1,145 research outputs found

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio

    Output consensus of nonlinear multi-agent systems with unknown control directions

    Get PDF
    In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaumtype control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectivenessComment: 10 pages;2 figure

    Leader-following Consensus of Multi-agent Systems over Finite Fields

    Full text link
    The leader-following consensus problem of multi-agent systems over finite fields Fp{\mathbb F}_p is considered in this paper. Dynamics of each agent is governed by a linear equation over Fp{\mathbb F}_p, where a distributed control protocol is utilized by the followers.Sufficient and/or necessary conditions on system matrices and graph weights in Fp{\mathbb F}_p are provided for the followers to track the leader

    State Omniscience for Cooperative Local Catalog Maintenance of Close Proximity Satellite Systems

    Get PDF
    Resiliency in multi-agent system navigation is reliant on the inherent ability of the system to withstand, overcome, or recover from adverse conditions and disturbances. In large part, resiliency is achieved through reducing the impact of critical failure points to the success and/or performance of the system. In this view, decentralized multi-agent architectures have become an attractive solution for multi-agent navigation, but decentralized architectures place the burden of information acquisition directly on the agents themselves. In fact, the design of distributed estimators has been a growing interest to enable complex multi-sensor/multi-agent tasks. In such scenarios, it is important that each local estimator converges to the true global system state - a quality known as state omniscience. Most previous related work has focused on the design of such systems under varying assumptions on the graph topology with simplified information fusion schemes. Contrarily, this work introduces characterizations of state omniscience under generalized graph topologies and generalized information fusion schemes. State omniscience is discussed analogously to observability from classical control theory; and a collection of necessary and sufficient conditions for a distributed estimator to be state omniscient are presented. This dissertation discusses this phenomena in terms of an on-orbit scenarios dubbed the local catalog maintenance problem and the cooperative local catalog maintenance problem. The goal of each agent is to maintain their catalog of all bodies (objects and agents) within this neighborhood through onboard angles-only measurements and cooperative communication with the other agents. A central supervisor selects the target body for each agent, a local controller tracks the selected target body for each agent, and a local estimator coalesces both an agent\u27s measurements and state estimates provided by neighboring agents within the communication graph. Numerical results are provided to demonstrate the supervisor\u27s ability to select an appropriate target subject to an uncertainty threshold, the controller\u27s ability to track the selected target, and the estimator\u27s ability to maintain an accurate and precise estimate of each of the bodies in the local environment

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    • …
    corecore