5 research outputs found

    Extended Connectors: Structuring Glue Operators in BIP

    Get PDF
    Based on a variation of the BIP operational semantics using the offer predicate introduced in our previous work, we extend the algebras used to model glue operators in BIP to encompass priorities. This extension uses the Algebra of Causal Interaction Trees, T(P), as a pivot: existing transformations automatically provide the extensions for the Algebra of Connectors. We then extend the axiomatisation of T(P), since the equivalence induced by the new operational semantics is weaker than that induced by the interaction semantics. This extension leads to canonical normal forms for all structures and to a simplification of the algorithm for the synthesis of connectors from Boolean coordination constraints.Comment: In Proceedings ICE 2013, arXiv:1310.401

    Offer Semantics: Achieving Compositionality, Flattening and Full Expressiveness for the Glue Operators in BIP

    Get PDF
    Based on a concise but comprehensive overview of some fundamental properties required from component-based frameworks, namely compositionality, incrementality, flattening, modularity and expressiveness, we review three modifications of the semantics of glue operators in the Behaviour-Interaction-Priority (BIP) framework. We provide theoretical results and examples illustrating the degree, to which the three semantics meet these requirements. In particular, we show that the latest semantics, based on the offer predicate is the only one that satisfies all of them. The classical and offer semantics are not comparable: there are systems that can be assembled in the classical semantics, but not in the offer one. We present a strict characterisation of the behaviour hierarchy determining the conditions, under which systems in the classical semantics can be transposed into the offer semantics directly, with minor modifications, by introducing a new type of synchronisation or not at all. The offer semantics allows us to extend the algebras, which are used to model glue operators in BIP, to encompass priorities. This extension uses the Algebra of Causal Interaction Trees, T(P), as a pivot: existing transformations automatically provide the extensions for the Algebra of Connectors. We then extend the axiomatisation of T(P), since the equivalence induced by the new operational semantics is weaker than that induced by the interaction semantics. This extension leads to canonical normal forms for all structures and to a simplification of the algorithm for the synthesis of connectors from Boolean coordination constraints

    An Integrated Methodology for Creating Composed Web/Grid Services

    Get PDF
    This thesis presents an approach to design, specify, validate, verify, implement, and evaluate composed web/grid services. Web and grid services can be composed to create new services with complex behaviours. The BPEL (Business Process Execution Language) standard was created to enable the orchestration of web services, but there have also been investigation of its use for grid services. BPEL specifies the implementation of service composition but has no formal semantics; implementations are in practice checked by testing. Formal methods are used in general to define an abstract model of system behaviour that allows simulation and reasoning about properties. The approach can detect and reduce potentially costly errors at design time. CRESS (Communication Representation Employing Systematic Specification) is a domainindependent, graphical, abstract notation, and integrated toolset for developing composite web service. The original version of CRESS had automated support for formal specification in LOTOS (Language Of Temporal Ordering Specification), executing formal validation with MUSTARD (Multiple-Use Scenario Testing and Refusal Description), and implementing in BPEL4WS as the early version of BPEL standard. This thesis work has extended CRESS and its integrated tools to design, specify, validate, verify, implement, and evaluate composed web/grid services. The work has extended the CRESS notation to support a wider range of service compositions, and has applied it to grid services as a new domain. The thesis presents two new tools, CLOVE (CRESS Language-Oriented Verification Environment) and MINT (MUSTARD Interpreter), to respectively support formal verification and implementation testing. New work has also extended CRESS to automate implementation of composed services using the more recent BPEL standard WS-BPEL 2.0

    A Semantic Framework for Architecture Modelling

    Get PDF
    Architectures are common means for organising coordination between components in order to build complex systems and to make them manageable. They allow thinking on a higher plane and avoiding low-level mistakes. Architectures provide means for ensuring correctness-by-construction by enforcing global properties characterising the coordination between components. In this work, we consider the following questions of architecture modelling: 1) how to model architectures; 2) how to compose them if several properties enforced by different architectures are required; 3) how to specify architectures styles that generalise the notion of architectures and represent families of architectures satisfying the same property. An architecture can be considered as an operator that, applied to a set of components, builds a composite component meeting a characteristic property. The underlying concepts of components and their interaction originate from the BIP framework. This thesis is structured in two parts. In the first part, we study the expressiveness of glue operators in the BIP framework. We provide results for classical BIP glue and for several modifications obtained by relaxing the constraints imposed on priority models. We also study an alternative semantics of BIP glue based on the offer predicate. It meets fundamental properties required from component-based frameworks, namely compositionality, incrementality, flattening and modularity. We provide the comparison with the classical BIP semantics and the algorithm for the synthesis of connectors from the interaction logic used to describe coordination constraints. In the second part, we define architectures and propose an architecture composition operator. We study their properties and prove that the composition operator preserves safety properties of its operands. The alternative glue semantics presented in the first part of the thesis allows to extend architectures with priorities. For the specification of architecture styles, we propose configuration logics. We provide a sound and complete axiomatisation of the propositional configuration logic as well as decision procedures for checking that an architecture satisfies a given logical specification. To allow genericity of specifications, we study higher-order extensions of the propositional configuration logic. We illustrate with examples the specification of various architecture styles. We provide an experimental evaluation using the Maude rewriting system to implement the decision procedure for configuration logics. Additionally, we study the relation between the architecture composition operator and the composition of configuration logic formulas
    corecore