a Boolean formula (term) F , the notion M |=x F is defined inductively as follows:

- M |=x p iff x ∈ V (p), for atomic p;
- M |=x F1 ∧ F2 iff (M |=x F1 and M |=x F2);
- M |=x ¬F iff M 
|=x F .

For an atom F ≺ G, we put M |= F ≺ G iff for all x, y ∈ X, we have that M |=x F and R(x, y) imply 
M |=y G. Finally, for a quantifier-free formula ϕ, the definition of M |= ϕ goes by induction as expected. 
The following lemma is clear.

Lemma 6.9. Let A be a finite contact algebra with dual contact frame (X, R). For a quantifier-free formula ϕ, 
we have that ϕ is true in A under some free variables assignment iff we have M |= ϕ for some Kripke model 
M = (X, R, V ).

In our context, covers play the same role as p-morphisms in modal logic. A cover of a Kripke model M =
(X, R, V ) is a Kripke model M′ = (X ′, R′, V ′) together with a regular stable map f : (X ′, R′) → (X, R) of 
the underlying contact frames such that for every propositional variable p, we have that V ′(p) = f−1(V (p)).

Lemma 6.10. Let M′ = (X ′, R′, V ′) be a cover of M = (X, R, V ) (via a suitable f). Then for every 
quantifier-free formula ϕ, we have that M |= ϕ iff M′ |= ϕ.

Proof. This follows from the fact that f−1 induces, as we know, an embedding of the contact algebras dual 
to (X, R) and (X ′, R′). �
Lemma 6.11. A quantifier-free formula ϕ in the language of contact algebras is satisfiable iff it is satisfiable 
in a finite quadratic size 1-step contact frame. Thus the satisfiability problem for ϕ is in NP.

Proof. First observe that ϕ is satisfiable iff there is a consistent Boolean assignment to the atoms of ϕ
satisfying ϕ from the point of view of propositional logic. To show that a candidate Boolean assignment is 
satisfiable one translates positive atoms (as well as the reflexivity and symmetry conditions for the relation 
of a contact frame) into universally quantified Horn clauses in first-order logic using at most two universally 
quantified variables. Negative atoms F ⊀ G translate into ∃x ∃y(F (x) & R(x, y) & ∼G(y)); skolemization 
of these literals introduces two Skolem constants for each of them. Thus, the overall universal Horn formula 
to be checked for satisfiability has a finite Herbrand universe of linear size.



22 N. Bezhanishvili et al. / Annals of Pure and Applied Logic 174 (2023) 103169
Since the Herbrand universe is of linear size, ϕ is satisfiable iff it is satisfiable in a linear size finite contact 
frame (alternative ways to prove this arise from translations into S5U , see [5]). Then the fact that 1-step 
quadratic contact frames suffice follows from Lemma 6.5. �

According to Theorem 5.5, the rule ρ is not admissible iff T �
S2I 
|= Π(ρ), where T �

S2I is the model completion 
of the theory of simple symmetric strict implication algebras. Since we want to go through the equivalent 
theory given by the model completion Con� of the theory of contact algebras, in view of Lemma 6.11, to get 
our co-NExpTime upper bound, it is sufficient to prove that the computation of the quantifier-free formula 
ϕ�(x) equivalent in Con� to ∃yϕ(x, y) (for any quantifier-free formula ϕ(x, y)) is exponentially large and 
can be computed in exponential time (because then Lemma 6.11 would apply). However, since there are 
double exponentially many non-equivalent quantifier-free formulas built up from a finite set of variables in 
the language of contact algebras, this is not obvious. The situation is similar to the problem of showing an 
exponential bound for the computation of uniform interpolants in S5 [25] and in fact we will solve it by 
adapting the technique of [25] to our context.

Let N be the number of distinct atoms (i.e., atomic formulas) occurring in ϕ(x, y) and let us consider the 
Kripke models built up on finite 1-step contact frames having at most 2N elements (they are exponentially 
many). Partition them into classes K1, . . . , Km in such a way that two models are in the same class Ki iff 
they satisfy the same atoms from ϕ. To every M ∈ Ki associate the formula

χ(M) :=
∧

{t(x) ⊀ u(x) | t(x), u(x) are Boolean terms s.t. M 
|= t(x) ≺ u(x)}. (17)

Let also

θi :=
∧

{t(x) ≺ u(x) | t(x), u(x) are Boolean terms s.t. M ′ |= t(x) ≺ u(x) for all M ′ ∈ Ki}. (18)

We claim that the formula we need is

ϕ�(x) :=
m∨
i=1

(θi &
∨

M∈Ki

χ(M)). (19)

Notice that this is (simply) exponential.
According to Lemma 5.8, we must show that ϕ ⇒ ϕ� holds in TS and that if ψ(x) is such that 

TS |= ϕ ⇒ ψ, then TS |= ϕ� ⇒ ψ; by Lemma 6.11, all validity tests can be performed in Kripke mod-
els over finite contact 1-step frames.

First consider a Kripke model N = (X, R, V ) based on a 1-step contact frame such that N |= ϕ. Restrict 
the model to a submodel by picking one witness pair x, y for every atom u1(x, y) ≺ u2(x, y) such that 
N |=x u1, N 
|=y u2 and R(x, y). The Kripke model M obtained by this restriction is such that M |= ϕ, 
it has the size at most 2N and it thus belongs (up to isomorphism) to a certain partition Ki. Clearly we 
have N |= χ(M). We also have N |= θi because for every x′, y′ ∈ X such that R(x′, y′), we can always 
pick witness points so as to build a submodel M′ of N belonging (up to isomorphism) to Ki and including 
(x′, y′). Thus we obtain N |= ϕ�, as desired.

Suppose now that TS 
|= ϕ� ⇒ ψ, i.e., there is a Kripke model based on a 1-step contact frame such that 
N |= ϕ� & ∼ψ. In order to show that TS 
|= ϕ ⇒ ψ we proceed as follows. Let N be (X, R, V ). We build 
N ′ = (X ′, R′, V ′) and a regular stable map f : (X ′, R′) → (X, R) in such a way that N ′ |= ϕ(x, y) and 
V ′(p) = f−1(V (p)) for all p ∈ x (this guarantees that N ′ 
|= ψ(x), by Lemma 6.10).

Since N |= ϕ�(x), there are i and M ∈ Ki such that N |= θi & χ(M). Recall that M is based on a 
1-step finite contact frame and suppose that M = (X0, R0, V0). For every x ∈ X0 we can build the atoms

t+x =
∧

{p ∈ x | x ∈ V0(p)} & ∼
∨

{p ∈ x | x /∈ V0(p)}
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and

t−x = ∼ t+x .

Now notice that for every distinct pair 〈x1, x2〉 such that R0(x1, x2) holds in M, the atom t+x1
≺ t−x2

is false 
in M precisely because of the pair (x1, x2). Since N |= χ(M) there must be a pair (not necessarily formed 
by distinct elements) 〈w1, w2〉 in N such that R(w1, w2) and N |=w1 t+x1

, N 
|=w2 t−x2
, which means that for 

every p ∈ x, we have x1 ∈ V0(p) ⇔ w1 ∈ V (p) and x2 ∈ V0(p) ⇔ w2 ∈ V (p). Since M is a 1-step contact 
frame, this defines a stable map f0 : (X0, R0) → (X, R) which preserves the satisfiability of the variables x. 
However, this map may not be regular (not even surjective), to make it regular we need a further simple 
adjustment: we take as (X ′, R′) the disjoint union of (X, R) with (X0, R0) and as f the identity map coupled 
with f0. This obviously gives a regular stable map. It remains to define the forcing V ′ on (X ′, R′) for the 
variables y. This must be done in such a way that ϕ(x, y) becomes true.

For q ∈ y and x in the X0-part of X ′ we just use the satisfiability in M, that is we let x ∈ V ′(q) hold 
iff x ∈ V0(q). Let now consider a distinct pair 〈x, y〉 in the X-part of X ′ such that R(x, y) holds. We have 
that N 
|= t+x ≺ t−y and, since N |= θi, there must be some Mxy ∈ Ki with Mxy 
|= t+x ≺ t−y . This means 
that for some x′, y′ in the support of Mxy we have Mxy |=x′ t+x and Mxy |=y′ t−y (which is the same 
as Mxy |=y′ t+y ). For q ∈ y, we let V ′(q) contain x (resp. y) iff we have Mxy |=x′ q (resp. Mxy |=y′ q). 
Notice that the same relations holds for q ∈ x because Mxy |=x′ t+x and Mxy |=y′ t−y . Now ϕ(x, y) holds in 
N ′ = (X ′, R′, V ′) because exactly the same atoms from ϕ satisfied in all members of the class Ki are true 
in N ′.

We have therefore proved the following result.

Theorem 6.12. The problem of recognizing the admissibility of a Π2-rule in the symmetric strict implication 
calculus S2IC is co-NExpTime-complete.

Proof. According to Theorem 5.5, the Π2-rule ρ given in Definition 2.4 is not admissible in S2IC iff in the 
model completion T �

S2I of the theory of simple symmetric strict implication algebras, the formula

Π(ρ) := ∀x ∀z ∃y
(
G(x) � z ⇒ F (x, y) � z

)

is not provable. To check this, we eliminate the existential quantifiers from ∃y(G(x) � z ⇒ F (x, y) � z)
in T �

S2I , then get a universal formula ∀x∀z ψ(x, z), and finally check ¬ψ(x, z) for satisfiability in T �
S2I (or, 

which is the same, in TS2I). In view of Proposition 6.1 and Lemma 5.8, we can equivalently apply these 
operations in Con�/Con to the translation τ2 of G(x) � z ⇒ F (x, y) � z.

In principle, τ2 may cause an exponential blow-up in the third step of its computation, but since our first 
task is to eliminate the existential quantifiers from ∃y τ2(G(x) � z ⇒ F (x, y) � z), we can just eliminate 
the existential quantifiers from the equivalent formula (9) obtained in the second step of the computation 
of τ2: such a formula is only linearly long, and consequently, as explained above, our quantifier elimination 
procedure takes exponential time and produces an exponentially long formula. Thus, in the end, Lemma 6.11
gives our desired NExpTime upper bound.

For the lower bound, we notice that in [25] it is shown that checking conservativity in S5 is co-NExpTime-
complete. Conservativity is trivially translated into admissibility of Π2-rules for logics like S5 enjoying 
interpolation (see Theorem 3.2) and on the other hand S5 is a subsystem of S2IC. Thus, it is sufficient to 
show that a Π2-rule in the restricted language of S5 which is admissible in S5 is also admissible in S2IC
(the opposite direction is obvious). To this aim, we apply the admissibility criterion given by Theorem 5.4. 
Consider a Π2-rule ρ as given in Definition 2.4, which is in the language of S5 and is admissible in S5. 
Let B be a simple S2I-algebra; according to Theorem 5.4, its S5-reduct (which is nothing but a Boolean 
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algebra, being the algebra simple) embeds into an algebra B′ satisfying Π(ρ). Thus, it is sufficient to apply 
the Lemma below (we exploit once again the equivalence between contact algebras and simple symmetric 
strict implication algebras). �
Lemma 6.13. Given a contact algebra B and a Boolean algebra B′ extending it, it is possible to give B′ a 
structure of a contact algebra in such a way that the embedding preserves also the contact algebra structure.

Proof. We prove the dual statement using Theorem 6.3. Let Y be a Stone space, (X, R) be an object of 
StR and let f : Y → X be a continuous surjective map. We endow Y with the relation R̃ given by y1R̃y2 iff 
f(x1)Rf(y2). Since R̃ is closed, it turns out that f : (Y, R̃) → (X, R) is a morphism in StRe. �
7. Finite axiomatization of Con�

Theorem 6.7 implicitly supplies an infinite set of axioms for Con�, the model completion of the theory 
of contact algebras. This axiomatization is not however very informative, as it follows from generic model-
theoretic facts. In this section, we supply a better axiomatization following a strategy similar to the one 
used in [16] for the case of amalgamable locally finite varieties of Heyting algebras and in [12] for the case 
of Brouwerian semilattices. This axiomatization is finite and is described by the following theorem, which 
is the main result of this section.

Theorem 7.1. An axiomatization of Con� is given by the axioms of contact algebra together with the following 
sentences:

∀a, b1, b2 (a 
= 0 & (b1 ∨ b2) ∧ a = 0 & a ≺ a ∨ b1 ∨ b2 ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 (s1)

& a1 
= 0 & a2 
= 0 & a1 ≺ a1 ∨ b1 & a2 ≺ a2 ∨ b2)),

∀a, b (a ∧ b = 0 & a ⊀ ¬b ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 ⊀ ¬b & a2 ⊀ ¬b (s2)

& a1 ≺ ¬a2)),

∀a (a 
= 0 ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 ≺ a & a1 ⊀ a1)). (s3)

Notice that the axioms (s1), (s2), (s3) are similar to the splitting axioms of the axiomatizations appearing 
in [16] and [12]. We will prove Theorem 7.1 by employing Theorem 6.7 and the duality between Cone and 
StRe to characterize the duals of existentially closed algebras. We first show that it is enough to work with 
finite minimal extensions.

Definition 7.2. If (C, ≺) is a contact algebra extending the contact algebra (B0, ≺), we say that such an 
extension is minimal if it is proper and it does not contain any other proper extension of (B0, ≺).

Using the Duality Theorem 6.3 restricted to the finite discrete case, we can characterize the dual spaces 
(XC , RC) and (XB0 , RB0) and the dual stable map f : (XC , RC) → (XB0 , RB0) corresponding to finite 
minimal extensions.

Proposition 7.3. Let (B0, ≺) ↪→ (C, ≺) be an embedding between finite contact algebras, with dual regular 
stable map f : (XC , RC) → (XB0 , RB0). The embedding is minimal iff (up to isomorphism) there are a finite 
set Y , finite subsets S1, S2 ⊆ Y and elements x ∈ XB0 , x1 ∈ XC , x2 ∈ XC such that:

(i): XB0 is the disjoint union Y ⊕ {x};
(ii): XC is the disjoint union Y ⊕ {x1, x2};
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(iii): f restricted to Y is the identity map and f(x1) = f(x2) = x;
(iv): the restrictions of RC and of RB0 to Y coincide;
(v): RC [x1] \ {x1} = S1 and RC [x2] \ {x2} = S2;
(vi): RB0 [x] \ {x} = S1 ∪ S2.

Proof. First notice that, as a consequence of (10), if the cardinality of XB0 and of XC is the same, then f is 
an isomorphism. This is seen as follows: we already observed that condition (10) implies surjectivity and in 
case of the same finite cardinality surjectivity implies injectivity. Preservation and reflection of the relation 
follow by stability and (10) again.

In addition, if the cardinality of XC is equal to the cardinality of XB0 plus one (this is precisely the case 
mentioned in the statement of the proposition), then f cannot be properly factored, hence it is minimal. 
We show that all minimal maps arise in this way.

In general, if the cardinality of XC is bigger than the cardinality of XB0 , we can define the following 
factorization of f . Pick some x ∈ XB0 having more than one preimage and split f−1({x}) as T1 ∪ T2, where 
T1, T2 are disjoint and non-empty. We have that XC is the disjoint union X ⊕ T1 ⊕ T2 for some set X and 
XB0 is the disjoint union Y ⊕ {x} for some set Y . Define a discrete dual space (Z, RZ) as follows. Z is the 
disjoint union Y ⊕{x1, x2} for new x1, x2 and RZ is the reflexive and symmetric closure of the following sets 
of pairs: (i) the pairs (z1, z2) for z1RB0z2 and z1, z2 ∈ Y ; (ii) the pairs (xi, u) for u ∈ f(RC [Ti]) (i = 1, 2); 
(iii) the pair (x1, x2), but only in case T1 ∩ RC [T2] 
= ∅. Then it is easily seen that f factorizes as h ◦ f̃ in 
StRe, where: (I) f̃ maps T1 to x1, T2 to x2 and acts as f on X; (II) h is the identity on Y and maps both 
x1, x2 to x.

Now h produces the data required by the proposition and f̃ must be an isomorphism if f is minimal. �
Remark 7.4.

(1) The conditions (i)–(vi) in Proposition 7.3 determine uniquely the finite minimal extension over the 
contact algebras dual to (XB0 , RB0) except for a detail: they do not specify whether we have x1RCx2

or not. So the data x, S1, S2 and Y = XB0 \ {x} (lying inside XB0) determine in fact two minimal 
extensions of the contact algebra dual to (XB0 , RB0).

(2) It is an immediate consequence of the proof of Proposition 7.3 that every finite extension of contact 
algebras can be decomposed into a finite chain of finite minimal extensions. Thus, Theorem 6.7 still 
holds if we limit its statement to finite minimal extensions.

Thus, by dualizing Theorem 6.7, we obtain the following characterization of the contact frames that are 
dual to existentially closed contact algebras.

Proposition 7.5. The contact frame (X, R) is dual to an existentially closed contact algebra iff for every 
finite contact frame (Y0, R0), every regular stable map f : (Y1, R1) → (Y0, R0) dual to a finite minimal 
extension of contact algebras, and every regular continuous stable map g : (X, R) → (Y0, R0) there exists a 
continuous regular stable map h : (X, R) → (Y1, R1) such that f ◦ h = g.

(Y0, R0) (X,R)

(Y1, R1)

g

h
f

We reformulate this characterization of duals of existentially closed contact algebras in terms of partitions.
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Lemma 7.6. Let (X, R) ∈ StR. The contact algebra (X, R)∗ is existentially closed iff for each finite partition 
P of X into clopens, A ∈ P, and S1, S2 ⊆ P with S1 ∪ S2 = {C ∈ P \ {A} | A ∩R[C] 
= ∅}, there exist two 
nonempty clopens A1, A2 such that A1 ∪A2 = A, A1 ∩A2 = ∅ and for each C ∈ P \ {A}

A1 ∩R[C] 
= ∅ iff C ∈ S1, A2 ∩R[C] 
= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅,

and there exist two nonempty clopens A′
1, A

′
2 such that A′

1 ∪A′
2 = A, A′

1 ∩A′
2 = ∅ and for each C ∈ P \{A}

A′
1 ∩R[C] 
= ∅ iff C ∈ S1, A′

2 ∩R[C] 
= ∅ iff C ∈ S2 and A′
1 ∩R[A′

2] 
= ∅.

Proof. This is a consequence of Propositions 7.3 and 7.5, and the fact that continuous regular stable maps 
from (X, R) ∈ StR into finite objects of StR correspond to finite partitions of X into clopens. Indeed, 
a continuous regular stable map f : (X, R) → (Y, R′) onto a finite contact frame induces the partition 
P = {f−1(y) | y ∈ Y }. On the other hand, if P is a finite partition of X into clopens, the quotient 
map f : (X, R) → (P, RP) is a continuous regular stable map, where A RP B iff A ∩ R[B] 
= ∅ for any 
A, B ∈ P. �

We are ready to show that the following conditions, which dually correspond to the axioms (s1), (s2), 
(s3) of Theorem 7.1, characterize the contact frames (X, R) dual to existentially closed contact algebras.

(S1) If A, B1, B2 are clopens of X with

A 
= ∅, (B1 ∪B2) ∩A = ∅ and R[A] ⊆ A ∪B1 ∪B2,

then there exist A1, A2 clopens of X such that

A1 ∪A2 = A, A1 ∩A2 = ∅, A1 
= ∅, A2 
= ∅, R[A1] ⊆ A1 ∪B1, and R[A2] ⊆ A2 ∪B2.

(S2) If A, B are clopens of X with

A ∩B = ∅, A ∩R[B] 
= ∅,

then there exist A1, A2 clopens of X such that

A1 ∪A2 = A, A1 ∩A2 = ∅, A1 ∩R[B] 
= ∅, A2 ∩R[B] 
= ∅, and A1 ∩R[A2] = ∅.

(S3) If A is a nonempty clopen of X, then there exist A1, A2 clopens of X such that

A1 ∪A2 = A, A1 ∩A2 = ∅, R[A1] ⊆ A, and R[A1] � A1.

Lemma 7.7. Let (X, R) ∈ StR. If the contact algebra (X, R)∗ is existentially closed, then (S1), (S2), and
(S3) hold in (X, R).

Proof. (S1) Let A, B1, B2 be clopens of X such that A 
= ∅, (B1 ∪ B2) ∩ A = ∅, and R[A] ⊆ A ∪ B1 ∪ B2. 
Let P be the partition obtained from

{A,B1 \B2, B2 \B1, B1 ∩B2, X \ (A ∪B1 ∪B2)}

after possibly removing the empty set from its elements. Let Si = {C ∈ P \ {A} | A ∩ R[C] 
= ∅, C ⊆ Bi}
for i = 1, 2. Since R[A] ⊆ A ∪ B1 ∪ B2, we have S1 ∪ S2 = {C ∈ P \ {A} | A ∩ R[C] 
= ∅}. Therefore, 
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by Lemma 7.6 there exist A1, A2 nonempty clopens such that A1 ∪ A2 = A, A1 ∩ A2 = ∅ and for each 
C ∈ P \ {A}:

A1 ∩R[C] 
= ∅ iff C ∈ S1, A2 ∩R[C] 
= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅.

It follows that R[A1] ⊆ A1 ∪B1 and R[A2] ⊆ A2 ∪B2.
(S2) Let A, B be clopens of X such that A ∩B = ∅ and A ∩R[B] 
= ∅. Since A ∩R[B] 
= ∅, both A and 

B are not empty. Let P be the partition obtained from

{A,B,X \ (A ∪B)}

after possibly removing X\(A ∪B) if it is empty. Let S1 = S2 = {C ∈ P\{A} | A ∩R[C] 
= ∅}. By Lemma 7.6
there exist A1, A2 nonempty clopens such that A1 ∪A2 = A, A1 ∩A2 = ∅ and for each C ∈ P \ {A}:

A1 ∩R[C] 
= ∅ iff A ∩R[C] 
= ∅, A2 ∩R[C] 
= ∅ iff A ∩R[C] 
= ∅ and A1 ∩R[A2] = ∅.

It follows that A1 ∩R[B] 
= ∅ and A2 ∩R[B] 
= ∅.
(S3) Let A be a nonempty clopen of X. Let P be the partition obtained from

{A,X \A}

after possibly removing X \ A if it is empty. Let S1 = ∅ and S2 = {C ∈ P \ {A} | A ∩ R[C] 
= ∅}. Thus, 
by Lemma 7.6 there exist A1, A2 nonempty clopens such that A1 ∪ A2 = A, A1 ∩ A2 = ∅ and for each 
C ∈ P \ {A}:

A1 ∩R[C] = ∅, A2 ∩R[C] 
= ∅ iff A ∩R[C] 
= ∅ and A1 ∩R[A2] 
= ∅.

Therefore, R[A1] ⊆ A and R[A1] � A1. �
Lemma 7.8. Let (X, R) ∈ StR. If (S1), (S2), and (S3) hold in (X, R), then the contact algebra (X, R)∗ is 
existentially closed.

Proof. We will show using Lemma 7.6 that if (S1), (S2), and (S3) hold in (X, R), then (X, R)∗ is existentially 
closed. Let P be a finite partition of X into nonempty clopens, A ∈ P, S1, S2 ⊆ P such that S1 ∪ S2 =
{C ∈ P \ {A} | A ∩R[C] 
= ∅}. Let S1 ∪ S2 = {B1, . . . , Bn}.

First we consider the case when S1 or S2 is empty. We can assume without loss of generality that S1 = ∅
and hence that S2 = {C ∈ P \ {A} | A ∩R[C] 
= ∅}. Apply (S1) to A, ∅, B1 ∪ · · · ∪Bn to get A1, A2 clopens 
such that

A1 ∪A2 = A, A1 ∩A2 = ∅, A1 
= ∅, A2 
= ∅,
R[A1] ⊆ A1, R[A2] ⊆ A2 ∪B1 ∪ · · · ∪Bn.

Therefore, for each C ∈ P \ {A}

A1 ∩R[C] = ∅, A2 ∩R[C] 
= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅.

Now assume that both S1 and S2 are not empty. We want to split A into n disjoint nonempty clopens 
E1, . . . , En. If n = 1, let E1 = A. If n > 1, apply (S1) to A, B1, B2 ∪ · · · ∪Bn to get D1,1, D1,2 clopens such 
that
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D1,1 ∪D1,2 = A, D1,1 ∩D1,2 = ∅, D1,1 
= ∅, D1,2 
= ∅,
R[D1,1] ⊆ D1,1, R[D1,2] ⊆ D1,2 ∪B2 ∪ · · · ∪Bn.

Then we define recursively Di,1, Di,2 for each i = 2, . . . , n −1 by applying (S1) to Di−1,2, Bi, Bi+1∪· · ·∪Bn. 
Thus, we have that

Di,1 ∪Di,2 = Di−1,2, Di,1 ∩Di,2 = ∅, Di,1 
= ∅, Di,2 
= ∅,
R[Di,1] ⊆ Di,1 ∪Bi, R[Di,2] ⊆ Di,2 ∪Bi+1 ∪ · · · ∪Bn.

Let Ei = Di,1 for i = 1, . . . , n − 1 and En = Dn−1,2. This yields a family of nonempty clopens E1, . . . , En

such that

E1 ∪ · · · ∪En = A and Ei ∩R[Ej ] = ∅ if i 
= j

and for each C ∈ P \ {A}:

Ei ∩R[C] 
= ∅ iff C = Bi.

The next step consists of splitting Ei into two disjoint clopens for each i such that Bi ∈ S1 ∩S2. Apply (S2) 
to Ei, Bi for each i = 1, . . . , n such that Bi ∈ S1 ∩ S2. Thus, there exist Ei,1, Ei,2 clopens of X such that

Ei,1 ∪Ei,2 = Ei, Ei,1 ∩ Ei,2 = ∅, Ei,1 ∩R[Bi] 
= ∅, Ei,2 ∩R[Bi] 
= ∅, Ei,1 ∩R[Ei,2] = ∅.

We are finally ready to define A1 and A2. Let

A1 =
⋃

{Ei | Bi ∈ S1 \ S2} ∪
⋃

{Ei,1 | Bi ∈ S1 ∩ S2},

A2 =
⋃

{Ei | Bi ∈ S2 \ S1} ∪
⋃

{Ei,2 | Bi ∈ S1 ∩ S2}.

It follows that A1, A2 are nonempty clopens such that A1∪A2 = A, A1∩A2 = ∅, and for each C ∈ P \{A}:

A1 ∩R[C] 
= ∅ iff C ∈ S1, A2 ∩R[C] 
= ∅ iff C ∈ S2 and A1 ∩R[A2] = ∅.

It remains to construct A′
1, A

′
2. Apply (S3) to A2 to obtain F1, F2 clopens of X such that

F1 ∪ F2 = A2, F1 ∩ F2 = ∅, R[F1] ⊆ A2, R[F1] � F1.

It follows that F1 ∩ R[F2] 
= ∅. Define A′
1 = A1 ∪ F1 and A′

2 = F2. Consequently, A′
1, A

′
2 are nonempty 

clopens such that for each C ∈ P \ {A}

A′
1 ∩R[C] 
= ∅ iff C ∈ S1, A′

2 ∩R[C] 
= ∅ iff C ∈ S2 and A′
1 ∩R[A′

2] 
= ∅. �
Since the conditions (S1), (S2), (S3) correspond dually to the axioms (s1), (s2), (s3), Theorem 7.1 is an 

immediate consequence of Lemmas 7.7 and 7.8.
We can use Theorem 7.1 to give another proof of the fact that the formula (16) corresponding to the 

Π2-rule (ρ9) is provable in Con�, hence (ρ9) is admissible in S2IC.

Corollary 7.9. The formula

x ≺ y ⇒ ∃z (z ≺ z & x ≺ z ≺ y)

is provable in Con�.
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Proof. Let A be an existentially closed contact algebra and a, b ∈ A such that a ≺ b. We can assume that 
a 
= b, otherwise the claim is trivial. We have

(a ∨ ¬b) ∧ (b ∧ ¬a) = 0 and b ∧ ¬a ≺ 1 = (b ∧ ¬a) ∨ a ∨ ¬b.

Thus, by the axiom (s1) applied to b ∧ ¬a, a, ¬b, there are c1, c2 ∈ A such that

c1 ∨ c2 = b ∧ ¬a, c1 ∧ c2 = 0, c1 
= 0, c2 
= 0, c1 ≺ c1 ∨ a, c2 ≺ c2 ∨ ¬b.

Since a ≺ b and c1 ≺ c1 ∨ a ≤ b, it follows that a ∨ c1 ≺ b. Moreover,

a ∨ c1 = a ∨ ((b ∧ ¬a) ∧ ¬c2) = b ∧ ¬c2 = ¬(c2 ∨ ¬b) ≺ ¬c2

where the second equality is a consequence of a ≤ b and c2 ≤ ¬a. Therefore, a ∨ c1 ≺ b ∧ ¬c2 = a ∨ c1. Let 
d = a ∨ c1. Then d ≺ d and a ≤ d ≤ b, which imply a ≺ d ≺ b. �
Definition 7.10. Let S be a modal system. We say that a set of Π2-rules Θ derives a Π2-rule ρ if

TS ∪ {Π(θ) | θ ∈ Θ} � Π(ρ).

We say that a set of admissible Π2-rules Θ is a basis of admissible rules for S if it is a minimal set of Π2-rules 
that derives every admissible Π2-rule.

Theorem 7.11. A basis of admissible Π2-rules for S2IC is given by the following three rules.

(ρs1)
[∀]((p1 ∨ p2 ↔ ϕ1) ∧ ¬(p1 ∧ p2) ∧ 〈∃〉p1 ∧ 〈∃〉p2 ∧ (p1 � p1 ∨ ϕ2) ∧ (p2 � p2 ∨ ϕ3)) → χ

[∀](〈∃〉ϕ1 ∧ ¬(ϕ1 ∧ (ϕ2 ∨ ϕ3)) ∧ (ϕ1 � ϕ1 ∨ ϕ2 ∨ ϕ3)) → χ

(ρs2)
[∀]((p1 ∨ p2 ↔ ϕ1) ∧ ¬(p1 ∧ p2) ∧ ¬(p1 � ¬ϕ2) ∧ ¬(p2 � ¬ϕ2) ∧ (p1 � ¬p2)) → χ

[∀](¬(ϕ1 ∧ ϕ2) ∧ ¬(ϕ � ¬ϕ2)) → χ

(ρs3)
[∀](((p1 ∨ p2) → ϕ) ∧ ¬(p1 ∧ p2) ∧ (p1 � ϕ) ∧ ¬(p1 � p2)) → χ

〈∃〉ϕ → χ

where 〈∃〉 := ¬[∀]¬.

Proof. If S is a modal system with universal modality [∀], then in TS the formula x 
= 0 is equivalent to 
〈∃〉x = 1. Moreover, if t1, t2 are terms, then in TS the first order formula

∀x(t1(x) = 1 ⇒ ∃y(t2(x, y) = 1))

is equivalent to

∀x, z([∀]t1(x) � z ⇒ ∃y([∀]t2(x, y) � z)).

It is then straightforward to see that the axioms (s1), (s2), and (s3) of Theorem 7.1 are equivalent to 
Π(ρs1), Π(ρs2), and Π(ρs3) in the theory of contact algebras (thought of as simple S2I-algebras). Thus, by 
Theorems 5.5 and 7.1, if ρ is an admissible rule, then it would be a consequence of Π(ρs1), Π(ρs2), and 
Π(ρs3). This implies that (ρs1), (ρs2), and (ρs3) form a basis of admissible rules for S2IC. �
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8. Conclusions

In this paper we studied admissibility of Π2-rules. We derived three strategies for recognizing admis-
sibility for such rules. These strategies used interpolation, uniform interpolation, and model completions, 
respectively. We tested these methods on the symmetric strict implication calculus S2IC and showed that 
admissibility of Π2-rules is decidable in S2IC. We also proved that the model completion of the theory of 
contact algebras (simple algebraic models of S2IC) is finitely axiomatizable. This allowed us to show that 
there is a finite basis for admissible Π2-rules in S2IC. Below we discuss some potential directions for future 
work.

In the last part of the paper we showed that there is a finite basis of admissible Π2-rules for S2IC. For 
this in Definition 7.10, for a set of Π2-rules Θ and rule ρ we defined when Θ derives ρ. Namely, Θ derives 
ρ if the first-order translation of rules in Θ derive the first-order translation of ρ. The definition of a basis 
of admissible Π2-rules is based on this definition. We leave it as an open problem to define when a set of 
Π2-rule derives a Π2-rule purely in terms of these rules without appealing to their first-order correspondents.

Another direction is to study connections with the literature on admissibility of standard inference 
rules (see [2] for admissibility of standard rules in contact algebras). Our non-standard Π2-rules have the 
particular shape outlined in Definition 2.4 and these trivialize if they are standard (i.e., if p does not occur 
in the formula F from the premise). As a consequence, not every standard rule is a Π2-rule and it could 
be interesting to develop a theory of admissibility for more general formats of non-standard rules that also 
include standard rules.

Finally, it will be interesting to study extensions of our results to systems over a distributive lattice reduct. 
Among others it might be useful to develop a framework encompassing the important (non-standard) density 
rule of fuzzy and many-valued logics [33,36].
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