414 research outputs found

    Parallel and Distributed Simulation from Many Cores to the Public Cloud (Extended Version)

    Full text link
    In this tutorial paper, we will firstly review some basic simulation concepts and then introduce the parallel and distributed simulation techniques in view of some new challenges of today and tomorrow. More in particular, in the last years there has been a wide diffusion of many cores architectures and we can expect this trend to continue. On the other hand, the success of cloud computing is strongly promoting the everything as a service paradigm. Is parallel and distributed simulation ready for these new challenges? The current approaches present many limitations in terms of usability and adaptivity: there is a strong need for new evaluation metrics and for revising the currently implemented mechanisms. In the last part of the paper, we propose a new approach based on multi-agent systems for the simulation of complex systems. It is possible to implement advanced techniques such as the migration of simulated entities in order to build mechanisms that are both adaptive and very easy to use. Adaptive mechanisms are able to significantly reduce the communication cost in the parallel/distributed architectures, to implement load-balance techniques and to cope with execution environments that are both variable and dynamic. Finally, such mechanisms will be used to build simulations on top of unreliable cloud services.Comment: Tutorial paper published in the Proceedings of the International Conference on High Performance Computing and Simulation (HPCS 2011). Istanbul (Turkey), IEEE, July 2011. ISBN 978-1-61284-382-

    Reliable Provisioning of Spot Instances for Compute-intensive Applications

    Full text link
    Cloud computing providers are now offering their unused resources for leasing in the spot market, which has been considered the first step towards a full-fledged market economy for computational resources. Spot instances are virtual machines (VMs) available at lower prices than their standard on-demand counterparts. These VMs will run for as long as the current price is lower than the maximum bid price users are willing to pay per hour. Spot instances have been increasingly used for executing compute-intensive applications. In spite of an apparent economical advantage, due to an intermittent nature of biddable resources, application execution times may be prolonged or they may not finish at all. This paper proposes a resource allocation strategy that addresses the problem of running compute-intensive jobs on a pool of intermittent virtual machines, while also aiming to run applications in a fast and economical way. To mitigate potential unavailability periods, a multifaceted fault-aware resource provisioning policy is proposed. Our solution employs price and runtime estimation mechanisms, as well as three fault tolerance techniques, namely checkpointing, task duplication and migration. We evaluate our strategies using trace-driven simulations, which take as input real price variation traces, as well as an application trace from the Parallel Workload Archive. Our results demonstrate the effectiveness of executing applications on spot instances, respecting QoS constraints, despite occasional failures.Comment: 8 pages, 4 figure

    Anonymity and Confidentiality in Secure Distributed Simulation

    Full text link
    Research on data confidentiality, integrity and availability is gaining momentum in the ICT community, due to the intrinsically insecure nature of the Internet. While many distributed systems and services are now based on secure communication protocols to avoid eavesdropping and protect confidentiality, the techniques usually employed in distributed simulations do not consider these issues at all. This is probably due to the fact that many real-world simulators rely on monolithic, offline approaches and therefore the issues above do not apply. However, the complexity of the systems to be simulated, and the rise of distributed and cloud based simulation, now impose the adoption of secure simulation architectures. This paper presents a solution to ensure both anonymity and confidentiality in distributed simulations. A performance evaluation based on an anonymized distributed simulator is used for quantifying the performance penalty for being anonymous. The obtained results show that this is a viable solution.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2018

    Virtual time-aware virtual machine systems

    Get PDF
    Discrete dynamic system models that track, maintain, utilize, and evolve virtual time are referred to as virtual time systems (VTS). The realization of VTS using virtual machine (VM) technology offers several benefits including fidelity, scalability, interoperability, fault tolerance and load balancing. The usage of VTS with VMs appears in two ways: (a) VMs within VTS, and (b) VTS over VMs. The former is prevalent in high-fidelity cyber infrastructure simulations and cyber-physical system simulations, wherein VMs form a crucial component of VTS. The latter appears in the popular Cloud computing services, where VMs are offered as computing commodities and the VTS utilizes VMs as parallel execution platforms. Prior to our work presented here, the simulation community using VM within VTS (specifically, cyber infrastructure simulations) had little awareness of the existence of a fundamental virtual time-ordering problem. The correctness problem was largely unnoticed and unaddressed because of the unrecognized effects of fair-share multiplexing of VMs to realize virtual time evolution of VMs within VTS. The dissertation research reported here demonstrated the latent incorrectness of existing methods, defined key correctness benchmarks, quantitatively measured the incorrectness, proposed and implemented novel algorithms to overcome incorrectness, and optimized the solutions to execute without a performance penalty. In fact our novel, correctness-enforcing design yields better runtime performance than the traditional (incorrect) methods. Similarly, the VTS execution over VM platforms such as Cloud computing services incurs large performance degradation, which was not known until our research uncovered the fundamental mismatch between the scheduling needs of VTS execution and those of traditional parallel workloads. Consequently, we designed a novel VTS-aware hypervisor scheduler and showed significant performance gains in VTS execution over VM platforms. Prior to our work, the performance concern of VTS over VM was largely unaddressed due to the absence of an understanding of execution policy mismatch between VMs and VTS applications. VTS follows virtual-time order execution whereas the conventional VM execution follows fair-share policy. Our research quantitatively uncovered the exact cause of poor performance of VTS in VM platforms. Moreover, we proposed and implemented a novel virtual time-aware execution methodology that relieves the degradation and provides over an order of magnitude faster execution than the traditional virtual time-unaware execution.Ph.D

    Re-designing Dynamic Content Delivery in the Light of a Virtualized Infrastructure

    Get PDF
    We explore the opportunities and design options enabled by novel SDN and NFV technologies, by re-designing a dynamic Content Delivery Network (CDN) service. Our system, named MOSTO, provides performance levels comparable to that of a regular CDN, but does not require the deployment of a large distributed infrastructure. In the process of designing the system, we identify relevant functions that could be integrated in the future Internet infrastructure. Such functions greatly simplify the design and effectiveness of services such as MOSTO. We demonstrate our system using a mixture of simulation, emulation, testbed experiments and by realizing a proof-of-concept deployment in a planet-wide commercial cloud system.Comment: Extended version of the paper accepted for publication in JSAC special issue on Emerging Technologies in Software-Driven Communication - November 201
    • …
    corecore