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ABSTRACT

Resiliency in multi-agent system navigation is reliant on the inherent ability of the sys-

tem to withstand, overcome, or recover from adverse conditions and disturbances. In large

part, resiliency is achieved through reducing the impact of critical failure points to the

success and/or performance of the system. In this view, decentralized multi-agent archi-

tectures have become an attractive solution for multi-agent navigation, but decentralized

architectures place the burden of information acquisition directly on the agents themselves.

In fact, the design of distributed estimators has been a growing interest to enable complex

multi-sensor/multi-agent tasks. In such scenarios, it is important that each local estimator

converges to the true global system state - a quality known as state omniscience. Most

previous related work has focused on the design of such systems under varying assump-

tions on the graph topology with simplified information fusion schemes. Contrarily, this

work introduces characterizations of state omniscience under generalized graph topologies

and generalized information fusion schemes. State omniscience is discussed analogously to

observability from classical control theory; and a collection of necessary and sufficient con-

ditions for a distributed estimator to be state omniscient are presented. This dissertation

discusses this phenomena in terms of an on-orbit scenarios dubbed the local catalog main-

tenance problem and the cooperative local catalog maintenance problem. The goal of each

agent is to maintain their catalog of all bodies (objects and agents) within this neighborhood

through onboard angles-only measurements and cooperative communication with the other

agents. A central supervisor selects the target body for each agent, a local controller tracks

the selected target body for each agent, and a local estimator coalesces both an agent’s mea-

surements and state estimates provided by neighboring agents within the communication

graph. Numerical results are provided to demonstrate the supervisor’s ability to select an

appropriate target subject to an uncertainty threshold, the controller’s ability to track the

selected target, and the estimator’s ability to maintain an accurate and precise estimate of

each of the bodies in the local environment.
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1 Introduction
1.1 Introduction

Space is a key component to the global economy by facilitating trillions of dollars,

annually, in the global market due to GPS alone [1]. Due to the lower barrier to entry,

space is becoming increasingly congested and the current space surveillance network may

not be able to fully maintain the entire catalog of small objects in the future [2]. Moreover,

with the rise of proliferated low earth orbit constellations like SpaceX Starlink, OneWeb,

and Amazon there is a need for commercial and government satellites to maintain an

understanding of their local area to discern if an orbit change is required. Therefore, future

satellites may, in addition to their operational mission, be required to autonomously

maintain a local catalog of nearby space objects to assure the safety of the platforms and

autonomously decide if any evasive actions would be required. Satellite autonomy is also

increasing in popularity due to such situations, in fact, recently, readiness levels for space

trusted autonomy are studied[3]. More generally, this problem requires high-level and

coordinated autonomous decision-making.

Advances in autonomous system technology has allowed for multi-agent systems to

become an enabling asset for a wide variety of applications - search and rescue [4],

inspection [5], patrolling [6], mapping [7], etc. In order to accomplish such tasks,

multi-agent systems have intentionally been designed to be robust to disturbances to

prevent the disruption of operations with coordinating, cooperating, or collaborating

networked teams of agents. Unfortunately, robustness comes with a price [8]. Often the

price of robustness takes the form of over-conservatism of the optimal solution which could

lead to off-nominal performance if the over-conservatism violates any system constraints.

In [9], the authors suggest that resiliency replace robustness as the new central engineering

paradigm for multi-agent system navigation. Resiliency within a multi-agent system is

defined in [9] as the capability of withstanding or overcoming unexpected, adverse

conditions or shocks and unknown, unmodeled disturbances.



An increasing interest in decentralized multi-agent architectures has sprouted in an

effort to push for more resiliency in such systems. The lack of reliance on global

information allows for decentralized frameworks to be more resilient to adverserial attacks,

lack of trust, and communication failures. Unfortunately, this also leads to increased

complexity for navigation algorithm design. Either infrastructure must be developed to aid

collision avoidance, tracking, and path-planning, or each agent must be capable of

accomplishing each task locally. The latter requires each agent to become aware of every

other agent within the operating environment, and for most sensing modalities,

information gain must inherently be built into all navigation algorithms. In many cases,

development of an external infrastructure is infeasible and impractical. Thus this work

considers multi-agent systems where the information gathering process must be

accomplished locally. This places a unique challenge on the system as available tasks,

feasible paths, collision constraints are harder to verify and implement at the agent level.

To effectively evaluate such criteria within a decentralized framework, every agent must

have independent knowledge of the state of every other agent operating within the

environment. This may be accomplished through distributed estimation. A distributed

estimator is comprised of a number of local estimators and leverages both the

measurements and communicated information. The convergence of each local estimator is

dependent on i.) availability of intermittent measurements, ii.) the phenomena being

tracked and measurements is observable globally, and iii.) measurement information is

properly routed such that every local estimator converges. This work focuses on methods

to guarantee convergence of a distributed estimator, constructing state omniscient

distributed estimators, and present its utility in a practical example.

1.2 Literature Review
1.2.1 Space Situational Awareness

In the literature, the topic of satellite localization has been thoroughly studied for close

proximity (relative motion) satellite systems [10–16], and ground-based sensor networks

2



[17, 18]. Due to the number of space objects compared to the number of ground based

sensors, the tasking of ground sensors must be intelligently chosen [19, 20]. Situational

awareness, in general, can be defined as “the perception of the elements in the environment

within a volume of time and space, the (organizational) comprehension of their meaning,

and the projection of their status in the near future” [21]. In particular, space situational

awareness is a growing topic of interest [22]. Space situational awareness (a.k.a. space

domain awareness, or SDA) has been expanded to encompass all space environmental

impacts as well, which leads to a multidisciplinary domain of research that incorporates

facets of information fusion, collection-tasking and exploitation to better assess anomaly

identification and prediction. However, solutions to the SSA problem utilizing solely

on-orbit assets has only recently been studied [14, 23–25] , and only even more recently has

been referred to as the local catalog maintenance problem [26–28].

Transcending a traditional catalog maintenance problem, the cooperative local catalog

maintenance problem is primarily one of decision-making and efficient communication. One

that, due to its cooperative nature, is subjugated to communication constraints. Similar

works have taken into account efficient communication for reinforcement-learning based

schemes in recent years, but their focus has been decision-making algorithm design [29–31].

The work by Fedeler et. al. [32, 33] migrates these decentralized decision-making

approaches to space domain awareness over random communication graphs. Many of these

results assume connectivity of the underlying graph topology for effective communication

and decision-making. However recent results show that, for estimation problems,

connectivity is a sufficient but not necessary condition for state estimate convergence

assuming certain conditions are met for the unconnected components. Because accurate

and precise state estimate play a significant role in the efficacy of almost all

decision-making algorithms, effective decisions may still be made without a connected

graph. It is only necessary that each agent is able to gather the requisite information. It

does not matter if that agent does by its own accord or through communication with other

3



agents. This work goes a step further than [32, 33] by strategically constructing a

communication graph to support the transmission of information across the network.

1.2.2 Notions of Observability

The study of linear time-invariant (LTI) system observability has been fundamental in

the development of control theory since its introduction by Kalman in the early 1960’s [34].

Since that time, analogous forms of observability have been introduced to the frequency

(via transfer functions) and graph domains [35–37] for LTI system analysis. Studying

observability from a graph-based perspective has enabled the development of observability

for large-scale complex networks [38, 39] and multi-agent systems [40–42]. Additionally,

tools and concepts from algebraic graph theory have been readily applied to describe

properties of observable systems. The spectrum of a graph is particularly influential in

describing the observability and reconstructability of the graph [43, 44]. The majority of

observability literature focuses on identifying observable systems and their properties. This

is most commonly accomplished using a binary quantifier - a LTI system pair (Φ,C) is

either observable or it is not. Lin [35] discusses an extension to observable systems by

introducing structural observability. Structural observability considers matrices of specified

nonzero patterns to identify the observability properties of a system with a given pattern.

More recently, an interest in decentralized multi-agent systems necessitates alternative

forms of the observability that focuses on the agent-level criterion rather than the

system-level as a whole. The authors of [45] show that “centralized observability” is only a

necessary condition for observability at the agent-level, and use a structured systems

theoretic approach to present “distributed observability” to craft a notion of agent-level

observability. Hays [27] demonstrates this phenomena in a practical example - each

estimator only converges when its own knowledge of the states are observable.

1.2.3 Distributed Estimation

Employing multiple sensors/agents is a scalable and robust strategy for maintaining

target tracking or estimation capability within a networked system. Particular within
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recent decades utilizing multiple agents to complete such tasks has proliferated monitoring

[46–48], fault-detection [49], target tracking, navigation [50–52], and space situational

awareness [14, 23–25] arenas which has led to a rising interest in the development of

technologies that may enable improved performance and enable autonomous operations. It

was observed by He in [53] that there exist four primary strategies to fuse communicated

information within a distributed estimator i.) Sequential ii.) Consensus iii.) Gossip and

iv.) Diffusion. He further points out these strategies exist for both state vector and

information vector based filtering and provides a thorough discussion as well as numerical

comparison of each of the strategies. The work discusses each of the strategies in terms of

their advantages and disadvantages in the fields of global optimality, local consistency,

communication burden, and specific topology requirements. Sequential fusion algorithms

[54–56] may be simple but require a specific topology and local observability at each node.

Consensus algorithms [57–60] may achieve global convergence but may take long to

converge; gossiping algorithms [61, 62] share the same problem. Diffusion algorithms

[63–65] may have a low communication burden but have no guarantees of global

convergence. However, irregardless of the fusion strategy chosen for distributed estimation

some form of detectability/observability is required across the network for each local

estimator to converge; a characterization that has, unfortunately, been scarce within the

literature.

1.2.4 Convergence of Distributed Estimators

Accuracy and confidence in the state of the world is critical for well-resourced

decision-making within the highly complex socio-political, economical, military, and

emergency response arenas. With advances in automation, it is critical for systems with

decision-making authority be endowed with the same knowledge and confidence in

knowledge whether they be autonomous systems, multi-agent networks [4–7, 66],

mechanical, cyber-physical or environmental observers [26, 27, 67], or power system state

estimators [68, 69].
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Particularly for networked systems, distributed estimation allows for each agent within

the network to make informed decisions regardless of what the agent directly measures. The

general distributed estimation problem is well-studied in literature for a variety of problem

sets with equally many solutions. Early work in parallel Kalman filters opened the door

[70, 71] to distributed dynamic system estimation [72, 73]. Distributed dynamic system

estimation may be divided into consensus [57, 74] and data-fusion [73] based schemes that

utilize external (to the agent) information to help the estimator to converge at each agent.

The convergence of any estimator is dependent on the ability of the system to

reconstruct the system state based solely on its outputs. Often referred to as observability,

this system quality is a sufficient condition for state reconstruction [34, 75]. For distributed

networked systems, the notion of observability becomes convoluted as a networked system

may be considered observable when all of the necessary information is being measured

across the network, but it may not be properly routed to parts of the network. For the case

of networked systems, the field of observability is partitioned into centralized observability

and distributed observability [76, 77]. A system is centrally observable if it meets the

classical definition of observability such that a centralized estimator may reconstruct the

system states. A system is distributedly observable if it is centrally observable and the

information is properly routed such that each independent agent within the network can

reconstruct the system states. Therefore, analyzing and constructing communication

networks to yield desirable properties have recently been a significant interest [52, 78, 79].

This analysis has commonly been approached through the lens of structured systems

theory [35, 80] that is dependent on the placement of non-zero values rather than

considering their exact values directly.

1.2.5 State Omniscient Systems

Motivated by increased demand for spatially disparate agents or sensors, the design and

performance analysis of distributed state estimators has seen a surge of recent attention

[81]. Comprised of a number of local state estimators each only capable of only perceiving
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some subset of the global system’s state, distributed estimators benefit from the exchange

of information amongst the local estimators such that each local estimator may perceive

the global system state; a quality Park and Martins [82, 83] refers to as state omniscience -

a system property where each local estimator converges to the true system state. State

omniscience is a designable property of distributed estimators encapsulating sensed,

communicated, and fused information at each local estimator within a networked system.

Moreover, state omniscience intertwines the typical discussion on the structural

observability of network systems [35] and dynamic system observability [34].

Since its inception, many works have focused on state omniscient distributed estimator

design with certain assumptions (typically requiring strong connectivity or strongly

connected components) on the underlying communication graph and local output matrices

[84–88]. Many such works utilize state-augmentation [82, 83, 89] to cast as a decentralized

control problem; and/or utilize scalar weights which may limit the quality of the fusion

solution [84, 86, 87, 90–94]. On the other hand, only few works have focused on the

characterization of state omniscience as presented in this paper. Park and Martins in [82]

present necessary and sufficient conditions for state omniscience of a distributed estimator

that assumes bidirectional communication, augmented state variable, and a particular

fusion scheme. The ensuing results are reliant on the system to have no unstable fixed

modes; i.e. the distributed estimator is detectable. These results were later extended to

include directional communication in [83]. Other similar works, focus on the observability

of networked systems through the lens of the graph Laplacian implying consensus-based

algorithms [95–97] which have been shown to be “unlikely” to be completely controllable

and, dually, unlikely to be completely observable [98].

Unlike [82], we make no underlying assumptions on the structure of the communication

graph, nor do we assume scalar fusion weights, nor do we consider state augmentation.

Moreover, while the results presented in [99] may have similar implications to the result

herein, they remain strongly rooted in structured systems and graph theory; where, in fact,
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the main objective of this work is to draw clear and explicit connections between dynamic

observability at the agent level and graph topology while maintaining a sharp distinction

between the underlying dynamics and communication infrastructure. Drawing definitive

connections between the results herein and the results from [99] may be an interesting

topic for future investigations. Our primary focus is the construction of necessary and

sufficient conditions for state omniscience in such a way that they are easily recognizable to

anyone who has an introductory understanding of linear control theory. We accomplish this

by making explicit connections to standard results, particularly the observability matrix.

We expand on the standard results by incorporating network traversal; thus, becoming a

strict generalization of the traditional notion of observability. Ultimately, it is the belief of

the authors that this work clarifies and relaxes much of the results from the existing

literature by uniquely tying structural and dynamical observability [97, 100].

1.2.6 Information Fusion

Fusing pieces of information (or data) has long been an outstanding problem within the

scientific [101], industrial engineering [47, 49], and robotics communities [102]. Whether

combining the information provided by multiple sensors on a single platform or through a

networked team of agents [46], the objective of information fusion algorithms is to extract

information from measurements and provide the most accurate, and precise, representation

of the information provided and place it into a form effective for decision-making [103]. For

systems with known correlation between statistics–e.g., mean, covariance,

cross-correlation–the Kalman Filter provides a minimum mean squared error result.

However, in most practical applications it is impossible to know the cross-correlation

between multiple sources, resulting in the Kalman Filter returning suboptimal solutions.

As sensing networks become more distributed and complex, particularly within large,

heterogeneous networks of sensors that operate at different frequencies [104], suboptimal

solutions can quickly (within one sensing cycle) degrade estimation performance. It is

imperative that fused solutions maintain a structure as close to the optimal solutions as
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possible.

Additionally, the computational burden of fusing many pieces of information can make

the problem computationally intractable (at least in the time it takes the dynamics or

states of the system being observed to change). To address this issue, a number of

distributed fusion algorithms have been introduced for networked systems [105]. This,

unfortunately, compounds the problem of unnecessary covariance growth as conservative

“over-approximations” of the covariance are added at every intersecting fusion node, rather

than all at once. As distributed and decentralized sensor networks have seen significant

usage within recent years, novel techniques in information fusion that preserve the

structure of the optimal solution and maintain computational feasibility are warranted.

Methods to provide such a solution have been considerably studied in the literature

[106–112]. However, many of these solutions employ schemes that competitively weight

these information sources and could potentially bias the fused solution towards a specific

piece of information. In contrast, other solution methods attempt to cooperatively fuse the

available information at the cost of maintaining the appropriate lower (consistent) and

upper (tight) bounds.

1.3 Contributions

This work makes three primary contributions related to multi-agent autonomous

system guidance and navigation

1. Formally Characterize State Omniscience

2. Introduce and Address the Local Catalog Maintenance Problem

3. Improve information fusion techniques through matrix decomposition.

The following sections detail the nature of each of the listed contributions.
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1.3.1 Formally Characterize State Omniscience
Ubiquitous Single-Output Observability

Rather than continuing the structured systems approach as is commonly done in the

literature, this work explores a form of distributed controllability/observability using the

classical tools in an attempt to shed some light on the underlying phenomena. Specifically,

this work identifies a specific class of LTI systems that are observable independent of any

nonzero input matrix C. Rather than introducing this class of linear systems, this work

formally characterizes this particular class of linear systems and endows them with a list of

properties, and provides direct ties to other notions of observability. To the best of the

author’s knowledge, this is the first time this particular class of LTI systems has been

formally quantified and characterized. For such systems, the authors use the term

Ubiquitous Single-Output Observability (USOO). USOO systems have practical

applications in the design fault tolerant systems [113]. Finally, Ubiquitous Single-Input

Controllability, the dual form of USOO, system provides applications to the previously

mentioned decentralized controller scenarios. If an actuator fails and it is important to

maintain full controllability of the system, a USIC system will be able to maintain such a

property regardless of which specific actuator failed. Moreover, USIC systems may be able

to provide multiple actuation methods to achieve the same goal which can lead to

intelligent actuator and sensor selection and optimization.

Heuristic and Set-theoretic State Omniscience

This work is primarily concerned with the design of a network system to yield

distributed estimator convergence. In particular, we consider the interactions of sensed and

communicated information as graphs to study necessary and sufficient conditions such that

the estimator at each agent will converge to the truth states. One significant challenge this

paper addresses is the modeling of sensing connections between vertices. Because a

sensing-only network does not behave the same as traditionally considered graph networks,

interpreting the traditional notions of networked system observability is not immediately
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clear. This work attempts to clarify the role sensing connections have on networked system

observability by merging the sensing connections and measurement matrix to form a single

augmented measurement matrix.

A set theoretic approach introduces a binary quantifier for the convergence of a

distributed estimator, something that has, as of yet, not been found in the literature. It is

also shown that under certain design considerations this convergence criteria and

observability are equivalent. Additionally, rather than restricting the estimator to scalar

fusion weights, as has been traditionally done, this work generalizes the estimator notation

such that more sophisticated fusion techniques [106, 109, 114] may be considered. In light

of this, the design (graph topology) of networked distributed estimators is considered by

establishing convergence conditions for each of the possible combinations of the sensed and

communicated graph topologies.

State Omniscience as a Generalization of Classical Observability

Unlike [82], we make no underlying assumptions on the structure of the communication

graph, or utilize scalar fusion weights, nor state augmentation. Moreover, while the results

presented in [99] may have similar implications to the result herein, they remain strongly

rooted in structured systems and graph theory; where, in fact, the main objective of this

work is to draw clear and explicit connections between dynamic observability at the agent

level and graph topology while maintaining a sharp distinction between the underlying

dynamics and communication infrastructure. Drawing definitive connections between the

results herein and the results from [99] may be an interesting topic for future

investigations. Our primary focus is the construction of necessary and sufficient conditions

for state omniscience in such a way that they are easily recognizable to anyone who has an

introductory understanding of linear control theory. We accomplish this by making explicit

connections to standard results, particularly the observability matrix. We expand on the

standard results by incorporating network traversal; thus, becoming a strict generalization

of the traditional notion of observability. Ultimately, it is the belief of the authors that this
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work clarifies and relaxes much of the results from the existing literature by uniquely tying

structural and dynamical observability [97, 100].

1.3.2 Introduce and Address the Cooperative Local Catalog Maintenance Prob-
lem

Additionally, Chapter 3 introduces a decision-making algorithm which supplies a

control trajectory to the agent such that the uncertainties of all tracked deputies are

guaranteed to lie underneath a predefined bound. The deputies are modeled to maneuver

about a virtual chief according to the well-known Clohessy-Wiltshire dynamics, while each

satellite’s attitudinal dynamics are modeled according to Euler’s rotational equations. The

state estimation is performed using a distributed version of the extended Kalman filter,

and the sequence of control inputs to the agent are computed via Model Predictive Control

(MPC). Finally, a supervisory decision logic framework is constructed. It determines which

sequence of deputies to observe based on the estimated relative positions and uncertainty

effectively combining the decision-making and graph construction algorithms developed in

[27, 28] with the control pipeline developed in [26].

Furthermore, Chapter 6 considers the same problem where the agents are capable of

communication. It introduces a communication graph construction algorithm that

maintains the desired state omniscient condition. Succinctly, this work presents a

first-of-its-kind end-to-end algorithm that considers decision-making, estimation, and

control to accomplish a multi-target tracking objective.

1.3.3 Contributions to Information Fusion

Reviewing much of the related literature from Section 1.2.6, CI is shown to maintain

consistency but is not necessarily tight. EI is tight but does not guarantee consistency; and

ICI, while it maintains both consistency and tightness, competitively weights the

information provided which ultimately limits the best fused estimate the method can

provide. To address each of these issues, the present work derives a fusion methodology

that preserves both consistency and tightness while cooperatively fusing the information
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provided by A and B. Upper and lower bounds on a scaling parameter, Ω, are also derived

and proved analytically to maintain consistency and tightness of the presented fusion

solution. Finally a method to calculate the mutual mean between the information sources

using the proposed methodology is also introduced.

1.4 Dissertation Outline

The remainder of this dissertation is outlined as follows: Chapter 2 lays out the

notation and necessary preliminaries, Chapter 3 introduces and formalizes the local catalog

maintenance problem. Chapter 4 transitions the train of thought to discussing state

omniscient, a necessary development for the remainder of the work. Similarly, Chapter 5

lays out a novel information fusion scheme founded in matrix decomposition. Chapter 6

resumes the discussion on local catalog maintenance but considers communication amongst

agents and refers to the problem as the cooperative local catalog maintenance problem and

Chapter 7 presents numerical results for the cooperative local catalog maintenance problem.

Finally Chapter 8 provides a summarized of the key results and recommendations for

future work.
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2 Notation and Preliminaries
2.1 Notations and Definitions

Let R be the set of real numbers and N be the set of natural numbers. Next, let a ∈ Rn

be a column vector of dimension n, F ∈ Rp×n be a matrix with p rows and n columns, and

A denotes a set. Specifically, X ⊆ Rn is the set of all vectors a state vector x may take.

The operator A\X is the set difference of A and X and is the elements of A that are not

in X . We use the notation (·)lk to indicate the element (or block element) of a matrix. The

operator ⊗ is a block-matrix generalization of the standard Kronecker product denoted

W ⊗Φ that may be applied to block matrices of W, namely Wij, such that

(W⊗Φ)ij = WijΦ ∈ Rn×n given W ∈ RnN×nN , Φ ∈ Rn×n, and (W⊗Φ) ∈ RnN×nN where

n is the size of the state space and N is the number of vertices in the underlying graph

considered. The operator diag(·) places all of the given elements on the block diagonal of

the resulting matrix, and the operator diagm(·) only includes the elements on the block

diagonal of the matrix. The matrix In ∈ Rn×n represents the identity matrix, 0n ∈ Rn×n

represents the zero matrix, and Ji = [J̄1, . . . , J̄j, . . . , J̄N ] ∈ RnN×nN2 and

J̄j =


0nN , j 6= i

InN , j = i

.

We say 1N is the N -dimensional vector of all ones. We notate a frame with a script I . We

also notate the image and null of a space A as Im(A) and Null(A), respectively.

A frame for an n-dimensional space is defined by n orthonormal vectors Îi, i ∈ [1, n].

In this paper, we work with spaces where n = 3. The Special Orthogonal Group SO(3) is

the set of all real invertible 3× 3 matrices that are orthogonal with determinant 1. We

refer to individual elements of SO(3) as rotation matrices R:

SO(3) := {R ∈ R3×3 | (R)>R = I3, detR = 1}
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Given two coordinate frames H and B, the rotation of vector xH as measured in frame

H to xB as measured in frame B is denoted by RB
H , that is, xB = RB

H xH . Given three

frames H , B, and I , the angular velocity of B relative to H as measured in frame I is

denoted by IωB
H . For a vector a := (a1 a2 a3)

> ∈ R3, the cross product operation (or skew

operation) (·)× : R3 → so(3):

(a)× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.1)

If b ∈ R3, then the cross-product c = a× b can be written c = (a)×b = −(b)×a. Here, the

Lie algebra so(3) is the set of all real 3× 3 skew-symmetric matrices and is the tangent

space of SO(3) at the identity I3:

so(3) := {((a)×)> = −(a)× | a ∈ R3}

For a vector a ∈ R3, the L2-norm operator is defined as ||a|| :=
√

a>a. A multivariate

Gaussian distribution of an n-dimensional random variable is parameterized by a mean

vector x̂ ∈ Rn and a symmetric, positive semidefinite covariance matrix P ∈ Rn×n. Given

matrices A ∈ Rm×n and B ∈ Rp×q, the Kroenecker product is denoted by ⊗ and is given by

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

... ... . . . ...

am1B am2B . . . amnB


.

Given a vector a ∈ Rm, the projection of a onto Rn, n ≤ m is denoted by a ↓ Rn. Next, we

specify a mapping between the vector x in Cartesian space to the azimuth-elevation or
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(Az, El) space g(x) : R3 → S2

g(x) =

Az

El

 =

tan−1( s2
s1
)

sin−1(s3)

 (2.2)

where s = x
||x|| and S2 is the unit sphere with angular coordinates Az ∈ [−π, π] and

El ∈ [−π
2
, π
2
) by astronomical convention.

2.2 Graph Theory

Consider an interconnected system of N vertices that may be modeled as a directed

graph G = (V , E ,A) with V = {1, 2, . . . , N} being the vertex set, E = {(i, j) ∈ V × V} is

the edge set, and A = [aij] ∈ RN×N is the adjacency matrix. A specific edge is defined by

the tuple(j, i) exists if vertex i can access the information of vertex j. The neighbor set of

vertices i is Ni = {j ∈ V : (j, i) ∈ E}, constructed if a vertex j exists and its connection to

i exists within the edge set. The adjacency matrix is constructed with aij = 1 if (i, j) ∈ E

and aij = 0 otherwise. In other words, two vertices are adjacent if an edge exists between

the two vertices. The incidence matrix of a digraph E = [εij] ∈ RN×|E| where εij = 1 if edge

ej leaves vertex i, εij = −1 if edge ej enters vertex j and εij = 0 otherwise. Note that the

sum of each column of E is equal to 0. We use the notation iE> to indicate the incidence

matrix of the collection of in-edges at agent i.

The directionality of the arrows in Figure 2.1 shows the flow of information through the

network.

x1

x2 x3

x4u

y

Figure 2.1 Example Graph Topology Modeling State Interactions, Inputs, and Outputs of a
Linear Dynamic System.

Given a graph G with adjacency matrix A its characteristic polynomial is notated as
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pA(s) = |sI −A| where | · | indicates the matrix determinant. Later in the work, we will

show that consideration for G with a specific vertex i removed will need to be made,

therefore, we consider a set notation to indicate a vertex removed from G as G \ {i} where

· \ · notates the set minus. In a matrix case, this means that the ith row and column is

removed from the adjacency matrix, similarly, this case is notated as A \ {i}. For more

information on algebraic graphical topology see [44]. Algebraic interpretations of the

adjacency matrix are particularly useful in analyzing the graph structure. The matrix

powers of the adjacency matrix are known as the adjacency algebra.

Definition 1. (Adjacency Algebra) The adjacency algebra, A(G), is the algebra of

polynomials constructed by the matrix powers of A.

It will later be shown that the USIC property of the system is directly tied to the rank

of the adjacency algebra. With that said, the adjacency algebra set {I, A, A2 . . . , An−1}

is considered to be linearly independent if the vectorized forms of each matrix in the set is

linearly independent from each other. nThe adjacency algebra also explicitly indicates the

walks that exist within a graph.

Definition 2. (Walk) A walk from vertex i to vertex j is said to exist if there is a

sequence of vertices and directional edges that connects vertex i to vertex j.

The number of walks between any two vertices may be specified as the powers of the

adjacency matrix. The element Al
ij indicates the number of l-length walks between vertex i

and vertex j[115].

Definition 3. (Strongly Connected) A graph G is called strongly connected if any two

vertices are connected by a walk.

Next, let us consider S, T ⊆ V to be a set of source and target vertices. The vectors
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s = [s1, . . . , sN ]
> ∈ RN and t = [t1, . . . , tN ]

> ∈ RN are constructed as follows

si =


1, i ∈ S

0, otherwise
ti =


1, i ∈ T

0, otherwise
. (2.3)

We then define the walk matrix for the set of all walks ending in T as

W =



t>

t>A

...

t>Ad


; (2.4)

we may also define the walk matrix from S to T as

WS =



t>

t>A

...

t>Ad


s (2.5)

where d is known as the graph diameter and is the length of the longest shortest walk

between two vertices [116]. We say an agent j ∈ Wi is in the walk set of agent i if and only

if for sj = ij and ti = ii W
Ssj 6= 0. This implies i to be in its own walk set. Furthermore,

we say a digraph is weakly connected if its undirected counterpart is connected, i.e. there

exists a walk i→ j ∀ i, j in the undirected graph.

2.3 Heterogeneous Networks

Each vertex in the network has a set of underlying (not necessarily identical) dynamics;

neither do the edges necessarily represent similar interactions between vertices; referred to

as a heterogeneous network [117]. From this point forward, we will refer to the vertices of

the heterogeneous network as “agents” because each vertex of the graph represent an
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individual agent of a multi-agent system. For example, consider Figure 2.2, the

directionality of the red arrows represent flow of communicated information and the

directionality of the blue arrows represent the flow of sensed information.

1

2 3

4 5

Agent

Communication
Sensing

Figure 2.2 Example of modeling a heterogeneous network describing the system with coupling
through communication and sensing interactions.

Note that these information types will take the form of distinct and possibly disjoint

graphs, for example, these are depicted as two separate graphs in Figure 2.3. Therefore,

the overall information flow over the heterogeneous graph is constructed by the union of

the graphs Gs and Gc describing the sensing and communication networks, respectively, i.e.,

G ← Gs
⋃
Gc1.

Due to the inherent behavior of these separate types of information, a distinction must

be made. The communication graph in Figure 2.3a allows for the information to pass

through vertices, while the sensing graph in Figure 2.3b does not allow for the information

to be relayed through a vertex; the arrows indicate the direction of information flow. This

distinction is a reflection on how these types of information may flow through the graph;

an agent cannot sense what another agent is sensing, but an agent may communicate what

it senses to another agent.
1The subscripts s and c notate sensing and communication graphs, respectively.
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1

2 3

4 5

(a) Communication Gc

1

2 3

4 5

(b) Sensing Gs

Figure 2.3 Graph models of communication and sensing network topologies where the arrows
indicate the directionality of information flow. The communication graph in 2.3a allows for
the information to pass through vertices, while the sensing graph in 2.3b does not allow for
the information to pass through a vertex.

2.4 Multi-agent Linear Time-Invariant Systems

We consider each inidvidual agent is independently governed by a discrete-time linear

time-invariant system
xi(k + 1) = Φixi(k)

yi(k) = Cix(k)

(2.6)

where xi(k) is the state of agent i at timestep k, and Φi ∈ Rn×n is the system matrix,

Ci ∈ Rpi×nN is the output matrix, xi(k) ∈ Rn and yi(k) ∈ Rpi are the state and output

vectors of agent i for each i ∈ V and k ∈ N is the discrete-time step. The output vector

yi(k) in (2.6) is dependent on the full state vector, x>(k) = [x>
1 (k), . . . ,x

>
N(k)]. The full

output vector y>(k) = [y>
1 (k), . . . ,y

>
N(k)] can then be written as

x(k + 1) = Φx(k)

y(k) = Cx(k)

(2.7)
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where Φ = diag([Φ1, . . . ,ΦN ]) ∈ RnN×nN and C = [C>
1 , . . . ,C

>
N ]

> ∈ Rp×nN , where

p =
∑N

i=1 pi. The operator diag(·) places all of the given elements on the block diagonal of

the resulting matrix, and Φi is the system matrix of agent i. Consequently, Ci represents

all of the measured information available at agent i and C represents all of the measured

information across the network. The full network can be modeled by taking the stack of xi

which leads to (2.7). For a homogeneous agent system, Φ = (IN ⊗ Φ̄) where

Φ1 = Φ2 = · · · = ΦN = Φ̄. In this setting, an agent may be capable of measuring other

agents, we can model this using a measurement matrix H ∈ Rq×n such that

yi(k) = (iE>
s ⊗H)x(k) = Cix(k) (2.8)

where (iE>
s ⊗H) = Ci ∈ Rpi×nN is the augmented output matrix.

2.5 Observability

For linear systems, a state representation of a full dynamic network may be constructed

using techniques adapted from [118] and [97]. For example the underlying dynamics of each

agent in a heterogeneous network can be modeled using a system matrix (Φi) for each

i ∈ V , the sensing graph (Gs), and the communication graph (Gc). In this section, we

provide the general notions of observability considered in this paper. Observability has

historically been studied and well understood in the literature [34, 35, 97]. The traditional

notion of observability where the initial state and trajectory may be inferred only from the

system outputs is given as follows

Definition 4. (Observability) A dynamic system in (2.6) is considered to be observable

if the initial state of the system xi(0) is able to be reconstructed from a time history of the

system outputs {yi(0),yi(1), . . . ,yi(k)}.

2.5.1 Binary Observability Quantifiers

The notions of controllability and observability in dynamic systems were originated by

Kalman [34] and have since played a pivotal role within the realm of control theory. In
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general, a dynamic system is considered to be controllable if there exists a control signal u

that drives the system to a desired state in finite time. A dynamic system is considered to

be observable if given an observation signal y the initial state of the system may be

reconstructed. Proving whether a given dynamic system is controllable or observable is a

well studied problem and takes a variety of forms depending on the dynamic system

representation. Consider the state-space representation of a linear time-invariant

dynamical system in (2.9)

ẋ = Φx+Bu

y = Cx

(2.9)

where x ∈ Rn is the set of states, u ∈ Rp is a vector of control inputs, and y ∈ Rq is the

measurement vector, Φ ∈ Rn×n is the continuous time state transition matrix, B ∈ Rn×p is

the input matrix that maps the inputs to states, and C ∈ Rq×n is the output matrix that

maps the states to outputs. Each relate the states of the system and external inputs to

how the system changes over time and how it is observed.

For LTI systems, controllability and observability are well-studied problems where the

following statements are equivalent:

• The pair (Φ,C) is observable.

• The observability matrix O is full column rank.

O =



C

CΦ

CΦ2

...

CΦn−1


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• The observability Gramian Go(t) is nonsingular for any t > 0.

Go(t) =

∫ t

0

eΦ
T τCTCeΦτdτ

• The matrix [(Φ− λI)T , CT ]T is full column rank for every eigenvalue λ of Φ, known

as the Popov-Belevitch-Hautus (PBH) observability test.

• There does not exist a right-eigenvector of Φ such that Cv = 0 with

• The system is in or can be placed in observable canonical form, where αi is the ith

coefficient of the characteristic polynomial of Φ.

Φ′ =



−αn 1 0 . . . 0

−αn−1 0 1 . . . 0

... ... ... . . . ...

−α2 0 0 . . . 1

−α1 0 0 . . . 0


, C′ =

[
1 0 . . . 0 0

]

All the aforementioned observability tests are also applicable to linearized versions of

nonlinear systems and indicate local observability of the system. Another widely accepted

for evaluating the local observability condition of a nonlinear vector field f(x) with a

nonlinear measurement function h(x) is the Lie derivative shown in (2.10) [119–121].

O =
∂

∂x



L0
fh(x)

L1
fh(x)

...

LN−1
f h(x)


; LNf h(x) =

∂LN−1
f h(x)

∂x
f(x); L1

fh(x) =
∂h(x)

∂x
f(x) (2.10)

Other approaches exist for the global observability of nonlinear systems but are reliant on

Lie bracket analysis and are considered outside the scope of this work [122, 123].
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These metrics are not strictly binary quantifiers of observability, like the rank condition

of the observability matrix, rather they provide an idea about how much state information

is available to the system.

2.5.2 Observability Quality

Friedland [124] adapts the condition number of a matrix to be a quantifier of the

observability of the system. He then defines this observability quantifier as shown in (2.11)

and coins it as the “coefficient of observability”, ζ.

ζ =
λmin(F)

λmax(F)
(2.11)

where F = OTO or F = Go. By definition, 0 ≤ ζ ≤ 1, because λmin(F) ≤ λmax(F) except

for when λmax = 0 which implies the dimension of the observable space is negligible.

Therefore as ζ approaches 1, the better the observability of the dynamic system. However,

unlike the rank condition of the observability matrix, the matrix condition number is

sensitive to similarity transforms [125]. An immediate extension to a multi-agent system

would be to directly use the augmented dynamical system to construct an augmented

observability matrix using the dynamics defined by (2.7).

From a graph topology persepctive, an analogous observability matrix can be

constructed in Equation 2.12

Oi =



ci

ciA

ciA
2

...

ciA
n−1


(2.12)

where A is the adjacency matrix of the graph and ci is the ith row of the identity matrix.

Physically, the row vector ci queries the information available at Agent i, therefore the

matrix Fi = OT
i Oi quantifies the quality of the observability condition at Agent i. This
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may also be adapted for a system wide approach as shown in Equation 2.13.

Ō = diag([Oi]) ∀ i = 1, . . . , n (2.13)

Consequently, F̄ = ŌT Ō. However this direct approach still suffers from a hefty

computational burden, as the size of F̄ grows quadratically with n. So, may only be of

practical use for systems of small dimension.

2.5.3 Structural Controllability

Linear dynamic systems may take the form of directed graphs (digraphs) for both

continuous and discrete time systems. For such systems, we define the state x ∈ Rn, the

input u ∈ Rq and output y ∈ Rp. In this work, we consider continuous-time systems of the

form

ẋ = Φx+Bu

C = Cx

(2.14)

where Φ ∈ Rn×n is the system matrix, B ∈ Rn×q is the input matrix, and C ∈ Rp×n is the

output (or measurement) matrix. By interpreting the system matrix Φ as an adjacency

matrix A for a graph network, many of the tools from graph theory may be leveraged to

describe and analyze the equivalent linear dynamic system. For example, consider the

graph in Figure 2.1 which can equivalently be represented as a linear dynamic system

(2.14) where x = [x1, x2, x3, x4]
> with matrices given by

A =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


, B =



1

0

0

0


, C =

[
0 0 1 0

]
(2.15)
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In this work, we consider a graph describing a continuous-time LTI system with following

assumptions.

Assumption 1. There is no edge pointing to a vertex that represents a control input.

Assumption 2. The input matrix B ∈ Rn×1 and the output matrix C ∈ R1×n are limited

to having a singular non-zero element. This directly indicates each input only has direct

control over and each output only receives information from a single state rather than a

linear combination of multiple states.

On the surface, these assumptions may seem overly restrictive. However, many of the

following results will generalize to almost any non-zero n-dimensional vector B the main

results are agnostic to the structure of B. Similar assumptions have previously been made

by Liu and Morse in [126] with generalizable results.

Lin [35] provides a graph-theoretic definition of what is called “structural”

controllability which generalizes controllability to “structured” matrices which have fixed

zero entries and free parameters everywhere else. A structurally controllable system is

defined by the following equivalent statements:

1. The pair (A,B) is structurally controllable.

2. There is no permutation matrix, P, that can bring the pair (A,B) into (2.16).

PAP−1 =

A11 0

A21 A22

 , PB =

 0

B2

 (2.16)

equivalently, (2.16) is also a reducible matrix2.

3. The graph of (A,B) contains no nonaccessible vertices and no dilations[35].

4. The graph of (A,B) is spanned by a cactus[35].
2To avoid confusion with reducible and irreducible polynomials later in the work, we refer to reducible

matrices as having Form (2.16).
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5. The generalized rank of the matrix [A B] is n.

The generic rank, s-rank, or term rank is the maximum number of elements contained in at

least one set of independent entries of A [127]. Physically, the generic rank places an

upper-bound on the rank of a matrix of that particular structure.

2.6 Relative Orbital Mechanics
2.6.1 Clohessy-Wiltshire-Hill Equations

The Clohessy-Wiltshire-Hill (CWH) equations [128] have become fundamental in

describing the relative orbital dynamics of multi-satellite configurations operating within

close proximity of a circular orbital trajectory of a “chief” satellite, whether virtual or real.

See Figure 2.4. By leveraging the non-inertial Hill’s frame [129], the CWH equations

(a) The Earth-Centered Inertial frame.

(b) The CWH frame.

Figure 2.4 A chief satellite and a deputy satellite both orbit about the Earth relative to the
inertial frame {x̂e, ŷe, ẑe} as shown in (a). The dashed lines correspond to the closed orbital
trajectories of both spacecraft. The orbit-fixed CWH frame {x̂o, ŷo, ẑo} is attached to the
chief and rotates relative to the inertial frame at η rad/s. In (b), the position of the deputy
relative to the chief is shown in this moving CWH frame.

provide a linear approximation of the dynamics of such systems and allow for associated

linear analysis techniques to be applied. The state of a satellite as expressed in the Hill’s

frame, x := [rx, ry, rz, vx, vy, vz]
> are respectively relative positions and velocities from
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the state of the chief satellite. The full CWH equations of motion are shown in Equation

(2.17):

v̇x = 2ηvy + 3η2rx + ux

v̇y = −2ηvx + uy

v̇z = −η2rz + uz

(2.17)

where η, denoted the mean motion, is the constant angular velocity of the Hill’s frame with

respect to some inertial frame attached the celestial body (i.e. Earth), while

u := [ux, uy, uz]
> is the acceleration input applied to the spacecraft as measured in the

Hill’s frame. These equations may be placed in the form of a standard linear system,

ẋ = Φx+Bu, y = Cx where the state matrix Φ, control matrix B are defined as

Φ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3η2 0 0 0 2η 0

0 0 0 −2η 0 0

0 0 −η2 0 0 0


, B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


. (2.18)

For multi-satellite systems, the above linear description may be expanded as ẋ = Φ̄x+ B̄u

and y = C̄x, where, for homogeneous graph networks, Φ̄ = (IN ⊗Φ), B̄ = (IN ⊗B), and

C̄ = (IN ⊗C) Where ⊗ denotes the Kronecker product, IN is the N -dimensional identity

matrix, and now, the state vector x is the augmentation of each of the individual satellite

state vectors, x = [x>
1 , . . . , x

>
N ]

>.

2.6.2 Natural Motion Trajectories

A class of periodic solutions exist to the CWH equations for when u = 0. This

particular class of solutions are often referred to as Natural Motion Trajectories (NMTs) or
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Passive Relative Orbits (PROs) and have been extensively used for a wide variety of

relative orbital motion problems [66, 130–136]. First pointed out in [137] and expanded

upon in [138], a specific set of closed NMTs can take the form of stationary points, lines,

ellipses, or spirals depending on the inital conditions of the satellite. All of the forms must

first meet the initial condition vy = −2ηrx. Additional specific initial conditions for each

NMT form is specified below:

1. Stationary Point: rx = rz = vx = vz = 0

2. Line Segment: rx = vx = 0, rz = csin(ψ), and vz = ηccos(ψ)

3. Ellipse: vx =
η
2
ry

Where c is the amplitude of the length segment in the ẑ direction, and ψ is the initial angle

between the agent and the x− y plane. Examples of each can be found in Figure 2.5.
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Figure 2.5 Types of Natural Motion Trajectories

2.7 Attitude dynamics

Consider each agent spacecraft to be on a NMT around a virtual chief that is in a

circular orbit centered on the earth. While the agents do not have thrusters for

translational motion, they can change their orientation using gas jet thrusters that produce

external torques about each agent’s center of mass. Each agent’s attitudinal state is given

by the Euler angle set ri(k) := [φ, ψ, γ]>, respectively denoted yaw, pitch, and roll, that

parameterizes the rotation matrix from the body frame to the inertial frame
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RH
B = RH

B (γ))RH
B (ψ)RH

B (φ) using the 3-2-1 rotation sequence. The analogous angular

velocities are ωB
I B := [ωφ, ωψ, ωγ]

>. The agent’s attitude control inputs are given by the

torques in the body frame τB := [τφ, τψ, τγ]
>. The rotation kinematics for the agent’s

body-fixed frame B is given by

˙RH
B = RH

B (ωB
H B)

×. (2.19)

The Euler angle set (locally) evolves according to

Γ̇ =


− cos(φ) tan(ψ) − sin(φ) tan(ψ) −1

sin(φ) − cos(φ) 0

− cos(φ) sec(ψ) − sin(φ) sec(ψ) 0

ωB
I B. (2.20)

Assuming that the agent spacecraft can be modeled as a rigid body and has an inertia

matrix J as measured in the body-fixed frame, the application of Euler’s second law of

motion gives the attitude dynamics

ω̇ = −J −1(ωB
I B)

×[JωB
I B] +J −1τB. (2.21)

The angular velocity of the B frame relative to Hill’s frame H using the property of

relative angular velocity summation is

ωI
H B = ωI

I B − ωI
I H

with the time rate derivatives given as

ω̇I
H B = ω̇I

I B − ω̇I
I H . (2.22)
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Using (2.19) and ωB
AB = RB

Aω
A
AB a manipulation of (2.22) yields

ω̇B
H B = ω̇B

I B −RB
H ω̇H

I H − (ωB
I B)

×ωB
H B. (2.23)

Note that from the circular chief orbit assumption we have ω̇H
I H = 0 and that

ωH
I H = (0 0 η)> is the constant angular velocity of the Hill’s frame relative to the inertial

frame where η is the constant mean motion parameter. From the assumption that the

chief-fixed inertia matrix is aligned with its principal axes we have

J =


J1 0 0

0 J2 0

0 0 J3

 .

The combination of (2.21) and (2.23) yields the angular velocity dynamics as

ω̇B
H B = −J −1(ωB

I B)
×[JωB

I B] +J −1τB − (ωB
I B)

×ωB
H B.

Using the relation ωB
I B = ωB

H B + ωB
I H and cross product properties the above expression

becomes

ω̇B
H B = −J −1

(
(ωB

H B)
×[JωB

H B] + (ωB
H B)

×[JωB
I H ]+

(ωB
I H )×[JωB

H B] + (ωB
I H )×[JωB

I H ]
)
+ (ωB

H B)
×ωB

I H +J −1τB.

(2.24)

2.8 Model Predictive Control

Consider the following control system with state x(k) ∈ Rn at timestep k that evolves

according to a discrete-time system with process function f : Rn × Rq → Rn and
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measurement function h : Rn × Rq → Rp over timesteps {k, k + 1, k + 2, . . . }, k ≥ 0 as

x(k + 1) = f(x(k),u(k)) (2.25)

y(k) = h(x(k),u(k)) (2.26)

where u(k) ∈ Rq is the input applied to the plant while y(k) ∈ Rp, p ≤ n, is the output of

the system. Without loss of generality, we assume f(0, 0) = 0 and c(0, 0) = 0 for all k ≥ 0.

Let T ∈ N, T ≥ 2 be the finite horizon length. We define a control policy

ū(k) := {u(0),u(1), . . . ,u(s), . . . ,u(T − 1) at time k with an additional index

s = 0, . . . , T − 1. The output trajectory resulting from ū(k) according to (2.25)-(2.26) is

ȳ(k) := {y(0),y(1), . . . ,y(s), . . . ,y(T − 1)}. Let ȳsi (k) and ūsi (k) denote particular

elements of ȳ(k) and ū(k) at index s and agent i given an initial condition x(k),

respectively. Let there be some nonnegative function h : Rp × Rq → R≥0, known as a stage

cost, and a control objective function J : Rp × Rq → R≥0 defined as

J(y(k),u(k)) :=
T−1∑
s=0

h(ys(k),us(k)). (2.27)

The goal of a model predictive controller is to, at timestep k, generate an optimal control

sequence ū∗(k) := {u∗(0),u∗(1), . . . ,u∗(s), . . . ,u∗(T − 1)} such that the objective function

J from (2.27) is minimized. The first input in this sequence, u∗(k)(0), is applied to the

system. At timestep k + 1, this minimization process is repeated and u∗(k)(0) is applied.
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This is formally written as

minimize
u(k)

J(y(k),u(k))

subject to x(0) = x(k)

x(k + 1) = f(x(k),u(k)), k = 0, . . . , T − 1

y(k) = c(x(k),u(k)), k = 0, . . . , T − 1

(x(k),u(k)) ∈ X × U , k = 0, . . . , T − 1

(2.28)

where X ⊆ Rn is the closed set of state constraints and U is the closed set of input

constraints. Generally, the stage cost function h is chosen to represent a distance of the

output from some predefined desired output trajectory, i.e. y∗(k).

2.9 Information Fusion

The simplest information fusion problem consists of at least two pieces of information,

which this work considers, labelled A and B. Now suppose each of the pieces of

information are corrupted by noise to form Gaussian random variable a and b from A and

B respectively. The statistics of a and b are given as the mean (ā, b̄) and covariance (Pa,

Pb) and sometimes, the cross-correlation term (Pab) where

Pa = E
[
(a− ā)(a− ā)T

]
Pb = E

[
(b− b̄)(b− b̄)T

]
Pab = E

[
(a− ā)(b− b̄)T

] (2.29)

where E[·] is the expectation operator with E[X] =
∑∞

i=1 xipi and xi is an element of X

and pi is the probability of occurrence for xi. It is important to note that the

cross-correlation term, Pab, is generally unknown. If the cross-correlation term is known,

the optimal information fusion solution can be found through the Kalman filtering

algorithm. So effectively, the information fusion problem and Kalman filtering problems

are focusing on disjoint cases of the estimation/fusion problem as indicated by [139].
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The objective of the information fusion problem is to find the fused vector c that is the

combination of the information provided by a and b, with partially or unknown

cross-correlations, such cases where the Kalman filter will be inconsistent.

Definition 5. (Consistency) - A covariance ellipsoid is said to be consistent if

P ≥ E[eeT ], where E[eeT ] is the actual error covariance matrix and provides a lower-bound

on the known covariance matrix.

Where consistency provides a lower-bound on the fused solution, the notion of tightness

provides an upper-bound.

Definition 6. (Tightness) - The known covariance P is said to be tight if

E(0,P) ⊇ E(0,Λ) ⊇ E(0,Pa) ∩ E(0,Pb)⇒ P = Λ. In other words, the ellipse formed by P

encompasses the intersection of the ellipses formed by Pa and Pb so closely that no other

ellipse formed by Λ may be slipped in between.

where E(0,P) denotes the ellipse centered at 0 and shaped by the matrix P. Together,

consistency and tightness restrict the class of possible solutions around the optimal fused

solution and provide useful notions that constrain the overall problem.

Information fusion of two information pieces is most often accomplished using the linear

combination

c̄ = Waā + Wbb̄ (2.30)

where W is the fusion gains for a and b, respectively. The corresponding error covariance

matrix is given by

Pc =WaPaWT
a + WaPabWT

b +

WbPbaWT
a + WbPbWT

b

(2.31)

For random vectors with no cross correlation, Pab = 0, Equation 2.31 is guaranteed to

maintain consistency. Alternatively, if the cross-correlation of the random vectors is known,
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the optimal solution is provided by a convex combination of the covariance matrices and

cross-correlations as

P−1
c = P−1

a + P−1
b − (Pab + Pba)

−1

c̄ = Pc

(
P−1
a a + P−1

b b− (Pab + Pba)
−1γ

) (2.32)

where γ is the mutual mean that represents the estimate that a and b agree on the

most. This formulation may be viewed as a direct implementation eliminating

double-counting of information, and is used as the optimal solution throughout the rest of

the work. However, the same guarantee does not hold for when Pab 6= 0. To address this

issue, parameterizations of the mutual information provided by Pab have been developed

that guarantee consistency.

Tangentially, consider the joint distribution between the two random variables a and b.

Pj =

Pa Pab

Pba Pb

 (2.33)

It is assumed that there exists matrix parameters A, B, M such that Pab is delimited by

Pab ∈ {M + AΩBT | ΩΩT ≤ I} (2.34)

where Ω is an unknown admissible3 tuning parameter, and M encapsulates any known

cross-correlation components. In this work, we take advantage of the currently available

state-of-the-art from which we begin the construction of Ω. Therefore, we are guaranteed

at least admissible Ω exists because, as is shown later in this work, that Ω may be

specifically constructed to result in one of the current state-of-the-art solutions. This

approach follows directly from [139–141] that apply decomposition and factorization
3Admissibility refers to any matrix Ω that results in the term AΩBT meeting the criterion for a covariance

matrix, positive semi-definite and symmetric. Calculating admissible Ω is outside the scope of this work and
will be the subject of future investigation, however it is assumed for the remainder of this work that Ω is
admissible.
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approaches to the joint distribution to define a family of upper-bounds on the joint

solution. It should also be noted that this particular family of covariance matrices have

known upper (Πu) and lower-bounds (Πl) of the joint distribution

Πu =

Pa + AATµ M

MT Pb + BBTµ−1


Πl =

Pa −AATγ M

MT Pb −BBTγ−1


(2.35)

where µ and γ are free positive scalar parameters, such that Πu ≥ Pj and Pj ≥ Πl where

≥ is considered in the sense that the difference between the two terms is positive

semi-definite. This inequality may also be written as Πu −Pj ≥ 0 and Pj −Πl ≥ 0.

Analysis of these bounds can be found abundantly in literature for both partially and

unknown cross-correlations [140, 142–146]. In particular, these scalar parameterizations are

possible when A and B are fractions of the square root, so kaPa = kaLaLT
a = AAT and

kPb = kbLbLT
b = BBT , with 0 ≤ ka, kb ≤ 1 which induces A =

√
kaLa and B =

√
kbLb.

2.9.1 Covariance Intersection

Alternatively to Equation 2.31, as first pointed out by Julier and Uhlmann [106], this

same calculation may be completed on the information space (which is the inverse of the

covariance matrix) and provides a consistent result without explicit knowledge of Pab. This

method, known as Covariance Intersection (CI), has become a seminal piece of information

fusion,

P−1
c = ωP−1

a + (1− ω)P−1
b

c̄ = Pc(ωP−1
a ā + (1− ω)P−1

b b̄)
(2.36)

with 0 ≤ ω ≤ 1. This method of using a convex combination of information A and B is also

proven to be tight [139, 147] because it prevents double-counting of the mutual information
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[148]. The effect that ω has on the CI fused solutions is shown in Figure 2.6. As ω

transitions from 0 to 1, the fused solution is being pulled to either the information provided

by A or to the information provided by B. This effect limits the tightness the CI solution is

capable of achieving as evident in Figure 2.6.

Figure 2.6 Demonstration of how ω influences the CI solution by fusing Covariance Ellipse
1 with Covariance Ellipse 2. ω is allowed to vary between 0 and 1. The Optimal Solution is
included for reference.

Similarly, a criticism of traditional CI, while consistent and tight, may be too

conservative [107] meaning it over-approximates the true upper-bound on the uncertainty.

In light of this, alternatives to CI have been developed to define an upper-bound on the

fused solution.

2.9.2 Ellipsoidal Intersection

In an effort to solve this issue of over-conservatism of CI, Sijs, Lazar, and Bosch in [108]

present a parameterized form of the information fusion problem

P−1
c = P−1

a + P−1
b − (Pab + Pba)

−1

c̄ = Pc(P−1
a ā + P−1

b b̄− (Pab + Pba)
−1γ)

(2.37)

with the goal to find a construction of the mutual information matrix P−1
ab and mutual

information mean γ from known information. The Ellipsoidal Intersection (EI) procedures

37



provides explicit approximations for Pab and γ.

Pab + Pba = TDabTT

γ = (P−1
a + P−1

b − (Pab + Pba)
−1 + 2ηI)−1

×
(
(P−1

b −P−1
ab + ηI)ā + (P−1

a −P−1
ab + ηI)b̄

) (2.38)

where T = VaD1/2
a Vb with V and D being the eigenvectors and matrix of eigenvalues of

the covariance matrices Pa and Pb, respectively. η is a scaling parameter. The authors

refer the interested reader to [108] for more detailed explanations of T, D, and η.

An example of EI is provided in Figure 2.7. From the figure, it is evident that the EI

solution does not maintain consistency as it lies within the optimal solution.

Figure 2.7 Demonstration the EI solution by fusing Covariance Ellipse 1 with Covariance
Ellipse 2. The Optimal Solution is included for reference.

This point is analytically shown in [109, 110] that the EI result does not necessarily

guarantee consistency. This fact prompts Ajgl in [111] to derive a mathematical tool for

fusion performance analysis under partially known correlations. This tool allows for

explicit expressions for upper and lower bounds on the fused solution to be defined–a fact

taken advantage of in the present work.
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2.9.3 Inverse Covariance Intersection

Where CI is consistent, yet too conservative, and EI does not maintain consistency,

Noack [109] derives an alternative fusion methodology termed Inverse Covariance

Intersection (ICI) and shows it to be less conservative but still maintains consistency.

P−1
c = P−1

a + P−1
b − (ωPa + (1− ω)Pb)

−1

c̄ = Waā + Wbb̄
(2.39)

where,

Wa = Pc(P−1
a − ω(ωPa + (1− ω)Pb)

−1)

Wb = Pc

(
P−1
b − (1− ω)(ωPa + (1− ω)Pb)

−1
) (2.40)

While ω can be set to minimize any given optimality criterion, such as the trace or

determinant of the bounding covariance matrix, evaluating and selecting the optimal value

of ω is a cumbersome task and may have to be repeated for evolving systems. Consequently,

selecting a non-optimal value of ω will bias the solution towards either the information

provided by A or B, skewing the fused estimate away from the optimal solution. It could

also place an over-consistent lower-bound on the attainable solutions from ICI.

The potential bias can be seen in Figure 2.8 as the fused solutions transition from

magenta to green. As ω → 1 the fused solution swings from the information provided by A

to the information provided by B. Because the fused solution is constantly being pulled

towards one of the two information pieces, the best fused solution is limited to the

“equilibrium” of the two pieces of information.

Comparing the ICI solution directly to the CI solution, the ICI solution is capable of

providing an overall tighter approximation of the optimal solution. There are also a wider

range of values for ω that provide tighter fused solutions from the decreased density of

ellipses present near the original covariance matrices.
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Figure 2.8 Demonstration of how ω influences the ICI solution by fusing Covariance Ellipse
1 with Covariance Ellipse 2. ω is allowed to vary between 0 and 1. The Optimal Solution is
included for reference.
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3 Local Catalog Maintenance of Close Proximity Satellite Systems
3.1 Introduction

In this chapter, we consider the case of a single controllable chief satellite equipped

with an electro-optical sensor and on-board estimating capabilities that must track and

maintain the states of several uncontrollable deputy satellites, each of which lay on a

closed, elliptical natural motion trajectory [138] about the chief. The local catalog we wish

to maintain is the concatenated list of all the deputies’ positional and velocity states

relative to the chief. However, a deputy’s state is inherently uncertain. Generally, these

state uncertainties are represented through stochastic parameters, such as a mean and

state covariance matrix pair for a Gaussian probability distribution, also known as the

“belief state.” Through the use of a Bayesian filter [149], the fusion between a deputy’s

prior belief state and an observation of that deputy results in a posterior belief state with

reduced uncertainty. Crucially, the chief cannot observe the states of all deputies

simultaneously and is only able to make measurements of deputies when they lie within the

chief’s field-of-view. Thus, the uncertainties of unobserved agents will grow accordingly

with the amount of time elapsed without measurement. This engenders the core of the

local catalog maintenance problem: how does the chief know when and where to look in

order to provide a catalog of deputy states that are closest to their true values?

3.2 Problem Statement

Consider a chief spacecraft with state space X0 ⊆ Rn and input space U ⊆ Rq. The

state x0 ∈ X0 evolves according to ẋ0 = f(x0,u) where u ∈ U is the chief’s input, and

f : X0 7→ X0 is the chief’s dynamic function. Additionally, consider some constraint

function c : X0 × U → Rr. A state x0 ∈ X0 and input u ∈ U satisfies the constraints when

cl(x0,u) ≤ 0 for each row l ∈ {1, . . . , r} in the constraint vector. Given an initial state

x0(0) ∈ X0 and an input function uc : R≥0 → U , a trajectory of the chief is given by

ξuc,x0(0) : R≥0 → X and satisfies ξuc,x0(0)(0) = x0(0) and d
dt
ξuc,x0(0)(t) = f(ξuc,x0(0)(t),u(t)).

The chief is tasked with maintaining a catalog of N deputies. Each deputy



i ∈ {1, . . . , N} has a state space Xi ⊆ Rn. A deputy’s state xi ∈ Xi evolves according to

ẋi = Φxi where Φ ∈ Rn×n is the system matrix. The state of all deputies, or system state,

is given by x := [x>
1 . . . x>

N ]
> and evolves according to ẋ = (IN ⊗Φ)x.

3.2.1 Chief Estimator

The chief is equipped with a recursive state estimator to track N deputy belief states,

parameterized by concatenated mean x̂ := [x>
1 · · · x>

N ]
> and covariance block matrix

P := diag{P1, . . . ,PN}. These constructs evolve via their assumed dynamics models

according to

˙̂x = (IN ⊗Φ)x̂

Ṗ = (IN ⊗Φ)P(IN ⊗Φ)> +BQQ
procB>

Q, (3.1)

where, Qproc ∈ RnN×nN is the process noise matrix and BQ ∈ RnN×nN is the noise input

matrix. We assume BQ = InN for simplicity.

The chief is equipped with a sensor parameterized by its pointing vector in the chief’s

body frame pB and its angle of view α. The sensor can observe the states of the deputies

within some sensing field-of-view (FOV) dependent on pB, α, and the chief’s state x0. The

linear measurement model of the sensor is given by y = CAx where y is the observed state

of deputies, and CA is the observation matrix dependent on the system state x and the

chief’s state x0. The observation matrix CA is a block matrix given as

CA =



C1(x1,x0) ∅n×n · · · ∅n×n

∅n×n C2(x2,x0) · · · ∅n×n
... ... . . . ...

∅n×n ∅n×n · · · CN(xN ,x0)


, (3.2)
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where each Ci(xi,x0) is given as

Ci(xi,x0) =


In if xi is observed

∅n×n else.
(3.3)

It should be noted here that ∅n×n is an overloaded operator. In the case that

Ci(xi,R
I
B) = In, ∅n×n takes on the value of 0n, and in the case when Ci(xi,R

I
B) = ∅n×n,

∅n×n is the null set taking the form of an empty matrix.

Whenever the chief makes an observation of a deputy i ∈ {1, . . . , N} at a time instant

k, the measurement data is incorporated by the on-board estimator to impulsively update

the belief state such that

(x̂i(k
−),Pi(k

−))→ (x̂i(k
+),Pi(k

+)).

As a result, the size of the covariance matrices of observed deputies will necessarily

decrease v(Pi(k
+)) ≤ v(Pi(k

−)) and the updated belief state will be recursively supplied to

the propagator until the next available measurement update. Here v : Rn×n 7→ R is any

metric quantifying the size of the covariance matrix or its representative hyperellipsoid.

However, because the sensor has a limited FOV, it may not be possible for the chief to

observe every deputy at once. Therefore, the chief must maneuver to view each deputy to

maintain a level of certainty in the state estimate, that is v(Pi(k)) ≤ ε for all k ≥ 0, where

ε is some positive value determined by the sensor FOV.

Then, the local catalog maintenance problem is the following. Consider a chief satellite

with dynamic function f and constraint function c, a sensor parametrized by pointing

vector pB and area of view α. Given N deputies with initial estimate x̂(0) ∈ X and initial

covariances P(0) ∈ RnN×nN , and initial chief state x0(0) ∈ X0, find a control function

uc : X0 ×X × RnN×nN × R≥0 → U such that for all k ≥ 0, cl(ξuc,x0(0)(k), uc(ξuc,x0(0)(t))) ≤ 0

for all l ∈ {1, . . . , r}, and v(Pj(k)) ≤ ε.
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3.2.2 Agent constraints

Each agent also has some constraints it must follow while performing the tracking.

Typically, the torque inputs cannot exceed some τmax, and the angular velocity must be

maintained under some ωmax. To maintain safety, the sensor cannot point in the direction

of the (assumed static) sun vector s given in I . Recall that RI
B denotes the rotation

matrix from the agent’s body-fixed frame B to the inertial frame I . Then, the constraint

function is given as

c(xi(k), τ ) =



c1(xi(k), τ )

c2(xi(k), τ )

c3(xi(k), τ )

c4(xi(k), τ )

c5(xi(k), τ )

c6(xi(k), τ )

c7(xi(k), τ )



=



s>(RI
BpB)− cos(α)

‖ω1‖ − ωmax

‖ω2‖ − ωmax

‖ω3‖ − ωmax

‖τ1‖ − τmax

‖τ2‖ − τmax

‖τ2‖ − τmax



. (3.4)

If c1(xi(k), τ ) ≤ 0, then the angle between s and pI = RI
BpB is at least α, meaning the

sun vector is not pointing in the sensor FOV. If cl(xi(k), τ ) ≤ 0, l ∈ {2, 3, 4}, then

‖ωj‖ ≤ ωmax for j ∈ {1, 2, 3}. If cl(xi(k), τ ) ≤ 0, l ∈ {5, 6, 7}, then ‖τj‖ ≤ τmax for

j ∈ {1, 2, 3}.

3.2.3 Observation condition

Recall from before that the deputy belief states are updated whenever an observation is

made. Given a deputy state xi, chief state xi(k), with a sensor characterized by the

pointing vector in the body frame pB and the viewing angle α. An observation occurs if

cos−1(x>
i R

H
B pB)) ≤ α

where RH
B = RH

I RI
B

>.
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3.3 Approach

To solve the local catalog maintenance problem, this work proposes a multi-layered

closed-loop control strategy (see Fig.3.1) that incorporates continuous dynamics with

impulsive zero-order hold controls applied at discrete time instances. That is, at a given

time instant k, the state estimator fuses predicted deputy belief states (x̂−(k),P−(k)) with

available observation data y(k) to yield posterior deputy belief states (x̂+(k),P+(k)

through a Bayesian update scheme such as the commonly-used extended Kalman filter or

unscented Kalman filter.

Supervisor

Controller

SensorBelief State

Propagation

Bayesian Filter

Local Space

Environment

Figure 3.1 Visual depiction of the proposed catalog maintenance operation. Note that the
sensor component is embedded within the plant component. The blue dashed line indicates
the recursive nature of the Bayesian filter, where updated belief states are supplied to the
propagation block for the next time step.

3.3.1 Supervisor Algorithm

These updated beliefs are fed into a higher-level autonomous “supervisor” which

accounts for (i) deputy belief state information gaps (ii) prespecified constraints and (iii)

the current angular states of the chief. The supervisor amalgamates this information and
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provides decision-making capabilities to a lower-level controller, which drives the chief

orientation trajectory by administering torque inputs at discrete timesteps. Recall the local

catalog maintenance problem where a chief, with a sensor parametrized by pB and α, must

maintain state estimates of N deputies. The objective of the supervisor algorithm is to

select the “optimal” target deputy to track based on some cost function notated by J . A

detailed breakdown of the supervisor algorithm can be seen in Algorithm 1. Given the

state estimates-covariance pairs of the deputies {(x̂i,Pi)}Ni=1 and the current deputy j.

Additionally, we introduce a new variable ∆t∗ which “remembers” the time that the

supervisor switched to deputy j. The output is the deputy jnew to be viewed as well as

∆t∗new. Then, the supervisor algorithm is the following. If some ∆ time has not passed

since the last switching time, or the entropy of the current deputy has not fallen below

some threshold ε, the current deputy j and current ∆t∗ is returned. If not, then the

entropy of all the deputies is computed. The deputy to be viewed is chosen to be the one

with maximum entropy, and ∆t∗ is updated to the current time. The supervisor cost

function in this work is considered to be the Shannon entropy of the covariance matrix,

which is assumed to be Gaussian; other metrics such as measures of uncertainty relating to

the deputies’ belief states, such as the det or trace() of the covariance matrix, or a measure

of information gain post-fusion, such as the posterior Fisher information [150] may also be

utilized. The cost value for each deputy is calculated, and then the deputy with the highest

cost value is selected to be the target deputy j. However, to prevent the possibility of

instantaneous switching, a form of hysteresis is applied. A target switch is only triggered

when the cost of the current target deputy falls below some threshold, the potential other

target deputy crosses over the same threshold, and two target switches cannot occur within

a time threshold, δ ≥ γ, of each other, where δ is the time differential between switches,

and γ is the desired time hysteresis threshold.
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Algorithm 1: Supervisor algorithm
Input: {(x̂i,Pi)}Ni=1, j, ∆t∗
Output: jnew, ∆t∗new

1 ← CurrentTime
2 if (t−∆t∗ ≤ ∆) ∨ (k

2
(1 + log(2π)) + log(|Pi|) > ε) then

3 jnew ← j
4 ∆t∗new ← ∆t∗

5 else
6 for i = 1, . . . , N do
7 Ji ← k

2
(1 + log(2π)) + log(|Pi|)

8 jnew ← argmaxi∈{1,...,N} Ji
9 ∆t∗new ← t

10 return jnew, ∆t∗new

3.3.2 Controller

We implement a state tracking version of the model predictive controller outlined in

(2.28). Here we let h(x(k),u(k)) := x(k). Let there be two positive definite square

matrices W1 ∈ R2×2 and W2 ∈ R3×3 and an Euler angle vector z := [φ, ψ]>. Note that the

angle pair φ and ψ were chosen due to the mapping from the azimuth-elevation space. We

denote a reference angle trajectory (i.e. angle sequence associated with a current

designated target) is denoted as z̄rk := {zr(0), zr(1), . . . , zr(T − 1)}. The MPC problem is

defined with a quadratic stage cost as

minimize
u(k)

J(z(k),u(k)) :=
k+T−1∑
i=k

(z(i)− zr(i))

subject to z(0) = z(kk)

z(i+ 1) = fz(z(i),u(i)), i = k, . . . , k + T − 1

(z(i),u(i)) ∈X ×U , i = k, . . . , k + T − 1.

(3.5)

Here, fz is equivalent to the dynamics expressed in (2.20) and (2.24).
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3.4 Results

This section presents a case when the agent is on the origin and tracks 5 agents and

another case when the agent tracks 10 agents. Furthermore, this section also presents a

case when multiple agents are on elliptical NMTs and want to track themselves without

communication.

3.4.1 Agent at Origin of LVLH Frame

To demonstrate the efficacy of the proposed methodology, results of two example

scenarios are presented - a 3 deputy case and a 10 deputy case. For this sample, the target

deputy is selected via the Supervisor Algorithm detailed in Algorithm 1. The MPC

algorithm then uses the azimuth-elevation tracks of deputy j′ as the reference trajectory.

The CasADi optimization toolbox is used to solve the nonlinear optimal control problem

[151] using a direct single shooting method. The MPC cost function weighting matrices

were set as W1 = I2 and W2 = I3. The torque constraint was set to be umax = 2π Nm, the

angular velocity constraint was set as ωmax = π rad/s The example simulation consists of

three deputy agents following elliptical NMTs about the chief. The chief’s initial attitude

and angular velocity were randomly generated with the initial angular velocity being

restricted to a bounded box of π/2 m/s about the origin. Because the focus of this work is

on target selection and control, the initial estimates were set to the truth values and the

associated covariances were set to be P0 = βIn where β is a randomly generated parameter

10 ≤ β ≤ 100. If discrepancies in the initial truth state and state estimate were considered,

the complexity of the problem increases dramatically. Elements of target search are

introduced if the discrepancy between truth position and estimated position grows

sufficiently large. This alone introduces the question: what bound on initial estimate error

is feasible for estimate convergence? This question along with related questions are too

broad in scope to be considered here and have consequently been left for future work.

However, the relevancy and significance of tackling such a problem cannot be overstated.

Figure 3.2 depicts azimuth-elevation tracks of the deputy spacecraft and the ability of
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the chief to track each deputy. The orientation of the chief switches rather frequently at

the beginning of the simulation while the covariance matrices begin to settle below the

specified threshold of ε = 0 on the covariance entropy seen in Figure 3.3. To prevent

instantaneous switching, a switch is only triggered when the entropy of the associated

covariance matrix falls below this threshold, in and the entropy of the covariance of any

other deputy exceeds the same threshold. A time hysteresis is also applied indicating the

target agent cannot switch within 100 seconds of one another such that ∆ = 100 from

Algorithm 1. It is shown that as the simulation progresses, the chief switches less

frequently because these threshold are crossed less often as the chief becomes more certain

of the trajectory of each deputy. Figure 3.4 is the resulting control torque to track the

reference trajectory. Uncharacteristically large spikes are present at about 1,750 seconds

when the azimuth of the reference trajectory crosses from π to −π, causing the chief’s

attitude to wrap around. This particular cases is present due to the parameterization of

the attitude, and for this reason future work is needed to adapt the presented methodology

to attitude parameterizations that do not present this discontinuity such as rotation

matrices and unit quaternions.

The performance of the algorithm was also tested on a 10 deputy case, shown in Figure

3.6, Figure 3.7, Figure 3.8. In Figure 3.6 the MPC is able to correctly track the reference

trajectory specified by the supervisor algorithm even with increased deputy count.

However, because of the increased number of deputies, the chief is not able to linger on

each deputy for as long and must quickly move on to track the next deputy. Despite the

increased workload, the chief is still able to achieve the desired level of confidence in each

state estimate indicated by Figure 3.7. But, each entropy stays closer to the threshold

when compared to the 3 deputy case. Furthermore, the chief must apply a greater amount

of torque throughout the duration of the the mission seen in Figure 3.8. This is a direct

result of the supervisor algorithm greedily selecting the next reference deputy based on the

information entropy. It is possible to include control effort in the supervisor algorithm to
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Figure 3.2 The MPC tracks the reference azimuth and elevation from the deputy selected
by the supervisory algorithm.

help mitigate the effort applied by the chief.

3.4.2 Agent on an Elliptical NMT

The first case is a 5 agent case with communication disabled. This case demonstrates

the ability of each agent to track all of the other agents on their own without the aid of

communication; this would also resemble a single agent tracking 4 noncooperative bodies.

Figure 3.9a depicts azimuth-elevation tracks of one of the agents and demonstrates the

ability of the agent to track each of the other agents. We notice that the covariance

entropy begins to settle below the specified threshold of ε = 0 on the covariance entropy

but is unable to during the time allotted. To prevent instantaneous switching, a switch is

only triggered when the entropy of the associated covariance matrix falls below this

threshold, in and the entropy of the covariance of any other deputy exceeds the same

threshold. To evaluate the performance of the algorithm, the time hysteresis is set such

that µ = 100s from Algorithm 1. Each agent, on its own, is unable to maintain the desired
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Figure 3.3 Covariance entropy as the chief observes each target deputy. It is shown that
once each entropy value falls below the threshold, the control algorithm is able to maintain
the entropy below the threshold.

covariance threshold due varying factors i.e. increased transverse time to view another

agent, and the number of agents requiring tracking. In Figure 3.9b, the estimate errors for

each agent collapse when a measurement is taken, but continues to grow until that point.

The supervisor is able to select an appropriate target for each agent and the local

controller is able to maintain the reference trajectory of the target.

Similarly, the estimate errors in Figure 3.10b continue to grow until each agent takes a

measurement of another; at which point the error collapses. However, because of the

increased number of objects, each agent is not able to linger on a target for as long and

must quickly move on to track the next target. It is expected that the inclusion of state and

output communication amongst agents will improve the convergence of the local estimators.

3.5 A Note Moving Forward

What happens when we allow each of the agents in Section 3.4.2 to communicate with

one another? Each of the agents may communicate a local copy of their state estimates
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Figure 3.4 Applied torque for the 3 deputy case.

and/or their measurements to some other subset of the agents. Then, it is up to each agent

to fuse any incoming state estimates with its local copy to update, and ideally, improve its

own state estimate. With this in mind, how can we guarantee that information is routed

appropriately such that each agent’s own state estimate? Here, we must pause our current

train of thought and discuss a tool that will allow us to analyze, and later design, a

networked estimator to achieve the desired convergence property.
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Figure 3.6 The algorithms are capable of tracking the reference azimuth and elevation track
when more deputies require tracking.
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Figure 3.7 The algorithms are also able to maintain the covariance entropy below the desired
threshold, even though it takes longer to achieve this level of estimator confidence.
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Figure 3.8 Applied torque for the 10 deputy case.
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Figure 3.9 5 Agents with Communication Disabled
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Figure 3.10 10 Agents with Communication Disabled
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4 State Omniscience of Linear Time-Invariant Distributed Estimators

In this chapter, we consider N discrete-time autonomous dynamic systems of the form

xi(k + 1) = fi(xi(k),ui(k)) (4.1)

where xi ∈ Rni is the local state vector, x = [x>
1 , . . . ,x

>
N ]

> ∈ Rn where n =
∑N

i ni, ui ∈ Rqi

is the local control vector with u = [u>
1 , . . . ,u

>
N ]

> ∈ Rq where q =
∑N

i qi, and

fi : Rni → Rni represents the dynamics. There exists N local estimators of the form

x̂i(k + 1) = f̂i(x̂(k),y(k),u(k)) (4.2)

where x̂i ∈ Rn is the local state estimate at each estimator with x̂ := [x̂>
1 , . . . , x̂

>
N ]

> ∈ RnN .

It is assumed that each estimator is equipped with a measurement function

yi = hi(x) (4.3)

where yi ∈ Rpi is the local output vector at each estimator with y := [y>
1 , . . . ,y

>
N ]

> ∈ Rp

where p =
∑N

i pi. We allow for each of the local estimators to communicate either x̂i, yi,

or both to their neighbors according to a network graph Gc. The collection of estimators

and Gc comprise what we call a distributed estimator. Formally, a distributed estimator is

uniquely defined by the tuple DE := (Gc, {x̂i}Ni=1) and each estimator represents a vertex of

Gc. Furthermore, we define ei := x− x̂i to be the estimate error at the ith state estimator.

It is the goal of each local estimator to correctly estimate the true state of the dynamics

such that x̂i → x. Consequently, this indicates that ei → 0 for each i ∈ V .

Definition 7. (State Omniscient (SO)) A DE is SO if ei for each i ∈ V is

asymptotically stable i.e. for δ > 0

||ei(0)|| < δ ⇒ lim
k→∞

ei(k) = 0.



for each i ∈ V.

Definition 7 implies the existence of N Lyapunov functions Vi(ei, k) : Rn → R such that

Vi(0, k) = 0, Vi(ei, k) > 0, and ∆Vi(ei, k + 1) = Vi(ei, k + 1)− Vi(ei, k) < 0 ∀ k ≥ 0.

4.1 Problem Statement

Consider the multi-agent LTI system described in Section 2.4. A standard Luenberger

observer at each agent i can be defined as

x̂i(k + 1) = Φx̂i(k) +K(yi(k)−Cix̂i(k)) (4.4)

where x̂i(k) ∈ RnN is the full system state estimate of agent i at timestep k, and K is a

tunable gain matrix. The Luenberger observer in (4.4) assumes a single state observer or a

centralized observer, in the case of multi-agent systems, and does not explicitly allow for a

distributed approach when each agent within a network may have its own estimator.

We adopt a collection of local estimators within a networked system that takes

advantage of all available information at agent i, including sensed and communicated. This

collection of estimators forms a networked state estimator given by

x̂i(k + 1) =
∑
j∈Ni

WijΦx̂j(k)︸ ︷︷ ︸
Predictor Fusion Term

+Ki

∑
j∈Ni

UijC
>
j (yj(k)−Cjx̂i(k))︸ ︷︷ ︸

Output Fusion Term

(4.5)

which incorporates both predictor fusion weights through a positive-definite matrix

Wij ∈ RnN×nN and output fusion weights through a positive-definite matrix Uij ∈ RnN×nN

for each i, j ∈ V where Wij = 0 if and only if aij = 0 and Uij is populated in a similar

manner; for more information see [76, 77, 80, 152]. The innovation gain matrix

Ki ∈ RnN×nN tunes the state estimate for agent i based on the available information. The

fusion elements are almost exclusively governed by the communication links described by

the adjacency matrix Ac. The state estimator may also be placed into an augmented form

using the full state estimator vector x̂(k) = [(x̂1(k))
>, . . . , (x̂N(k))

>]> ∈ RnN2 with each
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x̂i(k) ∈ RnN

x̂(k + 1) = (W ⊗Φ)x̂(k) +KUdiagm(C>C)(x̂(k)− x(k)) (4.6)

where the augmented innovation gain and augmented output matrix are

K = diag([K1, . . . ,KN ]) and C = diag([C>
1 , . . . ,C

>
N ])

>, respectively. The values of each

Wij and Uij may be computed via an information fusion scheme [106, 109, 114].

Considering the case when Uij is a scalar, as is the case in [76, 80], yields

(
Udiagm(C>C)

)
ij
=

N∑
l=1

uiluljC
>
l Cl. (4.7)

The block diagonal elements of (4.7) are then

(
Udiagm(C>C)

)
ii
=

N∑
l=1

u2ilC
>
l Cl. (4.8)

Also following [76] and [80], it is evident that the estimators at each agent in (4.5) may be

written in the form

x̂(k) =
(
W ⊗Φ

)
x̂k−1 +KCA(x̄(k)− x̂(k)) (4.9)

with CA = diag([C1
A, . . . ,C

N
A]) where Ci

A =
∑

j∈Ni
u2ijC

>
j Cj for each i ∈ V This section

demonstrates that the CA of (4.9) is equivalent to Udiagm(C>C) of (4.6).

The notation presented herein generalizes the notation used by Khan and

Doostmohammadian in [80] allowing for more general approaches to information fusion

schemes to be applied such as W and U used herein. Explicitly describing the graph

interconnections for both the predictor and output fusion steps allows us to directly

analyze the role communication links play in networked system observability.

To analyze the system, we consider the error dynamics by substituting (2.7) and (4.6)

into e(k) := x̄(k)− x̂(k) with x̄(k) = 1N ⊗ x(k) where 1N is the N -dimensional vector of
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all ones. An augmented version of the truth dynamics may then be written as

x̄(k + 1) =
(
W ⊗Φ

)
x̄(k)

y(k) = (E>
s ⊗H)x̄(k)

. (4.10)

Assuming an admissible1 selection of W, expressing the truth dynamics through (4.10)

is equivalent to x̄(k + 1) = (I ⊗Φ)x̄(k) which eases analyses by simplifying the error

dynamics

e(k + 1) =
(
W ⊗Φ−KUdiagm(C>C)

)
e(k). (4.11)

Since (4.11) is a discrete-time LTI system, it is well-understood that the origin is

asymptotically stabilized if there exist weights W, U, and gain K such that the spectral

radius of the matrix on the right-hand side of (4.11) is less than 1. More specifically,

ρ
(
W ⊗Φ−KUdiagm(C>C)

)
< 1

where ρ(·) indicates the spectral radius of the matrix, which is true if there exists weights,

W, U, and an innovation gain K that stabilizes (4.11); see [76, 80]. Consequently, this

work seeks a formal characterization of the existence of the matrices W, U, K that

stabilizes (4.11). We formalize the problem as follows:

Problem 1. Given a collection of interconnected local state estimators of the form in

(4.5), individual output matrices Ci, and communication graph Gc design fusion matrices

Wij, Uij and gain matrices Li such that the DE meets Definition 7.

Consider the following example: given two estimators, which we will refer to as
1We consider any matrix W to be admissible if it satisfies

∑N
j=1 Wij = I for each i ∈ {1, . . . , N}. This

follows previous stipulations on weighting matrices from the field of information fusion.
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Estimator 1 and Estimator 2, each equipped with its own state estimator of the form

x̂1(k + 1) =W11Φdx̂1(k) +W12Φdx̂2(k) + L1C1(x̂1(k)− x(k))

x̂2(k + 1) =W21Φdx̂1(k) +W22Φdx̂2(k) + L2C2(x̂2(k)− x(k))

where x̂1(k), x̂2(k) ∈ RnN , Wij admissibly fuses communicated information from j to i,

and Li ∈ RnN×pi is a tunable gain matrix. The estimator pair is tasked with independently

tracking the LTI system described by (2.7) such that the distributed estimator is state

omniscient. Estimator 2 is incapable of taking a measurement such that C2 = 0, and

Estimator 1 may communicate its state estimate to Estimator 2. A visualization of this

scenario can be seen in Figure 4.1. The blue edge represents a sensing link, and the red

edge represents a communication link.

Φd

2

1

Figure 4.1 Motivating example depicting measurement relationships in blue and communi-
cation relationships in red.

Without loss of generality, we assume that Φd is either marginally stable or unstable,

thus there needs to exist a gain matrix Li that stabilizes the system. It is a well-known

result that there exists a gain Li to stabilize the estimator at Estimator i if and only if the

pair (Φd,Ci) is observable. We assume, without loss of generality, that the pair (Φd,C1) is

observable; however, because Estimator 2 is not taking any measurements then C2 = 0 the

pair (Φd,C2) is unobservable. Therefore the estimator at Estimator 2 may be written as

x̂2(k + 1) = W21Φdx̂1(k) +W22Φdx̂2. (4.12)
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For example, consider the case when W21 = I and W22 = 0 such that (4.12) becomes

x̂2(k + 1) = Φdx̂1(k). (4.13)

Since the pair (Φd,C1) is observable we have that x̂1 → x and from (4.13) it follows that

x̂2 → x. However, it acts as a second order system which creates a delay in convergence.

As such, while the pair (Φd,C2) is not observable, x̂2 → x due to the communicated

information provided by x̂1. Since both x̂2 → x and x̂1 → x, we call the networked system

state omniscient. More specifically, for the case of heterogeneous sensor communication

networks the goal of state omniscience is to reconstruct the state at each vertex in the

network. This paper studies this phenomena and seeks to find a formal characterization of

state omniscient distributed estimators. More specifically, we seek a set of necessary and

sufficient conditions such that there exist a fusion/consensus matrix W and gain matrix L

that yield a state omniscient distributed estimator.

Prior to discussing the existence of such matrices in the presence of multiple dynamic

systems and a communication graph Gc, let us first consider a single dynamic systems.

Insights from single dynamic system case will give us a better understanding in how to

explore the mult-agent case.

4.2 Ubiquitous Single-Input Controllability and Ubiquitous Single-Output Ob-
servability

This section introduces a class of linear systems that are input vector agnostic. In

particular, this section introduces this class of linear systems from a transfer function and

traditional controllability perspective. We use the term ubiquitous single-input

controllability to identify this specific class of linear systems.

4.2.1 Ubiquitous Single-Input Controllability

Definition 8. (Ubiquitous Single-Input Controllability) A linear dynamic system of

the form ẋ = Φx+Bu is considered ubiquitously single-input controllable (USIC) if any
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non-zero vector B renders the system controllable.

Theorem 1. The LTI system is USIC if and only if the controllability matrix Ci
c of the pair

(Φ, Bi) is full rank for each i = 1, . . . , n, where Bi is the ith column of the identity matrix.

Ci
c =

[
Bi ΦBi Φ2Bi . . . Φn−1Bi

]
(4.14)

Proof. Proof follows directly from the definition.

Theorem 1 is functionally only dependent on Φ which begs the question: what set of Φ

matrices make (4.14) full rank ∀ i?

In general, Ci
c need not be square. However, because we are only considering the

single-input case, Ci
c ∈ Rn×n is square which allows us to look at the columns of Ci

c, which

are more physically meaningful, for linear independence. An additional important

consequence of the construction of Ci
c is the implication of linear independence of the ith

column between each matrix Φl for each l ∈ {0, . . . , n− 1}.

Proposition 1. If the ith columns of Φl for each l = 1, . . . , n− 1 are linearly independent,

then Ci
c is full rank for each i.

Proof. By definition, any square matrix is full rank if every column in the matrix is linearly

independent. Considering Ci
c from (4.14), the column vector Bi extracts the ith column of

each matrix. Alternatively, (4.14) can be rewritten as:

Ci
c =

[
Φ0
i Φ1

i Φ2
i . . . Φn−1

i

]
(4.15)

where (·)i indicates the ith column of the matrix. From (4.15), it is evident that Ci
c is full

rank if the ith column of Φl for each l = 1, . . . , n− 1 are linearly independent.

Proposition 2. If a LTI system described by Φ is USIC, then the set

{I, Φ, Φ2 . . . , Φn−1} is linearly independent.
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Proof. By definition of linear independence of vectors we can substitute every column of

Ci
c shown in (4.15) which leads to

αi,0Φ
0
i + αi,1Φ

1
i + · · ·+ αi,n−1Φ

n−1
i = 0 (4.16)

for each i ∈ {1, . . . , n}. Since Φ is USIC, Ci
c is full rank for each i ∈ {1, . . . , n}, therefore

(4.16) is true if and only if αi,0 = · · · = αi,n−1 = 0. Now, let us consider the vector

representation of each matrix where the operator vec(·) : Rn×n → Rn2 maps the matrix into

a row vector, more specifically

vec(A) =

[
Φ1 Φ2 . . . Φn

]
(4.17)

Therefore, (4.16) can be written in a matrix form.



vec(Φ0)

vec(Φ1)

. . .

vec(Φn−1)


=

[
(C1

c)
> (C2

c)
> . . . (Cn−1

c )>
]

(4.18)

where Φi is the ith row of Φ. Note that each block matrix (Ci
c)> of (4.18) is full rank down

the column, the full vector form in (4.18) must also be linearly independent. Thus proving

the result.

Corollary 2 does not imply that each Φl must be full rank for each l, but it does

necessitate that every column in each Φl must have at least one non-zero element.

Corollary 1.1. If the LTI system with matrix Φ is USIC, then the matrix Φ is full rank.

Proof. Proving the corollary is trivial and follows as a direct result of Theorem 2.

Particularly, from (4.18) it is obvious that in order for the full set {I, Φ, Φ2 . . . , Φn−1} to

be linearly independent, each row block must also be linearly independent.

63



Additionally, this also implies Corollary 1.2.

Corollary 1.2. If a LTI system described by Φ is USIC, then Φ has minimum polynomial,

µΦ(s), of degree d, where d = n.

Proof. Prior to completing the proof, we first provide a definition for the minimum

polynomial of a matrix. First, consider a graph G that is USIC and its associated adjacency

matrix Φ has a minimum polynomial of degree d ≤ n− 1. The minimum polynomial

Φd + αd−1Φ
d−1 + · · ·+ α1A+ α0I = 0

with d ≤ n− 1 directly implies that there is linear dependence between the matrix powers

of Φ between 0 and n− 1. This directly contradicts the implicit full rank condition of

Corollary 1.1, proving that d > n− 1.

The deg(µΦ(s)) is also upper-bounded, d ≤ n, by the Cayley-Hamilton Theorem that

states any matrix is a solution to its own characteristic polynomial, and proves the

theorem.

Furthermore, deg(µΦ(s)) = n necessitates n distinct eigenvalues implying also that the

the minimum polynomial is equal to the characteristic polynomial, µΦ(s) = pΦ(s).

While Proposition 1 through Corollary 1.2 provide necessary conditions for Φ that meet

the USIC criteria, they all together do not sufficiently define the set. Rather, let us use the

PBH Lemma [153, 154] to derive a necessary and sufficient condition.

Theorem 2. An LTI system with the system matrix Φ is USIC if and only if Z>
ij 6= 0 for

each i, j ∈ {1, . . . , n}, where the columns of Z are the left-eigenvectors of Φ.

Proof. Recalling that if a left-eigenvector of Φ is orthogonal to a column of the input

matrix B, then that mode is uncontrollable from that column of B, more specifically

z>Φ = λz>, z>B = 0. (4.19)
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In other words, (4.19) says that the left eigenvector, Z, must not be orthogonal to the

columns of B for controllability. Recalling the definition of a USIC systems, (4.19) may be

expanded to represent the effects of every combination of control input and state through

z>j Φ = λjz
>
j , z

>
j Bi = 0. (4.20)

If (4.20) is satisfied for each i, j ∈ {1, . . . , n}, then the mode associated with

left-eigenvector Zj is uncontrollable from an input at node i and can be extended into an

analogous matrix form as

z>Φ = λz>, z>B = 0. (4.21)

It has been assumed that B has been restricted to columns of the identity matrix, the

USIC nature of a system is solely dependent on the left-eigenspace of the matrix Φ.

Therefore, if Z>
ij = z>j Bi = 0, then the control input Bi does not have control authority of

dynamic mode zj. Yet, the converse is also true, if Z>
ij = z>j Bi 6= 0 for each

i, j ∈ {1, . . . , n} then the system is controllable for any combination of left eigenvectors and

control inputs and, therefore, the system is USIC.

Theorem 2 provides a necessary and sufficient condition for the set of Φ matrices that

meet the USIC criteria. Similarly, a system may also be ubiquitously single-output

observable.

Definition 9. (Ubiquitous Single-Output Observability) A dynamic system is

considered ubiquitously single-output observable (USOO) if any single output renders the

system observable. A linear dynamic system is USOO if its dual representation is USIC.

Corollary 2.1. A LTI system described by Φ is USOO if and only if Vij 6= 0 for each

i, j = 1, . . . , n, where V is the matrix of right-eigenvectors of Φ.

Proof. Follows the proof for Theorem 2 using the right-eigenvector and measurement

matrix C.
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It should be noted that it is possible for a system to be either USIC or USOO because

each are dependent on either the left of the right-eigenspace. But, this result does not

generalize to all systems that meet either the USIC or USOO requirement.

In terms of networked systems it is critical to evaluate the USIC condition against

undirected graphs. It has previously been shown by Parlangeli [95, 155] that the

controllability of graphs is highly dependent on the graph structure itself.

Theorem 3. If Φ is symmetric with n > 2, then the LTI system described by Φ will not be

USIC.

Proof. Consider Φ to be a symmetric matrix. The eigendecomposition of Φ = VΛV> and

according to the spectral theorem of symmetric matrices Φl = VΛlV> and has real

eigenvalues. Because Bi extracts the ith column out of each matrix Φl for each

l ∈ {1, . . . , n− 1}, Ci
c is constructed as Ci

c =

[
i Vλivi Vλ2ivi . . . Vλn−1

i vi

]
where i is

the ith column of identity matrix. It is important to note that (·)i indicates the ith column

of the transpose of the matrix of eigenvectors not the ith eigenvector itself. This

construction of Ci
c implies that every row is scaled up by vi and therefore can not meet the

condition for linear independence. This results in the matrix Ci
c failing to be full rank and

therefore the graph G does not meet the controllability condition.

A direct consequence of Theorem 3 is that Φ must be asymmetric. This is a

generalization of the results of Parlangeli [95, 155] that states no input to any single node

of an undirected cycle graph will yield the network controllable. Furthermore, this also

implies that undirected networks will never be USIC, because the Φ for undirected

networks will always be symmetric.

4.2.2 A Transfer Function Perspective

This next section discusses the USIC property from a transfer function or characteristic

polynomial perspective. This notion was initially presented by Godsil [37] while studying
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controllable subsets from a algebraic graph theoretic perspective. In the work, Godsil gives

Proposition 3

Proposition 3. A node i is controllable if and only if pΦ(s) and pΦ\i(s) are coprime.

This is to say that the characteristic polynomial of the adjacency matrix and the

characteristic polynomial of the adjacency matrix with the input node removed must be

coprime. Meaning the fraction

h(s) =
pΦ\i(s)

pΦ(s)
(4.22)

cannot be divided further. Proposition 3 implies Theorem 4.

Theorem 4. An LTI system is USIC if and only if pΦ(s) and pΦ\i(s) are coprime ∀i and

deg(pΦ(s)) = n.

Proof. Recall that if any single zero does not cancel out any single pole of a system, then

the system is controllable. With this in mind, we place the system in its transfer function

form.

H(s) =
Y (s)

U(s)
=
zΦ(s)

pΦ(s)
(4.23)

where pΦ(s) is the characteristic polynomial of the system, and zΦ(s) is another

polynomial of degree d ≤ n− 1 which later we will show is equivalent to the characteristic

polynomial of the matrix minor Mi,i for single input linear systems. Because zΦ(s) has at

most a degree of n− 1 and it has previously been established that pΦ(s) has at least a

degree of n, it is a necessary condition of uncontrollability that pΦ(s) is reducible.

Contrarily, if pΦ(s) is irreducible then it follows that there does not exist any zero that will

cancel out any pole of the system and therefore the theorem is proven to be sufficient.

This fact is one alluded to by Godsil in [37] but is not explicitly stated.

4.2.3 Connections to Structural Controllability

Now that the idea of USIC systems has been introduced, this section ties the concept to

a graph theory through structural controllability.
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Theorem 5. If the adjacency matrix Φ is USIC, then it cannot be placed into (2.16) and

is, therefore, a form of structural controllability.

Proof. Let us assume that Φ is USIC and can be placed into (2.16). The characteristic

polynomial pPAP−1(s) = |sI −Φ11||sI −Φ22| is a reducible polynomial that can be factored

into the two characteristic polynomials of the block matrices pΦ11(s) and pΦ22(s), and

therefore contradicts the property of USIC systems found in Corollary 1.2. Because any

USIC system cannot be placed into (2.16), any USIC system is also of a structurally

controllable form.

Theorem 5 thus signifies that any USIC system is also a structurally controllable form,

and is strongly connected. This fact directly connects the adjacency algebra, walk matrix,

and diameter from algebraic graph theory [44, 115, 156] to the controllability of the graph.

It is also beneficial to discuss the graph structure of the USIC system. While a

structurally controllable graph is spanned by a cactus, not all cacti are USIC. It is trivial

to argue that a USIC cactus must be consist of a singular bud and stem because this work

has been restricted to singular input systems where the input only has direct control over a

singular state. However, the traditional concept of a bud being strictly a cycle graph is

overly restrictive for USIC systems. Consider the graph formed by: It can be shown that

x1

x2 x3

x4u

Figure 4.2 Sample USIC system that does not meet the traditional definition of a bud.

the system described in Figure 4.2 is USIC but the system does not necessarily meet the

traditional definition of a bud. Therefore, a more general form of a bud is discussed herein.

The zero/nonzero patterns in eigenvectors and their association with the adjacency

matrix structure of a digraph are presented in [157]. In [157], four pattern classes are
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presented and are used to describe the eigenvectors for a given matrix structure: i.)

Requires all strictly nonzero eigenvectors (RSN) ii.) Allows strictly nonzero eigenvectors

(ASN) iii.) Allows partly zero eigenvectors (APZ) iv.) Requires partly zero eigenvectors

(RPZ). It immediately follows from Theorem 2, that the matrix pattern of a USIC system

must at least be ASN. Therefore, a system may be USIC if the matrix Φ has a structure

known to be ASN, but a system will be USIC if the matrix Φ has a structure known to be

RSN. Furthermore [157] makes the following proposition:

Proposition 4. A matrix structure will require all strictly nonzero eigenvectors if and only

if the digraph is a directed simple cycle on all the vertices.

This result directly implies that any directed simple cycle structure is also USIC. This

also confirms that the traditional notion of a bud (according to Lin [35]) is USIC.

However, there also exist the class of patterns that are ASN. While ASN patterns do

not explicitly guarantee the USIC property of a system, there do exist a class of matrices Φ

that are of an ASN structure that are USIC. For example, the system from Figure 4.2

belongs to this class of ASN structures. Moreover, any USIC system is sufficient to form a

bud of a structurally controllable graph. Structurally controllable graphs consists of a

series of buds each with a singular input (termed “origin” in the original work) into the

bud structures, but assumes that the bud itself is the cycle graph. However, if the bud is of

a USIC structure then it directly follows that the bud will constitute a controllable portion

of the graph. The idea of USIC systems may have additional interesting implications to the

field of graph theory, input node selection for large complex networks, and the construction

of controllable graphs using strictly USIC subgraphs may be interesting subjects for future

work.
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4.2.4 Practical Examples
Fault-tolerance Example

Consider the LTI system

A =


0 1 0

0 0 1

1 0 0

 , B =


β1 0 0

0 β2 0

0 0 β3


where βi 6= 0. It is trivial to see such a system is controllable in the traditional sense. Next,

consider a fault in the system that renders either one or more nonzero values of B to

become a zero. Regardless of which input(s) failed, we wish for the LTI system to maintain

controllability - which is USIC. To show this system is USIC, keep in mind Theorem 2. We

recall Z>
i Bj 6= 0 and examine the left eigenvectors of Φ:

z> =


0.5774 −0.2887− 0.5j −0.2887 + 0.5j

0.5774 −0.2887 + 0.5j −0.2887− 0.5j

−0.5774 −0.5774 −0.5774


It can be verified that z>i Bj 6= 0 holds true independent of the exact values of i and j

selected. Therefore the system is controllable independent of which input(s) fail.

Controller Tasking Example

For this next example, consider the same LTI system formed by the pair (A,B) where

B is a single input vector of the form B = [0, . . . , βi, . . . , 0]
>. Considering the same Φ from

Section 4.2.4, the exact input vector may be selected from one of the options specified:

B =




β1

0

0

 ,

0

β2

0

 ,

0

0

β3



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In order for a selection of the input vector to be valid, the pair (A,B) must be

controllable. Extending this idea, in order for the set of potential input vectors to be valid,

then the pair (A,B) must be controllable for each possible selection of B ∈ B. Using the

same arguments as in Section 4.2.4 it can be shown that the LTI system is controllable

independent of the exact selection of B ∈ B.

Controlling Into USIC

Next consider an LTI system with two input matrices of the form B1 and B2. The only

assumption made about B1 is that the pair (A,B1) must be completely controllable and Φ

is not necessarily in a USIC form. The matrix B2 may take any form of

B = [0, . . . , βi, . . . , 0]
>. Because the pair (A,B1) is completely controllable, then there

exists some matrix K1 such that the closed-loop matrix Φcl = A+B1K1 takes on a USIC

form. This is directly analogous to the standard pole-placement procedure from classical

control theory. Therefore Φcl is controllable independent of the exact matrix B2.

Independent Observer Example

The independent observer example considers an LTI system with multiple estimators

where each estimator is only measuring a single state but still wants to estimate the state

of the entire system. It is a well-known result from estimation theory, that the estimator

will converge if and only if the LTI system (A,C) forms an observable pair. Consider the

example in Figure 4.3 with four independent estimators, each observing a single state of

the system with no communication between the estimators. The LTI system visualized in

x1

x2 x3

x4Estimator 1

Estimator 2 Estimator 3

Estimator 4

Figure 4.3 Independent Observer Example. Each estimator is only measuring the state it is
linked to, but still wants to estimate the state of the entire system.
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Figure 4.3 takes the matrix form

ẋ =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


x, yi = i>x

where yi is the measurement available to Estimator i. In order for each estimator to

converge the pair (A, i>) must be observable for each i> - therefore such a system must be

USOO.

Studying criterion for the ubiquitous observability (and controllability) has afforded us

critical insight for the state omniscience of multi-agent systems. The next section will

explore the theory of ubiquitous observability to multi-agent systems and generalize it to a

theory of state omniscience.

4.3 State Omniscience, Ubiquitous Observability, and Ubiquitous Detectability

Ultimately, the objective of the augmented distributed estimator in (4.9) is to ensure

lim
k→∞
||x̂ik − xk|| = 0, for each i ∈ V

more specifically, the error dynamics of (4.11) are convergent to the origin for each i ∈ V .

If this holds true, we say the distributed estimator is state omniscient [74, 82, 83]. It

follows immediately that a distributed estimator is state omniscient if there exists fusion

matrices W, U, and gain matrix K that stabilizes (4.11). The remainder of this section

discusses state omniscience and its variations that arise under specific design

considerations, namely, the exclusion of predictor fusion. Particularly, we are interested in

answering the question, “under what graph topologies will W and U exist?” The existence

of K is well-studied in linear control-theory and, therefore, is not discussed extensively

within the present work; yet, we want to explore the existence of fusion matrices W, U as
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well as how the matrices K, W, and U interact with one another. We consider the

observable set at vertex i to be Oi ⊆ X with r ≤ n basis vectors Oi := {oi1, . . . ,oir}. More

specifically, we say for the eigenpair (λ,v) that v ∈ Oi if and only if Civ 6= 0, which is the

PBH-lemma [154] which implies the existence of Ki that stabilizes the estimate error for

each of the modes vl ∈ Oi. In the case that r = n, we say the system is observable from

vertex i. Alternatively when r < n, we say the system is unobservable from vertex i. It is a

well-known result from linear control theory that a mode may only be stabilized by Ki if

that mode is observable; unobservable modes cannot be stabilized by any Ki. Formally, we

may define the local observable set as

Oi := {v | Civ 6= 0}. (4.24)

Similarly, we define the neighborhood observable set as

Ōi :=

{
z |

∑
j∈Ni

UijC
>
j Cjz 6= 0

}
(4.25)

which may be interpreted as the set of modes v that are made observable via output

fusion. Prior to presenting the primary result built on (4.24) and (4.25), we must first

introduce the following lemmas.

Lemma 5.1. There exists a collection of matrices {Uij}j∈Ni
such that∑

j∈Ni
UijC

>
j Cjz 6= 0 if and only if z ∈ Oj for any j ∈ Ni.

Proof. The necessary condition follows immediately from the PBH-lemma [154] and (4.24)

- if Cjz = 0, then there does not exist a Uij such that UijC
>
j Cjz 6= 0. The sufficient

condition follows from the fact that Uij is a tunable parameter and may be constructed

such that z /∈ Null(
∑

j∈Ni
UijC

>
j Cj).

To shed some light on Lemma 5.1 consider the illustrative example.
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Illustrative Example: Consider the sets A, B ⊆ V to be subspaces of vector space V . Let

A =

t −t
t −t

 , B =

−t 2t

−t 2t

 , z =

1
0


It can easily be verified that z ∈ Im(A), Im(B) but z ∈ Null(A+ B), where

A+ B := {a+ b | a ∈ A, b ∈ B}

is the subspace sum. Next, let us scale each of the subspaces such that

A =

 t
3
− t

3

t
3
− t

3

 , B =

−2t
3

4t
3

−2t
3

4t
3

 , z =

1
0

 .
The eigenvector z ∈ Im(A), Im(B) and is also z ∈ Im(A+ B).

Lemma 5.2. Given vectors uj and z, and assuming Lemma 5.1 holds then uj ∈ O′
j if and

only if z ∈ Oj.

Proof. First, let us assume that z ∈ Oj and uj /∈ O′
j. This implies that C>

j Cjz 6= 0 and

UijC
>
j Cjz = 0 which contradicts Lemma 5.1. Next, assume that z /∈ Oj and uj ∈ O′

j.

This implies that C>
j Cjz = 0 and UijC

>
j Cjz 6= 0. However, uj = UijC

>
j Cjz and because

C>
j Cjz = 0 it follows that UijC

>
j Cjz = 0 which contradicts the assumption that

uj ∈ O′
j.

Lemma 5.3. Given vectors u and z and assuming Lemma 5.1 holds, then u ∈
∑

j∈Ni
O′
j if

and only if z ∈ Ōi.

Proof. Assume that z ∈ Ōi which implies that UijC
>
j Cjz 6= 0. While formally

0 ∈
∑

j∈Ni
O′
j, Lemma 5.1 precludes u = 0 from occurring; therefore, we consider

u ∈
∑

j∈Ni
O′
j to imply u 6= 0. Next, assume that u /∈

∑
j∈Ni
O′
j and that Lemma 5.1 holds
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which implies u 6= 0. Expanding u yields UijC
>
j Cjz = 0 which contradicts the original

assumption that z ∈ Ōi.

Complementary, if we begin with the assumptions that z /∈ Ōi and u ∈
∑

j∈Ni
O′
j an

identical contradiction arises.

In fact, considering the preceding lemmas alongside (4.24) and (4.25) we may introduce

the following theorem:

Theorem 6. The neighborhood observable set Ōi is equivalent to the subspace sum of

O′
j ⊆ Oj for each j ∈ Ni. More specifically,

Ōi ≡
∑
j∈Ni

O′
j.

Proof. Assuming Uij exists according to Lemma 5.1, let us define uj = UijC
>
j Cjz,

u =
∑

j∈Ni
uj, and

O′
j := {uj | uj 6= 0} . (4.26)

We may substitute these definitions into (4.25) which yields

Ōi :=

{
z |

∑
j∈Ni

uj 6= 0

}
. (4.27)

As a consequence of Lemma 5.2, each output fusion submatrix Uij maps

z ∈ Oj → uj ∈ O′
j. Using the definition of subspace sums, we make the statement

∑
j∈Ni

O′
j :=

{∑
j∈Ni

uj | uj ∈ O′
j

}
. (4.28)

Moreover, Lemma 5.2 may be expanded to form Lemma 5.3. The result follows as a direct

consequence of Lemma 5.3 proving u ∈
∑

j∈Ni
O′
j and z ∈ Ōi are equivalent statements.
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4.3.1 Ubiquitous Observability

The case where no local state estimate is shared amongst its neighbors is a scenario

more akin to USOO; but in its current form, both Definition 9 of USOO and Corollary 2.1

are only applicable to single-agent LTI systems. Therefore, we provide an extension of

Definition 9.

Definition 10. (Ubiquitous Observability) A distributed estimator is ubiquitously

observable (UO) if and only if the global system state is observable at each vertex i ∈ V.

Under this definition, we introduce the following lemma that leads to Corollary 6.1:

Lemma 6.1. UO is state omniscience without predictor-fusion.

Proof. The no predictor-fusion case is equivalent to setting the predictor fusion matrix

W = I. We allow each local estimator to only share its current measurement information

amongst its neighbors. This measured information is incorporated into the local

measurements through the output fusion matrix U. However, this fusion only affects the

local state estimate and is not passed along either directly or indirectly through local state

estimate sharing. The fact that W = I implies that each local estimator must be

convergent for the system to be state omniscient; which only occurs if the global system

states are observable from each vertex i for each i ∈ V . Thus concludes the proof.

Corollary 6.1. A distributed estimator is UO if and only if

Ōi ≡
∑
j∈Ni

O′
j = X

more specifically, the sum of the observable subspaces within the neighbor set Ni spans the

state space for each i ∈ V.

Proof. Lemma 6.1 explicitly states that ubiquitous observability is state omniscience

without predictor-fusion implying that each i ∈ V must be independently observable to
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yield K that stabilizes 4.11. The statement

Ōi ≡
∑
j∈Ni

O′
j ⊂ X

indicates the existence of at least one mode that is not in the convergent subspace of vertex

i, implying there does not exist U nor K that may converge that mode of the system.

Conversely,

Oi ≡
∑
j∈Ni

O′
j = X

indicates the existence of U and/or K that may converge all modes of the system. Thus

concludes the proof.

4.3.2 Ubiquitous Detectability

In some cases, it may not be feasible for the entire distributed estimator to be

observable [158], rather, the goal may then become to observe the unstable modes - a

phenomena known as detectability. Similarly, there exists an analogous form of ubiquitous

observability we will refer to as ubiquitous detectability.

Definition 11. (Ubiquitous Detectability) A distributed estimator is considered to be

ubiquitously detectable (UD) if at each agent the unobservable modes are asymptotically

stable to the origin.

Corollary 6.2. A distributed estimator is ubiquitously detectable if and only if

Ōi ≡
∑
j∈Ni

O′
j + S = X

more specifically, the sum of the stable subspace, S, and observable subspaces within the

neighbor set Ni spans the state space for each i ∈ V.

Proof. We define the stable subspace to be

S := {v | (λ,v) : Real(λ) < 0} (4.29)
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and consider the eigenvector z /∈ Ō′
j but z ∈ S. The rest of the proof follows from

Corollary 6.1 and the definition of detectability.

4.3.3 State Omniscience

When the agents choose to share their local state estimates with their neighbors, our

first concern is the existence of W that may fuse the local state estimate at vertex i with

the incoming state estimates from vertices j ∈ Ni. Next we define a generalization of the

observable subspace as the convergent subspace with r ≤ l ≤ n basis vectors

Ci := {ci1, . . . , cil} such that Oi ⊆ Ōi ⊆ Ci. In fact, z ∈ Ci if there exists a prediction-fusion

matrix W, innovation gain K, or output-fusion gain matrix U that stabilizes the mode.

Theorem 7. Given an observable state estimator in (4.9) then an eigenvector z ∈ Ci for

an i ∈ V if and only if WiKCA(1⊗ z) 6= 0.

Proof. Note that if CA(1⊗ z) = 0, then WiKCA(1⊗ z) = 0. Consequently, we assume

that CAz 6= 0 for the remainder of the proof. Under this assumption, we make the

observation that for an example N -agent system if z ∈ O1 but z /∈ O2, . . . ,ON then

KCA(1⊗ z) =



K1C
1
Az

K2C
2
Az

...

KNC
N
Az


=



K1C
1
Az

0

...

0


(4.30)

Note that while CAz 6= 0, it is possible that Ci
Az = 0 for a given i. Next, we must show

that there exist at least a single walk from a nonzero partition of Cz to vertex i. Here, we

define block generalizations of s, t, and Wi from (2.3) and (2.4) such that

s̄ = KCA(1⊗ z) and t̄ = J>
i (4.31)
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for the target vertex i and

Wi =



Ji

Ji(W ⊗Φ)

...

Ji(W ⊗Φ)d


. (4.32)

At first glance, these definitions of s and t may seem significantly different then those

presented in (2.3) and (2.4). However, consider the example in (4.30) for which s̄ would

take on the form s̄ = [s̄>1 , . . . , s̄
>
N ]

> = [×, . . . ,×,0>, . . . ,0>]> where × represents an

non-zero value. We may then define

sj =


1, s̄j 6= 0

0, otherwise
tj =


1, i = j

0, otherwise
. (4.33)

Physically, this means the form in (4.31) considers the graph interconnections at the

state-level defined by the dynamics and the agent-level defined by Gc; where, on the other

hand, (4.33) only considers the graph interconnections at the agent-level. In fact, all of the

walks defined by Gc are independent of the underlying states. The interpretation of the

walk matrix, consequently, remains unchanged regardless of whether the walk matrix is

constructed via (4.33) leading to (2.4) or (4.31) leading to (4.32). Therefore, Wis = 0,

independent of how the walk matrix is constructed, implies that there does not exist a walk

from a vertex j where zl ∈ Oj to vertex i. Conversely, if Wisj 6= 0 implies that there exists

at least one walk from a vertex j where z ∈ Oj to vertex i.

The convergent subspace Ci not only encapsulates the observable information at vertex

i, but also the convergent information provided by its neighbors. Consequently, we define

this set at vertex i to be

Ci := {z |WiKCAz 6= 0} . (4.34)

It is apparent this also implies the existence of W that will converge the modes Ci\Oi. In
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fact, we may also define the set

C ′i :=

{
z |

k−1∑
s=0

Ji(W ⊗Φ)sKCA(1⊗ z) 6= 0

}
.

Prior to directly considering the consequences of C ′i, we introduce an analogous form of

Lemma 5.1:

Lemma 7.1. There exists a collection of matrices {Wij} such that∑k−1
s=0 WisKCA(1⊗ z) 6= 0 if and only if z ∈ Oj for any j ∈ Wi.

Proof. We begin by setting k − 1 = d which allows us to encapsulate all of the walks that

end at agent i. The remainder of the proof follows from the proof of Lemma 5.1.

Lemma 7.2. An eigenvector z ∈ Ci if and only if z ∈ C ′i.

Proof. From the definition of the walk matrix, C ′i may be rewritten as

C ′i :=

{
z |

k−1∑
s=0

WisKCA(1⊗ z) 6= 0

}

where Wis is the sth row block of Wi. Let us first assume that z ∈ C ′i, it follows that from

the proof of Theorem 7 that there exists a walk from an agent j with z ∈ Oj of length less

than k − 1 implying that z ∈ Ci. Next assume that z ∈ Ci, it also follows that from the

proof of Lemma 7.1 that there exists a walk from agent j with z ∈ Oj of length less than

k − 1 implying that z ∈ C ′i.

Corollary 7.1. A distributed estimator is state omniscient if and only if

Ci ≡
∑
j∈Wi

O′
j = X (4.35)

more specifically, the sum of the observable subspaces within the walk set Wi spans the state

space for each i ∈ V. If there exists a walk j → i, then we say j ∈ Wi. We also assume i to

be in its own extended walk set.
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Proof. It follows from Lemma 7.2 and from the definition of vector subspace sums that

Ci ≡
∑
j∈Wi

O′
j = X .

Therefore,

Ci ≡
∑
j∈Wi

O′
j ⊂ X

indicates the existence of at least one mode that is not in the convergent subspace of vertex

i, implying there does not exist W nor K that may converge that mode of the system.

Conversely,

Ci ≡
∑
j∈Wi

O′
j = X

indicates the existence of W and/or K that may converge all modes of the system. Thus

concludes the proof.

Remark 1. It should be noted that Corollary 7.1 does not necessarily place any restrictions

on the connectivity of the communication network. From the definition of strong

connectivity and Corollary 7.1, a strongly connected network is sufficient to satisfy the

conditions of the theorem, but is not necessary. A weakly connected network will also

satisfy the conditions given appropriate edge placement. Additionally, an unconnected

network can be state omniscient provided the connected components satisfy the conditions of

Corollary 7.1. For example, consider the networked system shown in Figure 2.2 and the

communication graph and sensing graph depicted in Figure 2.3a and Figure 2.3b,

respectively. It can be shown that the networked system is state omniscient even though Gc

is unconnected. Agent 3 directly measures all other agents within the network; while Agent

1 does not take any measurements directly, Agent 2 communicates its estimates to Agent 1;

agents 4 and agents 5 work together to gather measurements of the remaining agents and

then communicate their estimates to one another.

Moreover, the convergent subspace condition in (4.35) may be generalized to a
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detectable form as

Ci :=
∑
j∈Wi

O′
j + S.

or S may be implicitly included as a subset of Ci. Such a system may also be considered

state omniscient even if
∑

j∈Wi
O′
j − S = ∅.

4.4 Main Results

In practice, however, to evaluate the omniscient properties of distributed estimators, a

method of quantifying state omniscience beyond set-theoretic approaches is necessary.

Consequently, this section discusses state omniscient in a quantifiable and computable way;

this method is analogous to classical observability analysis tools.

4.4.1 The Omniscient Matrix

Consider a discrete-time Luenberger-style observer as a linear difference equation

x̂(k) = Φ̄(k, k − 1)x̂(k − 1) + LCe(k − 1)

where L = diag([L1, . . . ,LN ]), x̂(k) ∈ RnN2 represents all of the state estimates across the

network, and e(k) = x̄(k)− x̂(k) with x̄(k) = 1N ⊗ x(k) is the estimate error. The linear

difference equation has the solution

x̂(k) = Φ̄(k, 0)x̂(0) +
k−1∑
s=0

Φ̄(s, 0)LCe(s) (4.36)

where

Φ̄(k, 0) = (W ⊗Φ)k. (4.37)

The matrix W ∈ RnN×nN is a tunable matrix constrained to the structure of the adjacency

matrix A such that

(W)ij =


0n, aij = 0

Wij, aij = 1
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where Wij ∈ Rn×n. The operator ⊗ is a block-matrix generalization of the standard

Kronecker product denoted W ⊗Φ that may be applied to block matrices of W, namely

Wij, such that (W ⊗Φ)ij = WijΦ ∈ Rn×n given W ∈ RnN×nN , Φ ∈ Rn×n, and

W ⊗Φ ∈ RnN×nN . Substituting (4.37) into (4.36) yields

x̂(k) = (W ⊗Φ)kx̂(0) +
k−1∑
s=0

(W ⊗Φ)k−1−sLCe(s). (4.38)

Expanding (4.38) with the understanding that e(s) = x̂(s)− x(s) with

x(s) = (IN ⊗Φ)s(1N ⊗ x(0)) where 1N is the N -dimensional vector of all ones such that

e(s) = (W ⊗Φ+ LC)se(0). Placing all state estimate dependent terms on the right-hand

side yields

k−1∑
s=0

(W ⊗Φ)k−1−sLC(W ⊗Φ+ LC)sx(0)

= (W ⊗Φ)kx̂(0)− x̂(k)

+
k−1∑
s=0

(W ⊗Φ)k−1−sLCx̂(s). (4.39)

We will refer to the right-hand side of (4.39) as p(k), therefore (4.39) may be rewritten as

p(k) =
k−1∑
s=0

(W ⊗Φ)k−1−sLC(I ⊗Φ)sx(0). (4.40)

Stacking the time history of p up to timestep k results in



p(1)

p(2)

...

p(k)


= Mx(0) (4.41)
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where

M =



LC

(W ⊗Φ)LC+ LC(W ⊗Φ+ LC)

...∑k−1
s=0(W ⊗Φ)k−1−sLC(W ⊗Φ+ LC)s


∈ RnN2k×nN .

Coincidentally, M resembles a coordinate-change of the observability matrix utilized for

time-delay systems [159]. Our considered case, generalizes the results by restricting the

coordinate-change matrix to the structure of the communication graph. We utilize (4.41)

and Definition 7 to construct a mathematical characterization of state omniscience.

Furthermore, we may apply a permutation matrix such that

P



p(1)

p(2)

...

p(k)


=



p1(1)

...

p1(k)

...

pN(1)

...

pN(k)



= PMx(0);

which results in subvectors pi = [p>
i (1), . . . ,p

>
i (k)]

> that group all of the information

available to observer i for each timestep 0 < s ≤ k.

Theorem 8. A distributed estimator is state omniscient if and only if x(0) may be

reconstructed from pi for each i ∈ V such that

x(0) = (PM)†ipi.

where (PM)i indicates the ith row-block of PM. For brevity we will from now on refer to

(PM)i as Mi. In other words, Mi must be left-unimodular for each i ∈ V.
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Proof. Let us treat Mix(0) = pi as a least-squares problem such that

argmin
x(0)

||Mix(0)− pi||2

is sought. It is known that the general solution to the least squares problem takes the form

x(0) =

[
Vr Vn−r

]Σ−1
r D>pi

bn−r

 = M†
ipi +Vn−rbn−r

implying x(0) may take any vector along the line define by M†
ipi +Vn−rbn−r for any

bn−r ∈ Rn−r. Consequently for any r < n, the solution to the least-sqares problem is

nonunique. However if r = n, Vn−r = 0, and therefore x(0) = Mipp and may be uniquely

determined. The matrix Mi is full rank when r = n indicating there exists a simple

algebraic expression M†
i (M

>
i Mi)

−1M>
i and M†

iMi = IN .

But under what conditions will Mi be left-unimodular for each i ∈ V? To further this

discussion we introduce the following lemma:

Lemma 8.1. Given an eigenpair (λ,v) = eig(W ⊗Φ) where λ is the eigenvalue and v is

its associated eigenvector, the mode v ∈ Ocl if and only if v ∈ O where Ocl and O are the

closed-loop and open-loop observable subspaces, respectively.

Proof. Suppose (W ⊗Φ)v = λv, Cv = 0 corresponds to an unobservable mode of the

open-loop system and implies v /∈ O, then (W ⊗Φ+ LC)v = (W ⊗Φ)v + LCv = λv so

v /∈ Ocl. Consequently, the state feedback cannot manipulate unobservable modes of the

system. The converse may be proven by initially supposing (W ⊗Φ)v = λv, Cv 6= 0.

From Theorem 8 and making use of Lemma 8.1 we may induce the following corollary:

Corollary 8.1. If a distributed estimator is state omniscient, then it is observable.
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Proof. It can be shown that M may be separated into three separate matrices such that

M = FL̄Ocl (4.42)

where L̄ = (Ik ⊗ L), Ocl ∈ RpEk×nN is a generalized closed-loop observability matrix

Ocl =



C

C(W ⊗Φ+ LC)

...

C(W ⊗Φ+ LC)k−1


,

and

F =



InN2 0 0 0 0

(W ⊗Φ) InN2 0 0 0

(W ⊗Φ)2 (W ⊗Φ) InN2

... ...
... ... . . . . . . 0

(W ⊗Φ)k−1 . . . . . . (W ⊗Φ) InN2


with F ∈ RnN2k×nN2k. Considering (4.42) and rank properties of matrix products implies

that rank(M) ≤ min(rank(F), rank(I ⊗ L), rank(Ocl)). By construction, rank(F) = nN2k

and because rank(I ⊗ L) is tunable indicates that rank(M) ≤ rank(Ocl). Therefore, it

necessitates that rank(Ocl) = nN in order for rank(M) ≤ nN . In fact, we may replace Ocl

with O where O> = [C>, (W ⊗Φ)>, . . . , (W> ⊗Φ>)k−1] because of Lemma 8.1.

Ultimately, Lemma 8.1 implies Ocl and O share the same subspace, and therefore, the

same basis. Therefore, the notation used initially by (4.42) may be replaced such that

M = FL̄O. (4.43)

To illustrate the “not sufficient” condition, we consider the case when there is no predictor

fusion amongst the agents such that W = 0; this induces F = I and pi = yi. Applying the

86



permutation matrix yields PM = PF(I ⊗ L)O such that

PF =



J1 0 . . . 0

0 J1 . . . 0

... ... . . . ...

0 . . . 0 J1

... ... ... ...

JN 0 . . . 0

0 JN . . . 0

... ... . . . ...

0 . . . 0 JN


where Ji = [J̄1, . . . , J̄N ] ∈ RnN×nN2 and

J̄j =


0, j 6= i

I, j = i

.

We then expand M1 as an illustrative example:

M1 = (PF)1O =



J1L 0 . . . 0

0 J1L . . . 0

... ... . . . ...

0 . . . 0 J1L





C

C(I ⊗Φ)

...

C(I ⊗Φ)k−1


similarly, for brevity, we will from now on refer to (PF)i as Fi. By its construction, J1

87



extracts the measurements associated with agent 1 such that

M1 =



L1C1

L1C1(I ⊗Φ)

...

L1C1(I ⊗Φ)k−1


= (I ⊗ L1)O1

which, by definition, is the observability matrix of agent 1. Extrapolating this result to

each i ∈ V for all PM induces

(PM) = (L⊗ I)


O1

...

ON

 = PO.

Because it is possible for rank(O) = nN and for rank(O1) < nN , then x(0) may not be

reconstructed from y1 alone and the result follows.

For a general case,

Fi =



InN 0 . . . 0

(W ⊗Φ)i InN . . . 0

... . . . . . . ...

(W ⊗Φ)k−1
i . . . (W ⊗Φ)i InN


(4.44)

with Fi ∈ RnNk×nNk. Consequently, the structure of W plays a non-trivial role in the

construction of M and the state omniscience of the distributed estimator. So, for what

structures of W will M meet the state omniscience condition? Prior to presenting the

result, we must first introduce the following lemma found in [160].

Lemma 8.2. (Theorem 6.11.2, [160]) The images of linearly independent vectors by a

non-singular linear operator are linearly independent vectors.
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Proof. We make use of the lemma without proof, but direct the interested reader to the

original reference.

Theorem 9. Each Mi is left-unimodular if and only if the observable subspaces within Wi

span the state-space.

Proof. In general, we consider each partition of the omniscient matrix as Mi = FiO. We

assume each Mi may be constructed from a set of basis vectors such that

Mi := {mi
1, . . . ,m

i
qi
} where qi is the number of basis vectors for Mi and is equivalent to

rank(Mi). From Theorem 8 we know that qi = nN for each i ∈ V is necessary and

sufficient for state omniscience. Without loss of generality, we assume the similarity

transform matrix T = diag([T1, . . . ,TN ]) which yields the Kalman canonical form

CT−1 = diag([C1T
−1
1 , . . . ,CNT

−1
N ]) and (I ⊗T)(W ⊗Φ)(I ⊗T−1) = (W ⊗TΦT−1)

where TΦT−1 = diag([T1Φ1T
−1
1 , . . . ,TNΦNT

−1
N ]) and where

CiT
−1
i =

[
Co
i 0

]

TiΦiT
−1
i =

Φo
i 0

Φ×
i Φuo

i

 .
Consequently, the generalized observability matrix takes the form

(Oo)> = [(Co)>, (CoΦo)>, . . . , (Co(Φo)k−1)>] where Co = diag([Co
1, . . . ,C

o
N ]) and

Φo = diag([Φo
1, . . . ,Φ

o
N ]). It follows that Mi = FiO may take a Kalman canonical form

Mi = FiO
o where Φ is replaced by Φo in (4.44) to construct Fi. Next, we choose a

permutation matrix Q1 such that

FiL̄Q
>
1 =

[
F̄i 0

]

where

F̄i =

[
F̄ii F̄ij . . .

]
∀ j ∈ Wi
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and each F̄ii and F̄ij takes the structure

F̄ij =



Lj 0 . . . 0

WijΦ
o
jLj Lj . . . 0

... . . . . . . ...

Wk−1
ij (Φo)k−1

j Lj . . . WijΦ
o
jLj Lj


.

with F̄ij ∈ RnNk×pEjk. In effect, Q>
1 organizes FiL̄ into partitions comprised of the

extended walk matrix for each j ∈ Wi. We can then partition

Q1O
o =

Oo
j∈Wi

Oo
j /∈Wi


where Oo

j∈Wi
= [Oo

i , . . . ,O
o
j ] ∀ j ∈ Wi and Oo

j /∈Wi
is comprised of all other observability

matrices. Similarly, Q1 organized Oo into partitions comprised of the observability

matrices for each j ∈ Wi. Then

FiQ
>
1 Q1O

o =

[
F̄i 0

]Oo
j∈Wi

Oo
j /∈Wi

 = F̄iO
o
j∈Wi

(4.45)

therefore, Mi is only dependent on the observable subset Oo
j for each j ∈ Wi. We then

apply QR-decomposition [161] using an orthogonal matrix Q2 such that

Q>
2 O

o
j∈Wi

=

Q>
21

Q>
22

Oo
j∈Wi

=

Oo′
j∈Wi

0


where Oo′

j∈Wi
∈ RnN×nN is upper-triangular. The same matrix Q2 also partitions

F̄iQ2 =

[
F̄i1 F̄i2

]
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such that

F̄iQ2Q
>
2 O

o
j∈Wi

= F̄i

[
Q21 Q22

]Oo′
j∈Wi

0

 = F̄iQ21O
o′

j∈Wi

Because Q2 forms an orthogonal basis for Oo
j∈Wi

, it is necessary that Q2Q
>
2 = InN for state

omniscience since

rank(Mi) = rank(F̄iQ2Q
>
2 O

o
j∈Wi

).

For a moment, consider that Mi = F̄iQ21O
o′
j∈Wi

where rank(F̄i) = nNk, by construction,

and Q21 forms an orthogonal basis for Oo
j∈Wi

comprised of nN linear independent vectors.

If we consider F̄i to be the nonsingular linear operator and Q21 to be the linear

independent vectors, it follows that the vectors of Mi are also linearly independent. Or,

rank(Mi) = nN . Thus proves the sufficiency condition.

The matrix M serves as a distributed estimator analogy to the observability matrix O

for single estimator systems and can be utilized to set necessary and sufficient conditions on

the distributed estimator to meet the desired convergent properties. It also has the added

benefit of encapsulting both the observability information and graph walk information;

each of which may be extrapolated and used for a variety of purposes as needed.

Corollary 9.1. The omniscient matrix M may be written as
∑k−1

l=0 (PHl)i(I ⊗ L)O

representing the observability matrices for all agents j ∈ Wi when k = nN + d.

Proof. To begin, we take advantage of the lower triangular Toeplitz structure of F and

decompose it such that

F =
k−1∑
l=0

Hl

where

(Hl)ij =


(W ⊗Φ)l, j = i− l

0, otherwise
.
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For example, consider a 3-agent system with k = 3,

F =
2∑
l=0

Hl =


I 0 0

0 I 0

0 0 I


︸ ︷︷ ︸

H0

+


0 0 0

(W ⊗Φ) 0 0

0 (W ⊗Φ) 0


︸ ︷︷ ︸

H1

+


0 0 0

0 0 0

(W ⊗Φ)2 0 0


︸ ︷︷ ︸

H2

.

Consequently applying the permutation yields

(PF)i =
2∑
l=0

(PHl)i =


Ji 0 0

0 Ji 0

0 0 Ji


︸ ︷︷ ︸

H0

+


0 0 0

(W ⊗Φ)i 0 0

0 (W ⊗Φ)i 0


︸ ︷︷ ︸

H1

+


0 0 0

0 0 0

(W ⊗Φ)2i 0 0


︸ ︷︷ ︸

H2

for each i ∈ V maintains the lower triangular Toeplitz structure of F for each (PM)i block.

We observe that the illustrative example in the proof of Corollary 8.1 is equivalent to H0,

therefore

(PM)i = (I ⊗ Li)Oi +

 0nNl×nN(k−1)∑k−1
l=1 (PHl)i(I ⊗ L)O


It is apparent that Oi is the observability matrix of the measurements taken at Agent i

and we use the following lemma to interpret the second term. Let us first consider l = 1,
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which yields,


0 0 0

(W ⊗Φ)i 0 0

0 (W ⊗Φ)i 0




LC

LCΦ

LCΦ2

 =


0 0 0

(W ⊗Φ)iLC 0 0

0 (W ⊗Φ)iLCΦ 0



=


0nN×nN2∑

j∈Ni
WijΦLjCj∑

j∈Ni
WijΦLjCjΦ

 =
∑
j∈Ni

 0nN×nN2

(I ⊗WijΦLj)Ōj



with Ō>
j = [C>

j ,Φ
>C>

j , . . . , (Φ
>)k−1−lC>

j ]. By induction, the result for each

l ∈ {1, . . . , k − 1} follows

k−1∑
l=1

(PHl)i(I ⊗ L)O =
k−1∑
l=1

∑
j∈N l

i

 0lnN×nN2

(I ⊗ (Wl)ijΦ
lLj)Ōj

 .
This presents a critical issue: there is an l-step delay for the information from each agent

j ∈ N l
i to reach agent i. It is a well-known result that the standard observability matrix

(Os
j)

> = [C>,C>Φ>, . . . ,C>(ΦnN−1)>] provides the necessary and sufficient amount of

information to characterize the observability of the system from agent j. Consequently, k

must be sufficiently large enough to allow for each block row of Os
j for each j ∈ V to

transverse the communication graph. Which is to say Ōj = Os
j which occurs when

k − 1− l = nN − 1 or k = nN + l, where l is now the length of the shortest walk j → i.

The result follows by setting l = d as the diameter of the communication graph

representing the longest shortest path between two estimators. Because each walk follows a

path from neighbor to neighbor j ∈ N l
i ∀l ∈ {0, . . . , k − 1} indicates that j ∈ Wi.
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4.4.2 The Omniscient Gramian

While the rank condition of the omniscient matrix Mi is necessary and sufficient for

state omniscience, there is no direct tie Lyapunov function. In this section, we draw

explicit connections between the Lyapunov function and the omniscient matrix through

what we refer to as the omniscient gramian.

Theorem 10. A distributed estimator is state omniscient if and only if

Mik = M>
i Mi =

∑h
s=0(Φ

s
cl)

>C>L>(W> ⊗Φ>)h−si (W ⊗Φ)h−si LCΦs
cl is positive definite

for each i ∈ V and ∀k ≥ d with Φcl := (W⊗Φ+LC) is the closed-loop system matrix, and

where h = k − 1. Because the error dynamics are dependent on the closed-loop system, we

use M from its definition in (4.42).

Proof. To prove sufficiency, we make the assumption that Φ>
clMikΦcl −Mik = −Ψk with

Ψk = Ψ>
k is positive definite. We now introduce the Lyapunov candidate function

Vi(k) = e>i (k)Mikei(k)

such that

∆Vi(k) = e>i (k)[Φ
>
clMikΦcl −Mik]ei(k) = −e>i (k)Ψkei(k) < 0

Thus, sufficiency is proven. To prove necessity, substitute Mik =
∑k−1

s=0(Φ
s
cl)

>ΨkΦ
s
cl into

the Lyapunov candidate function such that

Φ>
cl

( k−1∑
s=0

(Φs
cl)

>ΨkΦ
s
cl

)
Φcl −

k−1∑
s=0

(Φs
cl)

>ΨkΦ
s
cl = −Ψk

yielding
k−1∑
s=0

[
(Φs+1

cl )>ΨkΦ
s+1
cl − (Φs

cl)
>ΨkΦ

s
cl

]
= −Ψk. (4.46)

Solving (4.46) results in

(Φk
cl)

>ΨkΦ
k
cl −Ψk = −Ψk
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and understanding that (Φk
cl)ΨkΦ

k
cl → 0 if and only if Φcl is stable the result follows by

setting Ψk =
∑h

s=0C
>L>(W> ⊗Φ>)h−si (W ⊗Φ)h−si LC.

By Theorem 10, M>
i Mi solves the Lyapunov equation from Definition 7 when Mi is full

rank.

4.4.3 An Alternative Characterization

We next introduce an alternative characterization for state omnscience akin to the PBH

Lemma. The PBH Lemma [154] states that if a right-eigenvector v of Φ with associated

eigenvalue λ is orthogonal to C, then that mode of Φ is unobservable from C, more

specifically

Φv = λv, Cv = 0. (4.47)

We take the liberty to multiply each term in (4.47) by the walk matrix W such that

WΦv = Wλv, WCv = 0

and introduce Theorem 11.

Theorem 11. A distributed estimator is state omniscient if and only if

WiLCvl 6= 0 ∀ i ∈ V and for each vl ∈ {v1, . . . ,vnN} where Wi is the walk matrix with

T = i.

Proof. Corollary 8.1 follows immediately from (4.47) as WiLCvl = 0 if Cvl = 0 indicating

vl is not observable anywhere in the system. Consequently, we assume that Cvl 6= 0 for

the remainder of the proof. Under this assumption, we make the observation that for a 3

agent system

LCvl =


L1C1vl

L2C2vl

L3C3vl

 =


0

L2C2vl

0


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if vl ∈ O2 but vl /∈ O1,O3. By induction, this result extends to a N agent system. Note

that while Cvl 6= 0, it is possible that Civl = 0 for a given i. Next we must show that

there exist at least a single walk from a nonzero partition of Cvl to vertex i. Here, we

define block generalizations of s, t, and Wi from (2.3) and (2.4) such that

sj =


LjCjvl, Cjvl 6= 0

0, otherwise
and ti = J>

i (4.48)

for the target vertex i and

Wi =



Ji

Ji(W ⊗Φ)

...

Ji(W ⊗Φ)d


.

Therefore, Wis = 0 implies that there does not exist a walk from a vertex j where vl ∈ Oj

to vertex i. Conversely, if Wisj 6= 0 implies that there exists at least one walk from a

vertex j where vl ∈ Oj to vertex i.

Theorem 11 clearly defines the convergent subspace for each agent i. If vl lies within

the nullspace of WiLC then vl /∈ Ci. It also provides an alternative characterization of

state omniscience that resembles the PBH lemma. Moreover, this result naturally extends

to asymmetric Φ as long as there exists some vl selected from the eigenspace of λ for which

the result holds.

4.5 Considerations for Graph Topology Design

Now that a fundamental understanding of state omniscient system analysis has been

laid, how does it relate to system dynamics, sensing, communication, and information

fusion? This section translates the state omniscient system analysis to a set of heuristics

for various design criteria.

The state omniscience and observability of the full networked system is consequently
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dependent on four components - the system dynamics, the measurement function, the

sensing graph, and the communication graph. This section focuses on the existence and

type of potential solutions given design constraints on the networked system. Particularly,

this section focuses on sensing capabilities and fusion types employed. More specifically,

Table 4.1 details all of the potential combinations considered such as whether or not each

agent is a capable of measuring the relative states of other agents i.e. no relative sensing

(NRS) or relative sensing (RS); and specific types of fusion i.e. prediction fusion (P),

output fusion (O), or both (P&O). This influences whether or not the associated matrices

are a tunable parameter (D) or set as the identity matrix (I).

Table 4.1 Potential sensing and fusion cases.

Case # Sensing Fusion W U ES

Case 1 NRS N I I I
Case 2 NRS P D I I
Case 3 NRS O I D I
Case 4 NRS P&O D D I
Case 5 RS N I I D
Case 6 RS P D I D
Case 7 RS O I D D
Case 8 RS P&O D D D

When a column of Table 4.1 is I indicates that the associated variable is the identity

matrix and is fixed; contrarily, when a column is D indicates the associated variable is a

design variable for the corresponding case. Prior to considering each case in depth, we

make the following remark:

Remark 2. Lemma 6.1 allows us to analyze each of the no predictor-fusion cases (W = I)

from a ubiquitous observable perspective.

4.5.1 Case 1: No Relative Sensing - No Fusion

It is trivial to show that the no relative sensing - no fusion scenario as described by Case

1 of Table 4.1 will never be observable. This result is intuitive as this case directly implies

that each agent only has information about itself and does not share that information with
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the other agents. While trivial and intuitive, we wish to formally prove the result as the

process will also be repeated for the other scenarios in Cases 2-8 of Table 4.1.

We begin the proof by substituting the values for W, U, ES of Case 1 into the error

dynamics described by (4.11). It can be shown that the equation then takes the form

ek+1 =
(
IN2 ⊗Φ−KIN(IN ⊗H)>(IN ⊗H)

)
ek (4.49)

with

(IN ⊗H)> =



C>
1 . . . . . . 0

0 C>
2 . . . 0

... ... . . . ...

0 0 . . . C>
N


∈ RnN2×pE (4.50)

where each Ci = ii ⊗H> with ii being the ith column of I. Using the PBH Lemma, we

know that the dynamics of (4.49) is unobservable if and only if there exists some ṽl such

that

(IN2 ⊗Φ)ṽl = λlṽl, (IN ⊗H)>(IN ⊗H)ṽl = 0.

Therefore each Oi may be parameterized by all of the vectors ṽl such that Ciṽl 6= 0.

Because neither local state estimates nor measurements are shared Ci = Oi. Taking Z̄ to be

the matrix of eigenvectors of IN2 ⊗Φ and using properties of eigenvectors through

Kronecker products yields Z̄ = IN2 ⊗Z where Z is the matrix of eigenvectors of Φ. Since Φ

is itself diagonal matrix from (2.7), Z = diag([Z1, . . . ,ZN ]) where Zi is the matrix of

eigenvectors for Φi for each i ∈ V , and since Ci only has the ith diagonal block occupied

yields a matrix form of the PBH-lemma CAZ̄ where each ith diagonal subblock takes the

form Ci
AZ = (iii

>
i ⊗H>H)Z = (iii

>
i ⊗H>HZi). Therefore, Ci = Oi is only parameterized

by the measurements agent i it takes of itself. Therefore, there exists no form of Case 1

such that the system will be observable from any agent let alone all agents.
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4.5.2 Case 2: No Relative Sensing - Output Fusion

For the no relative sensing - output fusion case, we have the equation

ek+1 =
(
(IN2 ⊗Φ)−KU(IN ⊗H)>(IN ⊗H)

)
ek. (4.51)

as each agent j does not communicate its state prediction with its neighbors which forces

W = IN . However, each agent j does communicate its output information to its neighbors.

In this case, we are only interested in Ci
AZ and constructing a matrix CA such that the

global system state as represented by Z may be observable from each Ci
A. The no relative

sensing case with measurement sharing yields output matrices Ci
A =

∑
j∈Ni

u2ijC
>
j Cj where

each C>
j Cj = iji

>
j ⊗H>H so each agent is only taking measurements of itself, but then

may share those measurements with its neighbors. Because there is no relative sensing, this

mean there is no measurement overlap between agents, so output fusion only provides new

state information and does not provide additional information to improve the observability

of states currently measured from agent i. It follows directly, that the pair (Φi,H) must be

observable for each i ∈ V . Consequently, the columns of Ci
A associated with agent j are

only nonzero if j ∈ Ni agent j is a neighbor of agent i in the graph. It follows that each

agent has an observable form of the system - the system is ubiquitously observable - if each

agent is a neighbor of every other agent, or the graph is fully connected. Therefore, in

order for the no relative sensing - output fusion case to yield a UO system, each (Φi,H)

must be observable and Gc must be fully connected.

4.5.3 Case 3: No Relative Sensing - Predictor Fusion

Similarly, we begin analyzing the no relative sensing with predictor fusion scenario from

Case 2 of Table 4.1 by substituting the values of W, U, and ES into (4.11) yielding the

equation

ek+1 =
(
W ⊗Φ−KIN(IN ⊗H)>(IN ⊗H)

)
ek. (4.52)

Because there is no relative sensing and no output fusion, Ci
A = ΠC>

j Cj so Oi is only
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dependent on the measurements of agent i. Similarly to the no relative sensing - output

fusion case, this means each (Φi,H) must be observable. Because Oi only contains

information about agent i, Ci from (4.34) must provide the information about every other

agent j, therefore, j ∈ Wi which for state omniscience must be true for each i ∈ V . It

follows that there must exist a walk from any i to any j so Gc must be strongly connected.

Therefore, in order for the no relative sensing - predictor fusion case, to be state

omniscient, each pair (Φi,H) must be observable and Gc must be strongly connected.

4.5.4 Case 4: No Relative Sensing - Predictor & Output Fusion

Case 4 of Table 4.1 is the first to consider the interplay between predictor and output

fusion. Substituting the values for the no relative sensing - predictor and output fusion in

Table 4.1 yields the equation

ek+1 =
(
(W ⊗Φ)−KU(IN ⊗H)>(IN ⊗H)

)
ek. (4.53)

Because there is no relative sensing, this mean there is no measurement overlap between

agents, so output fusion only provides new state information and does not provide

additional information to improve the observability of states currently measured from

agent i. The no relative sensing case with measurement sharing yields output matrices

Ci
A =

∑
j∈Ni

u2ijC
>
j Cj where each C>

j Cj = iji
>
j ⊗H>H so each agent is only taking

measurements of itself, but then may share those measurements with its neighbors. In this

case both the local state estimate and measurements are being shared amongst neighbors,

the measurement information is redundant. Therefore, the no relative relative sensing -

predictor and output fusion case performs similarly to the no relative sensing - predictor

fusion case which states each pair (Φi,H) must be observable and Gc must be strongly

connected.
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4.5.5 Case 5: Relative Sensing - No Fusion

Case 5 of Table 4.1 is the first case to consider relative sensing meaning ES 6= IN and

each agent is capable of measuring the relative states of other states to itself. Considering

this case yields the equation

ek+1 =
(
(IN2 ⊗Φ)−KIN(E

>
s ⊗H)>(E>

s ⊗H)
)
ek. (4.54)

Because there is no output fusion, Ci
A = C>

i Ci. The goal remains to ensure each column of

Ci
AZ 6= 0. This formulation is reminiscient of the results from Section 4.5.2, however the

sensing capabilities of agent i through C>
i Ci takes the full burden of forming an observable

system. Consequently, the columns of Ci
A associated with agent j are only nonzero if

j ∈ N S
i agent j is a neighbor of agent i in Gs agent i is taking a measurement of agent j. It

follows that the system is ubiquitously observable if each agent is a neighbor of every other

agent, or Gs is fully connected. It is also necessary that the pair (Φi,H) is observable for

each i ∈ V .

4.5.6 Case 6: Relative Sensing - Predictor Fusion

Case 6 of Table 4.1 is the relative sensing - predictor fusion case which yields the

equation

ek+1 =
(
W ⊗Φ−KIN(E

>
s ⊗H)>(E>

s ⊗H)
)
ek. (4.55)

Using a similar argument to the one presented in Section 4.5.3, one may naïvely say a

sufficient condition is to ensure the Gs ∪ Gc is strongly connected for any structures of Gs

and Gc. It is here that the problem discussed in Section 2.3 becomes apparent. In order to

maintain a continuous flow of information from one agent to the next, each sensing link

must be followed by a communication link ultimately placing a constraint on the structure

of Gc given Gs. This indicates that Gc ⊇ ∂ine Gs where ∂ine is taken to mean the in-edge

boundary of Gs. We consider the in-edge boundary of Gs to be the set of edges exiting a

vertex in Gs. Therefore, the edges in Gc must at least be a superset of the in-edge boundary
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on Gs. Consequently, it is true that the relative sensing - predictor fusion case requires that

Gs ∪ Gc be strongly connected given that Gc ⊇ ∂ine Gs; because there is no output fusion, the

pair (Φj,H) must be observable for each i ∈ V where j ∈ N s
i .

4.5.7 Case 7: Relative Sensing - Output Fusion

Next, we consider Case 7 of Table 4.1. Because no prediction information is shared

across the network, yields the pair

ek+1 =
(
(IN2 ⊗Φ)−KU(E>

s ⊗H)>(E>
s ⊗H)

)
ek, (4.56)

so we are only concerned with each Ci
AZ. Unlike the no relative sensing - output fusion

case each C>
j Cj =

jES
jE>

S ⊗H>H indicates agent j is not only capable of taking

measurements of itself, but also its neighbors in Gs. Furthermore, Case 3 in Section 4.5.2

and Case 5 in Section 4.5.5 are specific cases of the relative sensing - output fusion case,

with either ES or U set to IN , each requiring a fully connected graph to yield an

ubiquitously observable system. It follows that the relative sensing - output fusion cases

also requires a fully connected network, yet only necessitates the Gs ∪ Gc is fully connected.

The communication graph supplements the measurements missed by the sensing graph.

Contrary to each of the previous cases, the pair (Φj,H) does not necessarily need to be

observable, but the pair (Φ,Ci
A) must be observable.

4.5.8 Case 8: Relative Sensing - Predictor & Output Fusion

Finally, we consider Case 8 of Table 4.1, the relative sensing - predictor & output fusion

case. This is the most general, and most complex case that may be constructed. Similarly

to all of the previous cases, our goal is to define potential constructions of W, U, ES such

that the equation

ek+1 =
(
W ⊗Φ−KU(E>

s ⊗H)>(E>
s ⊗H)

)
ek (4.57)
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is state omniscient. Contrarily to the no relative sensing - predictor & output fusion case in

Section 4.5.4. There exists relative measurements for the output fusion scheme to merge

that may improve the overall observability at each agent. Therefore, it is not necessary for

each pair (Φj,H) to be observable, rather the augmented measurement form (Φ,CA)

should be centrally observable. Notice, because of the inclusion of predictor fusion, each

pair (Φj,C
i
A) need not be observable either; each Oi may be complemented by the

converging information provided by Ni through predictor fusion. Because the shared

prediction and output values utilize the same communication links the overall structure of

the graphs take the form of relative sensing - predictor fusion which is to say Gs ∪ Gc must

be strongly connected given that Gc ⊇ ∂ine Gs. If it is the case, that output fusion and

predictor fusion utilize separate communication graphs, Gpc and Goc for predictor and output

fusion, respectively. Using the same argument from Section 4.5.6 it can be shown that

Gs ∪ Gc must be strongly connected given that Gc := Gpc ∪ Goc and Gc ⊇ ∂ine Gs ∪ ∂ine Goc .

Therefore, the relative sensing - predictor & output fusion case may be rendered state

omniscient when the pair (Φ,CA) is centrally observable and Gs ∪ Gc is strongly connected

given the conditions specified.

4.6 Illustrative Example

To illustrate the state omniscience property discussed in Section 4.4, let us revisit the

motivating example from Section 4.1 and consider three distinct cases. In each case, we

consider two estimators each tasked with tracking an LTI system, but with slight variations

in the measurements and communicated information. In our example we consider the

standard Clohessy-Wiltshire dynamics [128] from relative orbital mechanics 2.17 with

η = 0.001027.

4.6.1 Case 1

In the first case, we model the motivating example exactly. Estimator 1 is taking direct

measurements of the full LTI system state C1 = I, but Estimator 2 is not taking any

measurements of the system and thus is unable to estimate the system state C2 = 0.
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Rather, we allow Estimator 1 to communicate its local state estimate to Estimator 2 such

that the local state estimator at Estimator 2 takes the form of (4.13). In Figure 4.4, we see

that each estimator converges to the true value with a slight delay in the convergence of

Estimator 2 that is proportional to the state update that maps the local state estimate of

Estimator 1 to the local state estimate of Estimator 2.

Figure 4.4 Motivating example results with C1 = I and C2 = 0 and Estimator 1 can
communicate to Estimator 2.

4.6.2 Case 2

Next, we consider a modified case of the motivating example such that each estimator

may only measure an unobservable portion of the system. We allow Estimator 1 to

measure the first and second states along with their rates of change; we allow Estimator 2

to measure the third state along with its rate of change - the linear measurement matrices

are given by

C1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0


, C2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1


.
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Neither are observable on their own - Figure 4.5 illustrates this point because it does not

allow communication between the estimator, so neither are able to converge to the true

value.

Figure 4.5 Motivating example with neither estimator able to fully observe the system and
unable to communicate with each other.

4.6.3 Case 3

Contrarily to Case 2, in Case 3, we allow communication between the estimators such

that

W11 = W12 = W21 = W22 =
1

2
I.

Consequently, as seen in Figure 4.6, each estimator is able to converge because of the

shared information.
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Figure 4.6 Motivating example with neither estimator able to fully observe the system and
they are able to communicate with each other.
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5 Information Fusion via Matrix Decomposition

Information flow thorughout the network creates an influx of information at each agent.

Each agent must then be capable of fusing the incoming information to yield an updated

state estimate; and it must do it in a way that maintains confidence levels without

becoming over or under confident in its estimate.

5.1 Fused Matrix Bounds

Recalling the joint matrix bounds from Equations 2.35, it can be shown that the joint

bounds are analogous to bounds on the fused solution of the form of Equation 2.32. The

joint bounds of Equation 2.35 and joint covariance of Equation 2.33 with its delimiters may

be substituted into Equation 2.32 and then into Πu −Pj ≥ 0:

 kaµPa −
√
kakbLaΩL>

b

−
√
kakbLbΩ

>L>
a

kb
µ

Pb

 ≥ 0 (5.1)

The left-hand side of which may be expanded into

√µA 0

0 1√
µ
B


 kaI −

√
kakbΩ

−
√
kakbΩ

> kbI


√µA 0

0 1√
µ
B


>

(5.2)

Equation 5.2 holds true when the middle term is positive semi-definite which requires

I ≥ ΩΩ> and is independent on the exact fraction of the square roots. Next, we consider

partial explicit knowledge of the correlation of the form in Equation 5.3

Pab ∈ {M + AΩB> |

ρPa Pab

P>
ab ρPb

 ≥ 0} (5.3)

where 0 ≤ ρ ≤ 1 is the known explicit knowledge correlation. This is a generalization of the

condition given in Equation 2.34 to explicit partial knowledge correlations [112]. It can be

shown via the process above that under this partial explicit correlation knowledge that
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ρ2I ≥ ΩΩ> must be true to maintain the postive semi-definite condition. The joint matrix

bounds expressed in Equation 5.2 can be shown to be Equation 5.4 in its fused form.

µAA> +
1

µ
BB> ≤ (AΩB> + BΩA>) (5.4)

It is assumed that Ω, the right-hand side of Equation 5.4 is symmetric, so by cancelling out

applicable terms and solving for Ω yields:

Ω ≥ 1

2
L−1
a (µPa +

1

µ
Pb)L−T

b (5.5)

Therefore, an upper-bound exists of the form presented by Equation 5.5 for any 0 ≤ µ <∞.

Similarly, an analogous lower-bound may be found using Pj −Πl ≥ 0:

Ω ≤ 1

2
L−1
a (νPa +

1

ν
Pb)L−T

b (5.6)

for 0 ≤ ν <∞. Notice that each of the presented bounds are independent of the fraction k

of the square root and only dependent on the square root of P itself.

5.2 Matrix Decomposition Approaches

This section derives approximations to Equation 2.32 using the bound tool presented in

Section 5.1. In particular, two square root decomposition approaches are presented to

approximate (Pab + Pba), and an approximation for the mutual mean γ is derived following

an analogous derivation to Ellipsoidal Intersection [108].

5.2.1 Cholesky Decomposition

Because a general covariance matrix is positive semi-definite, and in many cases

positive definite, the Cholesky decomposition may be used to factor P into a single lower

triangular matrix L with real and positive values along the diagonal.

P = LL> (5.7)
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Using this fact within Equation 2.32, both matrices Pa and Pb may be factored into La

and Lb. As a result, Equation 2.32 can be rewritten in a factored form as,

P−1
c = (LaL>

a )
−1 + (LbL>

b )
−1 − (Pab + Pba)

−1 (5.8)

Equation 5.8 effectively provides an analytical means of optimally fusing measurements

and uncertainties between two sensors. This formulation assumes a known correlation

between a and b. Which, in most cases, is neither known nor measurable. If it was known,

Equation 5.8 would be extraneous. However, this equation become relevant if there exists

an approximation to Pab + LbaL>
ba that can be constructed from known information, and

the approximation maintains consistency.

Using Equation 2.34, consider the candidate approximation,

Pab ≈M + LaΩL>
b (5.9)

such that Equation 5.8 is approximated as

P−1
c ≈ (LaL>

a )
−1 + (LbL>

b )
−1 − (M + LaΩL>

b + LbΩ
>L>

a + M>)−1 (5.10)

Theorem 12. Equation 5.10 provides a consistent and tight approximation of the optimal

fusion solution.

Proof. Prior to proving Theorem 12 directly, we introduce Corollary 12.1 that allows for

the elimination of M

Lemma 12.1. M = 0 provides the ultimate upper-bound for the family of covariance

matrices with given µ and admissible values of Ω.

Proof. The matrix M = 0 provides an upper-bound for this family of covariances matrices
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if the inequality in Equation 5.11 holds true.

P0
c −PM

c ≥ 0 (5.11)

where the superscript 0 indicates M = 0. Substituting the reciprocal of Equation 5.10 into

Equation 5.11 and cancelling out applicable terms yields

−(LaΩL>
b + LbΩ

>L>
a )

−1 + (M + LaΩL>
b + LbΩ

>L>
a + M>)−1 ≤ 0

because both P0
c and PM

c are positive semi-definite the reciprocal flips the inequality.

Taking the reciprocal and cancelling out applicable terms yields:

M + M> ≥ 0 (5.12)

Because it is assumed that M represents any known elements of Pab it follows that M

is positive definite thus the above inequality holds and proves Lemma 12.1.

This result implies that M = 0 is the ultimate upper-bound in the family of

upper-bounds for a given µ and Ω. Consequently, any partial knowledge of the state

uncertainty only aids in decreasing this upper-bound. Fortunately, this leads to the result

that M = 0 provides an upper-limit when the exact structure of the cross-correlation terms

may be unknown, as is the case in Equation 5.10.

This is particularly useful for Equation 5.10 because it limits the number of required

known elements and allows for a singular tuning parameter in Ω ∈ Rn×n. Proving this limit

maintains consistency is a direct result of Lemma 12.2.

Lemma 12.2. Equation 5.10 is consistent because Pab ≥ LaΩL>
b , where Ω = ρI is the

delimiting case.

Proof. By the definition of a consistency, a fused estimate provides an upper-bound for the
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optimal solution:

Pc −Po
c ≥ 0

where (·)o denotes the optimal solution. It is trivial to see that by substituting Equation

5.8 and Equation 5.10 into the definition of consistency and using the fact that M = 0

provides an ultimate upper-bound, yields:

Pab ≥ LaΩL>
b

Now, recall the matrix Cauchy-Schwarz Equation with partial knowledge correlation

ρPa ≥ Pab(ρPb)
−1P>

ab (5.13)

This is reminiscent of the explicit correlation knowledge condition from Equation 5.3, so by

substituting the Pab approximation from Equation 5.9, M = 0, and performing some

simple algebraic manipulation yields

ρ2I ≥ ΩΩ> (5.14)

Where ρI is an upper-bound in the solution space and thus proves the Lemma.

While the optimal solution provides a lower bound of the covariance matrix, it remains

possible for the true covariances to be significantly over-approximated. As a solution, an

upper-bound to the known covariance matrix is considered feasible if it maintains

consistency and tightness.

Lemma 12.3. Equation 5.10 is tight because the ellipse formed by

Γ−1 ≤ (LaΩL>
b + LbΩ

>L>
a )

−1 ≤ (ωPa + (1− ω)Pb)
−1 using the Cholesky Decomposition is

upper-bounded by the ellipse formed using ICI.
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Proof. From Definition 6, [162] shows that this concept may be parameterized in the form

Λ = α1Pa + α2Pb

where
∑
αi = 1. Noack in [109] uses this form to prove tightness of ICI when ω ∈ [0, 1].

Γ−1 ≤ (ωPa + (1− ω)Pb)
−1 (5.15)

Inherently, the Cholesky Decomposition approach is not in a form to directly evaluate

tightness from Equation 5.15. Rather, it is possible to indirectly prove tightness by showing

Lemma 12.3 holds true.

PICI −Pchol ≥ 0 (5.16)

substituting Equation 2.39 and Equation 5.10 with M = 0 into Equation 5.16 yields,

[P−1
a + P−1

b − (ωPa + (1− ω)Pb)
−1]−1 ≥ [P−1

a + P−1
b − (LaΩL>

b + LbΩ
>La)

−1]−1

cancelling the applicable terms,

(ωPa + (1− ω)Pb) ≤ (LaΩL>
b + LbΩ

>L>
a )

which can also be written on the information space as,

(ωPa + (1− ω)Pb)
−1 ≥ (LaΩL>

b + LbΩ
>L>

a )
−1 (5.17)

Thus Lemma 12.3 is proven.

In this form, the above equation has no analytical solution. However, the equation may

be solved numerically to find a solution for Ω. Because only admissible values for Ω are
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assumed, the term LaΩL>
b is symmetric and may therefore be rewritten as,

(ωPa + (1− ω)Pb) ≤ 2(LaΩL>
b )

Solving for Ω results in an upper-bound on the Cholesky Decomposition solution being the

ICI solution.

Ω ≥ 1

2
L−1
a (ωPa + (1− ω)Pb)L−T

b (5.18)

Because the ICI solution has previously been proven to uphold Definition 6, the Cholesky

Decomposition approach is implied to uphold tightness because the ICI solution serves as

the upper-bound of the solution given Ω is selected to maintain the inequality in Equation

5.18.

The bound specified by Equation 5.18 may be generalized to include the explicit partial

correlation knowledge as

Ω ≥ 1

2
L−1
a (ωaPa + ωbPb)L−T

b (5.19)

where ωa and ωb are defined in Equation 5.20.

ωa = ω(ω + ρ(1− ω))−1

ωb = (1− ω)(ρω + (1− ω))−1

(5.20)

Furthermore, because Lemma 12.2 and Lemma 12.3 are proven to be true, Theorem 12

is also upheld.

Next, we discuss how to calculate the fused mean by implementing the mutual

information approximation using the mutual mean γ. The mutual mean represents a

unique balance between the random variable a and b and can be considered “optimal” in

113



the sense it minimizes a weighted average cost function between the two random variables.

J(γ) = (γ − a)>Wa(γ − a) + (γ − b)>Wb(γ − b)

which yields the gradient

∂J(γ)

∂γ
= 2(γ − a)>Wa + 2(γ − b)>Wb

with the stationary points

γ = (Wa + Wb)
−1(Waa + Wbb)

Now, let us define Wa = P−1
a − 1

2
(LaΩL>

b + LbΩL>
a )

−1 and

Wb = P−1
b − 1

2
(LaΩL>

b + LbΩL>
a )

−1. Substituting these definitions for Wa and Wb into

the stationary points equations yields

γ = Pc(Waa + Wbb) (5.21)

In summary, the Cholesky Decomposition Approach is formalized in Equation 5.22,

P−1
c = P−1

a + P−1
b − (LaΩL>

b + LbΩ
>L>

a )
−1

c̄ = Pc

(
P−1
a a + P−1

b b− (LaΩL>
b + LbΩ

>L>
a )

−1γ
) (5.22)

provides a consistent and tight approximation of the optimal solution when Ω meets the

criteria
1

2
L−1
a (ωaPa + ωbPb)L−T

b ≤ Ω ≤ ρI

where ωa and ωb are defined in Equation 5.20.

A sample Cholesky Decomposition fusion result is found in Figure 5.1. A selection of

bounds set between the identity and Equation 5.18. Graphically, tighter approximations of
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Figure 5.1 Demonstration of how Ω influences the Cholesky Approximation solution by
fusing Covariance Ellipse 1 with Covariance Ellipse 2. The ICI Solution is used as an
upper-bound on the solution and the Optimal Solution provides the lower-bound. Results
are presented for bounds on Ω as Lower-Bound from Equation 5.18 and the Upper-Bound
is the Identity Matrix because we consider ρ = 1 in this example.

the optimal solution are achieved when compared to both the CI and ICI solutions.

Because of the dependence of the upper-bound on the ICI solution, the values for Ω can be

designed to always be tighter than the ICI solution.

5.2.2 Schur Decomposition

Alternatively to the Cholesky Decomposition defined in Equation 5.7, the

cross-correlation terms may be approximated using a matrix square root found via the

Schur Decomposition ([163, 164]).

(Qab)
2 ≈M + QaΩQb (5.23)

where Q = P1/2. This implies a fundamental change to Equation 5.8 where each term is

decomposed into a square root rather than its Cholesky Decomposition.

P−1
c = Q−2

a + Q−2
b − (Q2

ab + Q2
ba)

−1 (5.24)
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Substituting Equation 5.23 into Equation 5.24 yields

P−1
c ≈ Q−2

a + Q−2
b − (M + QaΩQb + M> + Q>

b Ω
>Q>

a )
−1 (5.25)

which is an analogous form of Equation 5.7 (consistency and tightness may be proven

through analogous forms of Theorem 12, Lemma 12.2, and Lemma 12.3). While the

transformation is trivial, for completeness the proofs of each are provided as Theorem 13,

Lemma 13.1, and Lemma 13.2. In fact, a more thorough discussion between Cholesky and

Schur decomposition approaches for matrix square roots is presented in [165].

Theorem 13. Equation 5.25 provides a consistent and tight approximation of the optimal

fusion solution.

Proof. It is trivial to show that Lemma 12.1 still applies, allowing for M = 0 to be treated

as the ultimate upper-bound for the family of covariance matrices represented in Equation

5.25. Additionally, Ω>Ω ≤ I which is an implied result from Lemma 13.1.

Lemma 13.1. Equation 5.25 is consistent because Q2
ab ≥ QaΩQb, where Ω is delimited by

ρI.

Proof. Similar to the proof of Lemma 12.2, the consistency definition is applied

Pc −Po
c ≥ 0

It can be shown that by substituting Equation 5.24 and Equation 5.25 into the definition of

consistency and using M = 0 providing the ultimate upper-bound results in:

Q2
ab ≥ QaΩQb

It follows that because Cov(a,b>) ≥ 0 then E[ab>] ≥ E[a]E[b>]. Now, let us state that:
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E[ab>] = E[a]E[b>] = Pab = Q2
ab

E[aa>] = E[a]E[a>] = Pa = Q2
a

E[bb>] = E[b]E[b>] = Pb = Q2
b

(5.26)

Which allows Qa and Qb to be considered as analogous matrix forms E[a] and E[b],

respectively. Next, recall the Cauchy-Schwarz inequality with partial knowledge correlation

ρPa ≥ Q2
ab(ρPb)

−1Q2T
ab (5.27)

This is reminiscent of the explicit correlation knowledge condition from Equation 5.3, so by

substituting the Q2
ab approximation from Equation 5.23, M = 0, the definitions in

Equation 5.26, and performing some simple algebraic manipulation yields

ρ2I ≥ ΩΩ> (5.28)

Where ρI is an upper-bound in the solution space and thus proves the Lemma.

Lemma 13.2. Equation 5.25 is tight because the ellipse formed by

Γ−1 ≤ (QaΩQb + Q>
b Ω

>Q>
a )

−1 ≤ (ωPa + (1− ω)Pb)
−1 using the Matrix Square Root

Decomposition is upper-bounded by the ellipse formed using ICI.

Proof. Similarly to Lemma 12.3, the Schur Decomposition solution is not in a form to

directly allow evaluation against Definition 6. Rather, it is induced that if the ICI solution

provides an upper-bound, which has previously been shown to be tight, then the Schur

Decomposition itself must be tight.

PICI −Pschur ≥ 0 (5.29)
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substituting Equation 2.39 and Equation 5.25 with M = 0 into Equation 5.29 yields,

[P−1
a + P−1

b − (ωPa + (1− ω)Pb)
−1]−1 ≥ [P−1

a + P−1
b − (QaΩQb + Q>

b Ω
>Q>

a )
−1]−1

cancelling the applicable terms,

(ωPa + (1− ω)Pb) ≤ (QaΩQb + Q>
b Ω

>Q>
a )

In this form, the above equation has no analytical solution. However, the equation may be

solved numerically to find a solution for Ω. Because only admissible values for Ω are

assumed, the term QaΩQb is symmetric and may therefore be rewritten as,

(ωPa + (1− ω)Pb) ≤ 2(QaΩQb)

Solving for Ω results in an upper-bound on the Cholesky Decomposition solution being the

ICI solution.

Ω ≥ 1

2
Q−1
a (ωPa + (1− ω)Pb)Q−1

b (5.30)

The bound specified by Equation 5.30 may be generalized to include the explicit partial

correlation knowledge as

Ω ≥ 1

2
Q−1
a (ωaPa + ωbPb)Q−1

b (5.31)

where ωa and ωb are defined in Equation 5.20.

Furthermore, because Lemma 13.1 and Lemma 13.2 are proven to be true, Theorem 13

is also upheld.

Calculating the mutual mean of the Schur Decomposition approach follows analogously
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to the method presented in Section 5.2.1. Resulting in

γ = Pc(Waa + Wbb) (5.32)

where Wa = P−1
a − 1

2
(QaΩQb + QbΩQa)

−1 and Wb = P−1
b − 1

2
(QaΩQb + Q>

b ΩQ>
a )

−1.

In summary, the Schur Decomposition Approach is formalized in Equation 5.33

P−1
c = P−1

a + P−1
b − (QaΩQb + Q>

b Ω
>Q>

a )
−1

c̄ = Pc

(
P−1
a a + P−1

b b− (QaΩQb + Q>
b Ω

>Q>
a )

−1γ
) (5.33)

provides a consistent and tight approximation of the optimal solution when Ω meets the

criteria
1

2
Q−1
a (ωaPa + ωb)Pb)Q−1

b ≤ Ω ≤ ρI

A sample Schur Decomposition Matrix Square Root fusion result is found in Figure 5.2.

Much like the Cholesky Decomposition approach, the Schur approach provides tighter

approximations of the optimal solution when compared to both the ICI and CI solutions.

Figure 5.2 Demonstration of how Ω influences the Square Root Approximation solution by
fusing Covariance Ellipse 1 with Covariance Ellipse 2. The ICI Solution is used as an
upper-bound on the solution and the Optimal Solution provides the lower-bound. Results
are presented for bounds on Ω as Lower-Bound from Equation 5.18 and the Upper-Bound
is the Identity Matrix because we consider ρ = 1 in this example.

119



However, a few graphical differences are noted between the results Schur results

presented in Figure 5.2 and the Cholesky results presented in Figure 5.1. One particular

difference is the shape and size of the fusion ellipse as the Ω→ ρI. Within the Schur

decomposition approach, as Ω→ ρI, the fused ellipse clearly approaches the optimal

solution. On the other hand, for the Cholesky decomposition, this is not necessarily the

case.

The cause of these difference is, as of yet, unknown but is a subject of further

investigation. It is suspected the explanation lies within the differences in the numerical

construction of the matrix square root provided by the Schur decomposition and the

Cholesky decomposition.
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6 Cooperative Local Catalog Maintenance of Close Proximity Satellite Systems

We now consider the case of multiple attitude-controllable satellites equipped with

sensors and on-board estimation capabilities that must track and maintain the states of the

other satellites which lay on a closed natural motion trajectory [138] about the local

vertical, local horizontal (LVLH) frame of a virtual chief. The problem which considers a

single satellite (chief) which maintains a catalog of multiple other satellites (deputies) has

been studied in Chapter 3 and [26], where it is referred to as the local catalog maintenance

problem. This work adopts the same moniker and generalizes the problem to include

multiple satellites that may not necessarily be at the origin of the LVLH frame of the

virtual chief. To avoid confusion, we refer to the satellite under consideration at a specific

time as “agent” and the other satellites as “deputies”. This distinction is necessary because

the attitude control laws and target deputy decisions are locally computed at each capable

satellite; that is, each satellite considers itself to be the “agent” and every other satellite to

be “deputies”. We refer to the set of cooperative satellites as “agents” and the set of

non-cooperative objects as “objects”. The local catalog we wish to maintain is the

concatenated list of all the agents’ and objects’ positional and velocity states relative to a

virtual chief. However, a satellite’s state is inherently uncertain. Generally, these state

uncertainties are represented through stochastic parameters, such as a mean and state

covariance matrix pair for a Gaussian probability distribution, also known as the “belief

state.” Through the use of a Bayesian filter [149], the fusion between the agent’s prior

belief state and an observation of some subset of deputies results in a posterior belief state

with reduced uncertainty. Crucially, the agent cannot observe the states of all the targets

simultaneously and is only able to make measurements of a specific target when it lies

within the agent’s field-of-view. Thus, the uncertainties of unobserved deputies will grow

accordingly with the amount of time elapsed without measurement. This engenders the

core of the local catalog maintenance problem: how does each agent know when and where

to look in order to provide a catalog of target states that are closest to their true values?



Moreover, we assume each agent is capable of communicating with the other satellites in

the environment. Thus, each agent may fuse the information provided by its neighbors into

its own belief state; which introduces a secondary problem: what communication links may

be established, if any exist, that increase the quantity and quality of information flowing

into each satellite? If a system is capable of converging the estimate error and uncertainty

under a desired threshold, we refer to that system as being state omniscient.

6.1 Problem Statement

Consider a set of Na agents, denoted Va = {1, . . . , Na}, where each agent is tasked with

maintaining a catalog of objects Vu = {1, . . . , Nu}, every other agent, and itself. Each

agent i ∈ Va has a state space Xi ⊆ Rn and its state evolves according to the CWH

equations given in (2.17) and its attitude evolves according to (2.19) and (2.23) and has a

torque input space Ui ⊆ Rq. Each object i ∈ Vu has a state space Xi ⊆ Rn and its state

evolves according to the CWH equations given in (2.17). The global system state is a

concatenation of every agent and object state x> = [x>
1 , . . . ,x

>
N ]

>. Each agent for each

i ∈ Va must maintain a local estimate of the global system state x̂i ∈ RnN with

N = Na +Nu. Each estimator must maintain its certainty in the global system state below

a certain threshold v(Pi(k)) ≤ ε. The agents can communicate their estimates and

measurements through a communication graph Gc. The agents may accomplish this by

slewing their attitude towards a selected target and taking a measurement. A measurement

will be taken as long as a body is within the FOV of the agent. Furthermore, we consider a

constraint function c :
∏

i∈Va
Xi ×

∏
i∈Va
U → Rr where global state x and torque inputs

{τ i}i∈Va satisfy the constraints when cl(x, τ ) ≤ 0 for each row l ∈ {1, . . . , r} in the

constraint vector. The problem is then to specify communication graph Gc and control

inputs τ i(k) for each agent i ∈ Va at each time k ≥ 0 such that v(Pi(k)) ≤ ε ∀ k∗ ≤ k <∞

where k∗ is when v(Pi(k
∗)) = ε for each i ∈ V and cl(x(k), τ (k)) ≤ 0 for each row

i ∈ {1, . . . , r}. That is, the distributed estimator is state omniscient. See Chapter 4 for a

further discussion on state omniscience.
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6.2 Approach

To solve the cooperative local catalog maintenance problem, we propose a multi-layered

closed-loop control strategy (see Fig.6.1) that incorporates continuous dynamics with

impulsive zero-order hold controls applied at discrete time instances. The blue dashed line

indicates the recursive nature of the Bayesian filter, where updated belief states are

supplied to the propagation block for the next time step. Both the supervisor and controller

are fed from these state estimates to make high-level target selection decisions and low-level

control decisions. More specifically, at a given time instant k, the state estimator of agent i

fuses predicted deputy belief states (x̂−
i (k),P

−
i (k)) with available observation data yi(k)

and the information provided by its neighbors in Gc : (x̂−
j (k),P

−
j (k)),yj(k)) where j ∈ Ni

to yield posterior deputy belief states (x̂+(k),P+(k)) through a Bayesian update scheme

such as the commonly-used extended Kalman filter or unscented Kalman filter, this work

uses the Networked Distributed Kalman Estimator as described in (6.7). A centralized

supervisor (possibly a ground station or an on-orbit orchestrator) dictates the target for

each agent, but each agent runs its own controller and its own estimator. Preliminary

versions of the supervisor algorithm and model predictive controller executed at each agent

are presented in [26]. A separate version of the supervisor algorithm along with a

preliminary communication graph construction algorithm for full state measurements are

presented in [26, 28]. The remainder of this section updates the problem formulation and

the preliminary algorithms to a more general class of scenarios and utilizes new knowledge

about the interactions of system dynamics, sensed information, and communicated

information inspired by the necessary and sufficient conditions for state omniscience.

6.2.1 Distributed Bayesian Filter

Each agent is equipped with a local state estimator to track the N bodies of the form

(6.7) where a communication graph Gc dictates the structure of W and, therefore, the flow

of information sharing. We treat this distributed estimator as a distributed Extended

Kalman Filter similar to the one presented in [76, 77] and parameterized by augmented
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Figure 6.1 Block diagram of the proposed cooperative catalog maintenance system architec-
ture.

mean x̂ := [x̂>
1 . . . x̂>

Na
]> ∈ RnNNa and block covariance matrix

P := diag([P1, . . . ,PNa ]) ∈ RnNNa×nNNa with each Pi ∈ RnN and P evolves according to

P(k + 1) = ΦP(k)Φ> +Qproc (6.1)

where, Qproc := diag([Qproc
1 , . . . ,Qproc

Na
]) ∈ RnNNa×nNNa is the process noise matrix.

Each agent is equipped with a sensor parameterized by its pointing vector in the

agent’s body frame pB and its angle of view α. The sensor can observe the states of the

deputies within some sensing field-of-view (FOV) defined by the pair (pB, α), the agent’s

current state xi(k), and the agent’s current orientation Ri(k). If agent j is within the FOV

of agent i, then we apply a nonlinear angles-only measurement model such that

yij(k) = g(xj − xi) =
ρ

||ρ||
(6.2)
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where in this case ρ = xj − xi and ρ := [ρ1 ρ2 ρ3]
>. The linearized measurement model of

the sensor is given by

Ci = E>
i ⊗H (6.3)

where (E>
i )ij the incidence matrix and is given as

(E>
i )ij =


1 if agent j is observed by agent i

−1 j = i

0 else.

(6.4)

and H is the local measurement matrix and is given by

H =
1

||ρ||

(
I − ρ>ρ

||ρ||2

)
. (6.5)

Almagamating all of the individual systems into a single LTI system yields

˙̄x =
(
I⊗Φ

)
x̄

y = (E>
s ⊗H)x̄ = CAx̄

. (6.6)

It is from this form that we may consider the distributed estimator. Whenever the agent

makes an observation of another body j ∈ V at a time instant k, the measurement data is

incorporated by the on-board estimator to impulsively update the local state estimate such

that

(x̂i(k
−),Pi(k

−))→ (x̂i(k
+),Pi(k

+)).

As a result, the magnitude of the covariance matrices of observed deputies will necessarily

decrease v(Pi(k
+)) ≤ v(Pi(k

−)) and the updated belief state will be recursively supplied to

the propagator until the next available measurement update. Here g[·] is any metric

quantifying the magnitude of the covariance matrix or its representative hyperellipsoid.
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However, because the sensor has a limited FOV, it may not be possible for agent i to

observe every other body j at once. Therefore, agent i must maneuver to view each other

body j to maintain a level of certainty in the state estimate, that is v(Pi(k)) ≤ ε for all

k ≥ 0, where ε is some positive value determined by the sensor FOV. Or, agent i may

leverage communication amongst the other agents to maintain v(Pi(k)) ≤ ε for all k ≥ 0.

The communicated information (x̂j(k),yj(k)) for each j ∈ Ni may be fused to the current

state estimate x̂i(k) or current measurement yi(k). This communicated information may

be fused to the local scheme via any fusion method, we choose to use Inverse Covariance

Intersection (ICI) [109]. This particular work utilizes the filter known as the Extended

Networked Distributed Kalman Estimator [77] because it has the potential to fuse both the

measurement and state estimate at each agent so that its local state estimate converges to

that of the true system state.

Predictor Fusion


x̂−
i (k + 1) =

∑
j∈Ni

WijΦx̂j(k)

P−
i (k + 1) =

∑
j∈Ni

WijΦPj(k)Φ
>W>

ij +Qproc
j

Output Fusion


x̂i(k + 1) = x̂−

i (k + 1) +
∑

j∈Ni
LiUijC

>
j (yj(k)−Cjx̂i(k))

Si = UiCAP
−
i (k + 1)C>

AU
>
i +Qmeas

Ni

Li = P−
i (k + 1)C>

AU
>
i S

−1
i

(6.7)

where Wij and Uij are fusion weight terms that are dependent on the fusion rule selected

[106, 109, 114]; in this case, we use inverse covariance intersection (ICI) [109] when

multiple pieces of information need to be fused. We use a matrix decomposition approach

when only two pieces of information need to be fused [114]. The output fusion matrix

Ui := [Ui1, . . . ,UiN ] is a block row vector comprised of all of the output fusion matrices

that come from a predecessor of agent i in Gc. It is noted in Section 4.3.3 that W, U, L

exist that may converge each local estimator if and only if all of the observable modes are
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within the walk set of agent i. It should be noted that as a consequence of relative

measurements, a coordinate transform is required to place the measurements into the same

frame prior to fusion. This work elects to avoid this step altogether by solely considering

state estimate predictor fusion by setting U = I.

6.2.2 Supervisor

These updated beliefs are fed into a higher-level autonomous “supervisor” which

accounts for (i) belief state information gaps (ii) prespecified constraints and (iii) the

current angular states of the agents. The supervisor amalgamates this information and

provides decision-making capabilities to a lower-level controller at each agent, which drives

the agent’s orientation trajectory by administering torque inputs at discrete timesteps.

Recall the local catalog maintenance problem where an agent, with a sensor parametrized

by pB and α, must maintain state estimates of N bodies in its local environement.

The objective of the supervisor algorithm is to select the “optimal” target body for each

agent to track based on some cost function notated by J . A detailed breakdown of the

supervisor algorithm can be seen in Algorithm 2. Given the state estimate-covariance pairs

of the bodies {(x̂j,Pj)}Nj=1 and the current target body j∗. Additionally, we introduce a

new variable ∆t∗ which “remembers” the time that the supervisor switched to deputy j∗.

The output is the body j′ to be viewed as well as ∆t∗. Then, the supervisor algorithm is

the following. If some ∆t time has not passed since the last switching time, or the entropy

of the current deputy has not fallen below some threshold ε, the current body j∗ and

current ∆t∗ is returned. If not, then the entropy of all the deputies is computed. The

target to be viewed is chosen to be the one with maximum entropy, and ∆t∗ is updated to

the current time.

The supervisor cost function in this work is considered to be the Shannon entropy of

the covariance matrix which is assumed to be Gaussian and is given by

J =
n

2
(1 + log(2π)) + log(|Pj|);
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other metrics such as measures of uncertainty relating to the deputies’ belief states, such as

the det or trace() of the covariance matrix, or a measure of information gain post-fusion,

such as the posterior Fisher information [150] may also be utilized. The cost value for each

target is calculated, and then the target with the highest cost value is selected to be the

agent’s target j′. However, to prevent the possibility of instantaneous switching, a form of

hysteresis on the dwell time is applied. A target switch is only triggered when the cost of

the current target deputy falls below some threshold, the potential other target deputy

crosses over the same threshold, and two target switches cannot occur within a time

threshold, δ ≥ µ, of each other, where δ is the time differential between switches, and µ is

the desired time hysteresis threshold.

Algorithm 2: Supervisor algorithm
Input: {(x̂j,Pj)}Nj=1, j∗ - current target, ∆t∗ - previous switch time
Output: j′, ∆t∗new

1 t← CurrentTime
2 if (t−∆t∗ ≤ ∆) ∨ (n

2
(1 + log(2π)) + log(|Pj|) > ε) then

3 j′ ← j
4 ∆t∗new ← ∆t∗

5 else
6 for i = 1, . . . , N do
7 Ji ← n

2
(1 + log(2π)) + log(|Pi|)

8 j′ ← argmaxj∈{1,...,N} Jj
9 ∆t∗new ← t

10 return j′, ∆t∗new

6.2.3 Communication Graph Constructor

At a given time instant, assume Gs is available. The goal is to then construct Gc to

complement Gs such that G ← Gs ∪ Gc is state omniscient. Alternatively, it is sufficient to

show that the generic observability matrix in

Gi =
∑
j∈Wi

CT
j Cj (6.8)
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is full rank for each i ∈ V . This approach to constructing state omniscient distributed

estimators is first considered in [27], albeit under different terminology. We extend the

construction algorithm presented in [27] with the more recent results on state omniscience -

there must exist a walk from each observable mode to each agent i.

Naïvely, it could be said that through set algebraic properties that G ← Gs ∪ Gc must be

strongly connected and therefore there exists a walk from every vertex to every other

vertex. As a result, (IN +A)N−1 � 0, where � is the element-wise greater-than [166]. A

may then be constructed to be a strongly connected graph. However, this approach

neglects the original problem of information being unable to pass through a vertex without

a communication edge to pass along information. With this in mind, we consider

∂inGc := Gs so the boundary of the communication graph is the sensing graph, which

transforms G ← Gs ∪ Gc to G ← ∂inGc ∪ Gc allowing us to use Gs as the foundation to build

Gc. The communication graph is constructed by adding a directed edge between each

in-vertex of Gs and every other agent j. A sample Gc construction can be seen in Figure 6.2.

0 3

1 2

4

(a) Gs

0

1 2

3 4

(b) G := Gc ∪ ∂inGc

Figure 6.2 Graph models illustrating the construction of Gc from Gs := ∂inGc

This method of construction is susceptible to redundant edges that could be pruned.

Rather, this work employs a brute force algorithm to “clean-up” Gc or remove redundant

edges that do not improve the state omniscience objective. By doing nothing redundant

edges remain and could potentially take up necessary bandwidth and computational load

on system, but the state omniscient condition is met. Future work may address this issue

by exploring performance-based costs for edge pruning. To alleviate potential and

unnecessary computational load, these redundant edges are removed. The redundant edges
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are pruned by looping through each edge in Gc and checking the state omniscient condition

and calculating the associated cost J . If the state omniscient conditions is met, then the

cut-edge is a redundant edge and may be removed. This process repeats until the state

omniscient condition is violated. In a way, this approach can be considered a brute force

approach to the optimization problem where J is the cost function and the state

omniscient condition is a constraint. This work employs the edge cardinality J = Ec as the

cost. Algorithm 3 shows each of these steps in more detail.

Algorithm 3: Communication Graph Construction Algorithm
Input: Gs
Output: Gc

1 for i ∈ V do
2 if ∆s(i) > 0 then
3 Gic ← {eij ∈ Ec|j ∈ V}

4 Gc ←
⋃
i∈V Gic

5 G∗c = ∅
6 while G∗c 6= Gc do
7 G∗c ← Gc
8 J0 ← E∗

c

9 for e ∈ Gc do
10 Ge ← RemoveEdge(G∗c , e)
11 if StateOmniscient(Ge) then
12 Je ← Ee

13 Gc ← argmin
Ge

Je

Theorem 14. If a networked LTI system described according to (6.6) is observable, then a

communication graph constructed according to Algorithm 3 will be state omniscient.

Proof. To begin the proof we must first recall that a system will be state omniscient if the

global system is observable and there exists a walk from the source of each observable

mode to every other agent within the network. By this definition, Algorithm 2 must ensure

a walk exists from the source of every observable mode to every other agent within the

network. Assuming the global system is observable, Algorithm 3 begins by adding an edge
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(a) Initial Graph (b) Final Graph

Figure 6.3 Graph topology after pruning

to the communication graph from each observable mode source to every other agent in the

network. By construction this iteration of Gc meets the state omniscience condition. In

practice, we ensure that Wis 6= 0 for each observable mode and each agent i ∈ Va and

where s ∈ RN and is populated by

sj =


1, mode is observable from agent j

0, otherwise
.

Consequently, this allows for the algorithm to check against the state omniscience

condition everytime an edge is removed from Gc and therefore the state omniscient

condition will never be violated. The result follows.

It must also be noted that Algorithm 2 will only guarantee the existence of a walk from

an observable for a particular mode only if that mode is observable somewhere in the

network. If a specific mode is not observable anywhere in the network, then Algorithm 2

will only ensure the state omniscient condition for observable modes. Figure 6.3

demonstrates the communication graph pruning process at the initial and final steps. In

this particular example, seven edges were pruned from the communication graph while the

state omniscient condition is maintained. This sample assumed all of the vertices are
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agents capable of communication.
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7 Results

This section contains numerical results to demonstrate the efficacy of the proposed

algorithms. For these sample scenarios, the target for each agent is selected locally via the

Supervisor Algorithm detailed in Algorithm 1. The MPC algorithm, also computed locally,

then uses the azimuth-elevation tracks of agent j′ as the reference trajectory. The CasADi

optimization toolbox is used to solve the nonlinear optimal control problem [151] using a

direct single shooting method. The MPC cost function weighting matrices were set as

W1 = I2 and W2 = I3. The torque constraint was set to be umax = 2π Nm, the angular

velocity constraint was set as ωmax = π rad/s. Each agent’s initial attitude and angular

velocity were randomly generated with the initial angular velocity being restricted to a

bounded box of π/2 m/s about the origin. Each agent was placed on an elliptical NMT

with an initial position randomly selected uniformly from a 100 m bounding box about the

origin. The bodies’ initial position was randomly selected from the same 100 m bounding

box about the origin with an initial velocity that allowed it to slowly escape from the local

neighborhood - see Figure 7.1 that has 4 agents and 2 objects. Because the focus of this

work is on target selection and control, the initial estimates were set to within 101 m and

10−3 m/s of truth values for position and velocitiy, respectively and the initial covariances

for each target were initialized accordingly. The process and noise covariance matrices were

set to Qproc = 10−3 and Qmeas = 10−4, respectively. For the supervisor algorithm, the

threshold was set to ε = −45 with a hysterisis value of µ = 20 s.

The efficacy of the proposed algorithms is demonstrated through numerical results for a

total of 120 simulations of 500 s each. The simulation trials are broken down into 12

categories by sensor FOV, agent-to-body ratio, and communication graph construction

type. More specifically, we consider both 10◦ and 45◦ sensor FOV; we consider 5 agents

with agent-to-body ratios of 1:1, 1:2, and 1:5 for 5 bodies, 10 bodies, and 25 bodies,

respectively, and we consider both pruned and unpruned communication graph

construction types.
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Figure 7.1 Scenario Example with 4 Agents and 2 Bodies

7.1 Relative Position Measurements Numerical Results

This section considers results when relative position measurement model is employed.

In Figure 7.2a, the supervisor is able to select an appropriate target for each agent and the

local MPC is able to maintain the reference trajectory of the target. From Figure 7.2b, it is

also seen that the estimated states are converging to the correct state for every agent for

the chosen sample scenario.

Moreover, Figures 7.3-7.7 considers the results from all 120 simulation runs, holistically.

Specifically, Figure 7.3 presents the root-mean-square-error (RMSE) of the state estimate

across all of the agents within the network. Visually, the RMSE of the pruned cases

oscillate as a result of the consistent switching and varying information availability at each

agent over time. The RMSE for some of the trials diverge which may be attributed to

overconfidence in the estimate. The Kalman filter trusts the prediction state over the

measurements more than it should be which results in a divergence. Evidence of this

overconfidence may be seen in Figure 7.5 with the outlying entropy values near -125. In
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Figure 7.2 5 agents tracking 5 bodies with communication enabled for relative position
measurements.

fact, Figure 7.4, which plots the number of edges in the communication graph, suggests

that for the relative position case edge pruning siginificantly reduces the number of edges

required to maintain a state omniscient system. While the unpruned cases are primarily

fully connected graphs, the pruning removes 5 edges, at a minimum. On average, pruning

leaves the communication graph with 10 edges for a network of agents with 10◦ FOV

sensors, and 6 edges for a network of agents with 45◦ FOV sensors.
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Figure 7.3 RMSE across network for pruned and unpruned communication graphs for relative
position measurements.
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Additionally, wider FOVs seem to be able to improve estimator performance through

lower RMSE across the network due to the increased information availability. Wider FOVs

imply more sensor can track a greater number of objects at any given time which improves

fusion performance. It is the increased information availability provided by wider FOVs

that causes the Shannon entropy to reach and remain below the desired threshold.

Fortunately, the agent-to-body ratio has little effect on estimator performance as the

estimator is able to maintain similar levels of performance across all agent-to-body ratios

for a given FOV.

0 200 400
0

5

10

15

20

10
° 

FO
V

1:1

0 200 400
0

5

10

15

20
1:2

0 200 400
0

5

10

15

20
1:5

0 200 400
Time (s)

0

5

10

15

20

45
° 

FO
V

0 200 400
Time (s)

0

5

10

15

20

0 200 400
Time (s)

0

5

10

15

20

Figure 7.4 Number of edges in the communication graph for pruned and unpruned cases
with relative position measurements.

Figure 7.5 presents the Shannon entropy for all 120 runs and shows the entropy is able

to converge under and remain under the desired threshold for all of them. The numerical

results presented demonstrate the capability of the algorithm to achieve and maintain state

omniscience. Oddly though, for both the unpruned and pruned cases a ”yo-yoing” affect

appears where the entropy will yo-yo between a lower-value and an upper-value. As of yet,
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the cause is unknown, and only appears in the relative position results and does not appear

in the angles-only results.

0 200 400

−100

−75

−50

−25

0
10

° 
FO

V
1:1

0 200 400

−100

−75

−50

−25

0
1:2

0 200 400
−125

−100

−75

−50

−25

0
1:5

0 200 400
Time (s)

−125

−100

−75

−50

−25

0

45
° 

FO
V

0 200 400
Time (s)

−125

−100

−75

−50

−25

0

0 200 400
Time (s)

−125

−100

−75

−50

−25

0

Figure 7.5 Shannon entropy for every agent’s certainty of every other tracked object for
pruned and unpruned communication graphs under the desired threshold for relative position
measurements.

In fact for pruned cases, a 45◦ FOV will reach the threshold between 60-80 seconds

where a 10◦ FOV will reach the threshold between 100-110 seconds, on average. On the

other hand for unpruned cases a 45◦ FOV will reach the threshold between 90-100 seconds

where a 10◦ FOV will reach the threshold 150-200 seconds, on average but with a larger

variance. In turn, reaching the desired threshold faster means less overall switching for the

communication graph indicated by both Figure 7.6 and Figure 7.7.

Moreover, a plot of the switch time history in Figure 7.7 indicates the pruned cases will

consistently switch to maintain the uncertainty threshold. This also may be an effect of the

hysterisis being shorter than the time it takes information to flow from one end of the

network to the other according to the communication graph’s diameter. If a switch occurs

before all information makes it to an agent, that agent will not have received all

information the state omniscient condition says it should have.
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Figure 7.6 Metric time to desired threshold plotted against number of communication graph
switches for pruned and unpruned cases with relative position measurements.

7.2 Angles-Only Measurements Numerical Results

This section considers results when an angles-only measurement model is employed. In

Figure 7.8a, the supervisor is able to select an appropriate target for each agent and the

local MPC is able to maintain the reference trajectory of the target. From Figure 7.8b, it is

also seen that the estimated states are converging to the correct state for every agent for

the chosen sample scenario.

Moreover, Figures 7.9-7.13 considers the results from all 120 simulation runs,

holistically. Specifically, Figure 7.9 presents the root-mean-square-error (RMSE) of the

state estimate across all of the agents within the network. Visually, the RMSE of the

pruned cases oscillate as a result of target switching, objects coming in and out of view,

and varying information availability at each agent over time. In fact, Figure 7.10, which

plots the number of edges in the communication graph, suggests that for the angles-only

case edge pruning reduces the number of edges required to maintain a state omniscient

system. The unpruned cases are primarily fully connected graphs, while pruning does

occur for the 10◦ FOV cases, it is more pronounced in the 45◦ case because each agent has
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Figure 7.7 Switch history for pruned and unpruned communication graphs for relative posi-
tion measurements.

access to more measurements with a wider FOV and is not as reliant on communication.

On average, pruning leaves the communication graph with 6 edges for a network of agents

with 45◦ FOV sensors.

Additionally, wider FOVs seem to be able to improve estimator performance through

lower RMSE across the network due to the increased information availability. Fortunately,

the agent-to-body ratio has little effect on estimator performance as the estimator is able

to maintain similar levels of performance across all agent-to-body ratios for a given FOV.

Figure 7.11 presents the Shannon entropy for all 120 runs and shows the entropy is able

to converge to and stay near the desired uncertainty threshold. For the 10◦ FOV cases the

existence of more edges within the communication graph induces a greater number of

fusion elements at each agent which drastically reduces the associated uncertainty of a

given estimate. Because the 45◦ FOV has less edges, each agent has access to less

information to collapse the associated uncertainty. In the absence of sufficient information

to combat the range ambiguity, the associated range uncertainty will tend to grow inducing

an overall (albeit slower) growth in the Shannon entropy. However, the estimator is still

able to maintain the desired uncertainty under the threshold. The numerical results
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Figure 7.8 5 agents tracking 5 bodies with communication enabled and for angles-only mea-
surements

presented demonstrate the capability of the algorithm to achieve and maintain state

omniscience. The distributed estimator is even capable of reaching and maintaining the

desired uncertainty threshold.

In fact, a 45◦ FOV will reach the threshold between 60-80 seconds where a 10◦ FOV

will also reach the threshold between 60-80 seconds, on average. Coincidentally for

unpruned cases a 45◦ FOV will reach the threshold between 60-80 seconds where a 10◦

FOV will also reach the threshold 60-80 seconds, on average but with a larger variance. In

turn, wider FOVs imply less overall switching for the communication graph indicated by

both Figure 7.12 and Figure 7.13.

Moreover, a plot of the switch time history in Figure 7.13 indicates all of the switching

occurs early in the simulation while the estimator is converging to the true state. Once

converged, less switching is required because the uncertainy stays below the desired

threshold.
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measurements.
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8 Conclusions and Recommendations
8.1 State Omniscience

Designing state omniscient distributed estimators has recently been of increasing

interest has the applicability of multi-agent systems to practical problems becomes

realizable. While the design of state omniscient distributed estimators has been of interest,

there is a notable lack of generalizable results for the characterization of state omniscient

systems. Most results place a primary focus on identifying necessary and sufficient

conditions of the underlying graph while assuming certain characteristics about the

observability at each agent. This work presents a collection of necessary and sufficient

conditions for state omniscience of distributed estimators with no underlying assumptions

on the graph structure, nor is the observability explicitly considered at each vertex. We

draw explicit analogies to the well-known observability matrix, PBH test, and the

Observability Gramian, so that the reader may have a clear point-of-reference for the

presented material.

Additionally, the present work has developed necessary conditions for a converging

distributed estimator under a variety of design cases. By utilizing set theory, a binary

quantifier is introduced that serves as the objective to construct both sensing and

communication networks to meet the convergence criteria. Unlike similar works, we make

use of graph-based descriptions of the sensed information to easily construct a

complementary communication network. Future work may be done to expand the theory of

state omniscient to systems with linear time-varying or nonlinear dynamics, and

time-varying graph topologies.

8.2 Local Catalog Maintenance

This work has presented both the local catalog maintenance problem and cooperative

local catalog maintenance problem and posed a decision-making protocol in the form of a

centralized supervisor. Multiple measurement modalities were employed such as, full-state,

relative-position, and angles-only to consider the performance of the algorithms under a



variety of cases. Additionally, for the cooperative scenarios a centralized supervisor is

presented. The centralized supervisor informs each agent of which target to track and

constructs a communication graph through which the local state estimates may be passed.

Each agent is equipped with a local fusion estimator and local controller to track its

appointed target and fuse information coming in from its neighbors in the communication

graph. Results show that the local controllers are capable of tracking the appointed targets

when communication amongst agents is both disabled and enabled. When communication

is enabled, the distributed estimator is able to maintain the desired certainty level on the

local state estimate. However, limits to estimator performance are yet to be thoroughly

explored. Consequently, performance analysis of the decision-making protocol is a subject

of future work. Can a relationship be defined between the certainty threshold, control

constraints, number of targets, and communication graph to determine whether a feasible

solution exists? There is also an abundance of future work to be done holistically and for

the supervisor, controller, and estimator individually. Potential avenues for future work

include but are not limited to - including more sophisticated dynamics models, controllers,

and estimators, employing a combinatorial approach to communication graph construction,

and considering a decentralized supervisor.

8.3 Information Fusion

Chapter 5 presents two novel matrix decomposition schemes for fusing two pieces of

information. Where related works use weighting schemes that naturally promote

competition between the information pieces, this work attempts to approximate the mutual

information through cooperative fusion using matrix square root approaches. Guarantees

on upper and lower bounds of the fusion solution are presented. With the upper-bound

shown to be the Inverse Covariance Intersection solution. Furthermore, calculation of the

mutual mean using the proposed approaches is also presented. Further work is required to

evaluate the performance of the fusion solution on a more generalized class of covariance

matrices, such as covariance matrices that do not necessarily match the applied form. A
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method of optimizing the value of Ω within the specified bounds for a specified problem is

sought and extensions to multiple information sources will be the subject of future work.
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