3,463 research outputs found

    Consensus problems in networks of agents with switching topology and time-delays

    Get PDF
    In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results

    Consensus in multi-agent systems with non-periodic sampled-data exchange and uncertain network topology

    Full text link
    In this paper consensus in second-order multi-agent systems with a non-periodic sampled-data exchange among agents is investigated. The sampling is random with bounded inter-sampling intervals. It is assumed that each agent has exact knowledge of its own state at any time instant. The considered local interaction rule is PD-type. Sufficient conditions for stability of the consensus protocol to a time-invariant value are derived based on LMIs. Such conditions only require the knowledge of the connectivity of the graph modeling the network topology. Numerical simulations are presented to corroborate the theoretical results.Comment: arXiv admin note: substantial text overlap with arXiv:1407.300

    Consensus in multi-agent systems with second-order dynamics and non-periodic sampled-data exchange

    Full text link
    In this paper consensus in second-order multi-agent systems with a non-periodic sampled-data exchange among agents is investigated. The sampling is random with bounded inter-sampling intervals. It is assumed that each agent has exact knowledge of its own state at all times. The considered local interaction rule is PD-type. The characterization of the convergence properties exploits a Lyapunov-Krasovskii functional method, sufficient conditions for stability of the consensus protocol to a time-invariant value are derived. Numerical simulations are presented to corroborate the theoretical results.Comment: The 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA'2014), Barcelona (Spain

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF
    • …
    corecore