
Offer Semantics: Achieving
Compositionality,

Flattening and Full
Expressiveness for the Glue

Operators in BIP

EPFL IC IIF RiSD Technical Report
�EPFL-REPORT-203507

http://infoscience.epfl.ch/record/203507

Eduard Baranov and Simon Bliudze

November 21, 2014

Abstract: Based on a concise but comprehensive overview of some fundamental properties re-
quired from component-based frameworks, namely compositionality, incrementality, flattening,
modularity and expressiveness, we review three modifications of the semantics of glue operators in
the Behaviour-Interaction-Priority (BIP) framework. We provide theoretical results and examples
illustrating the degree, to which the three semantics meet these requirements. In particular, we
show that the latest semantics, based on the offer predicate is the only one that satisfies all of
them.

The classical and offer semantics are not comparable: there are systems that can be assembled
in the classical semantics, but not in the offer one. We present a strict characterisation of the
behaviour hierarchy determining the conditions, under which systems in the classical semantics
can be transposed into the offer semantics directly, with minor modifications, by introducing a
new type of synchronisation or not at all.

The offer semantics allows us to extend the algebras, which are used to model glue operators
in BIP, to encompass priorities. This extension uses the Algebra of Causal Interaction Trees,
T (P), as a pivot: existing transformations automatically provide the extensions for the Algebra of
Connectors. We then extend the axiomatisation of T (P), since the equivalence induced by the new
operational semantics is weaker than that induced by the interaction semantics. This extension
leads to canonical normal forms for all structures and to a simplification of the algorithm for the
synthesis of connectors from Boolean coordination constraints.

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148008701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://infoscience.epfl.ch/record/203507

@TechReport{BarBliu14-Offer-TR,

author = {Baranov, Eduard and

Bliudze, Simon},

title = {Offer Semantics: Achieving Compositionality, Flattening

and Full Expressiveness for the Glue Operators in {BIP}},

institution = {EPFL IC IIF RiSD},

month = nov,

year = 2014,

number = {EPFL-REPORT-203507},

note = {Available at: \texttt{http://infoscience.epfl.ch/record/203507}}

}

Offer Semantics: Achieving Compositionality, Flattening and

Full Expressiveness for the Glue Operators in BIP

Eduard Baranov ∗ Simon Bliudze ∗

Abstract

Based on a concise but comprehensive overview of some fundamental properties required
from component-based frameworks, namely compositionality, incrementality, flattening, mod-
ularity and expressiveness, we review three modifications of the semantics of glue operators
in the Behaviour-Interaction-Priority (BIP) framework. We provide theoretical results and
examples illustrating the degree, to which the three semantics meet these requirements. In
particular, we show that the latest semantics, based on the offer predicate is the only one that
satisfies all of them.

The classical and offer semantics are not comparable: there are systems that can be assem-
bled in the classical semantics, but not in the offer one. We present a strict characterisation
of the behaviour hierarchy determining the conditions, under which systems in the classical
semantics can be transposed into the offer semantics directly, with minor modifications, by
introducing a new type of synchronisation or not at all.

The offer semantics allows us to extend the algebras, which are used to model glue oper-
ators in BIP, to encompass priorities. This extension uses the Algebra of Causal Interaction
Trees, T (P), as a pivot: existing transformations automatically provide the extensions for the
Algebra of Connectors. We then extend the axiomatisation of T (P), since the equivalence
induced by the new operational semantics is weaker than that induced by the interaction
semantics. This extension leads to canonical normal forms for all structures and to a simplifi-
cation of the algorithm for the synthesis of connectors from Boolean coordination constraints.

1 Introduction

Fundamentally, each component-based design framework can be viewed as a triple (A, σ,'). Here,
A is an algebraic structure generated by a behaviour type B [6] and a set G of glue operators:

A ::= B | f(C1, . . . , Cn) , with B ∈ B, C1, . . . , Cn ∈ A and f ∈ G . (1)

We call the elements of A systems and the elements of B behaviours. The structure A represents
the set of all systems constructible within the framework. Behaviour type B defines the nature of
the components manipulated by the framework.

The notion “behaviour type” can cover a very large spectrum, ranging from programs and
labelled transition systems, through OSGi bundles and browser plug-ins, to systems of differential
equations etc. Behaviour types can be organised in type systems and studied separately, as, for
example, in the co-algebra theory [35]. However, this notion should be distinguished, for instance,
from classes in object-oriented programming or session types for communication protocols [26].
Although, in principle, component-based frameworks can be heterogeneous, e.g. Ptolemy II [23],
that is rely on several distinct behaviour types for the design process, those aimed at the design

∗École Polytechnique Fédérale de Lausanne, Station 14, 1015 Lausanne, Switzerland; firstname.lastname@epfl.ch

1

of executable systems must have an underlying unifying behaviour type allowing to study and
manipulate the system as a whole.

The second element of the triple defining a component-based framework is the semantic map-
ping σ : A → B, which assigns to each system its meaning in terms of the behaviour type B. The
semantic mapping must be consistent in the following sense:

for all B ∈ B , σ(B) = B . (2)

A trivial consequence of (2) is that application of σ is idempotent, i.e. σ
(
σ(C)

)
= σ(C), for all

C ∈ A. The semantic mapping is called structural, if it is defined by associating to each n-ary
glue operator f : An → A a corresponding operator f̃ : Bn → B and putting

σ
(
f(C1, . . . , Cn)

) def
= f̃

(
σ(C1), . . . , σ(Cn)

)
, for all C1, . . . , Cn ∈ A and f ∈ G . (3)

Finally, ' ⊆ A × A is an equivalence relation, which allows comparing systems in terms,
for example, of their functionality, observable behaviour or capability of interaction with the
environment.1 The equivalence relation must respect the semantics:

for all C1, C2 ∈ A , σ(C1) = σ(C2) =⇒ C1 ' C2 . (4)

Again, a trivial consequence of (2) and (4) is that a system is always equivalent to its semantics:
C ' σ(C), for all C ∈ A. In the remainder of this section, we assume that (2) and (4) do hold.

Glue operators used to compose systems in a component-based design framework must possess
the following properties [36].

Incrementality This property represents a generalised form of associativity. It requires that it
be possible to view the sub-systems of a system in separation:

for all i ∈ [1, n], C1, C2, . . . , Cn ∈ A and f ∈ G , there exist g, h ∈ G , such that

f(C1, C2, . . . , Cn) ' g
(
Ci, h(C1, . . . , Ci−1, Ci+1, . . . , Cn)

)
. (5)

Flattening This property is complementary to incrementality. It requires that, for any system
obtained by hierarchically applying two glue operators to a finite set of sub-systems, there must
exist an equivalent system obtained by applying a single glue operator to the same sub-systems:

for all i, j ∈ [1, n] (i ≤ j), C1, C2, . . . , Cn ∈ A and f, g ∈ G , there exists h ∈ G , such that

f
(
C1, . . . , Ci−1, g(Ci, . . . , Cj), Cj+1, . . . , Cn)

)
' h(C1, . . . , Cn) . (6)

In other words, G must be closed under composition. Flattening enables model transformations,
e.g. for optimising code generation or component placement on multicore platforms [13, 16].

Compositionality This property requires that glue operators preserve the equivalence of their
operands:

for all i ∈ [1, n], C1, . . . , Cn, C
′
i ∈ A and f ∈ G ,

Ci ' C ′i =⇒ f(C1, . . . , Ci, . . . Cn) ' f(C1, . . . , C
′
i, . . . Cn) . (7)

1A finer approach, adopted in [6], relies on a semantic preorder, rather than an equivalence relation, in order to
encompass the notion of refinement. However, this distinction is not necessary in the context of the present paper.

2

Another version of this property, which we will call relaxed compositionality, only requires that
individual glue operators respect behaviour equivalence:

for all i ∈ [1, n], B1, . . . , Bn, B
′
i ∈ B and f ∈ G ,

Bi ' B′i =⇒ f(B1, . . . , Bi, . . . Bn) ' f(B1, . . . , B
′
i, . . . Bn) . (8)

Notice that, combined with flattening, this relaxed notion of compositionality is already quite
strong: essentially, compositionality allows replacing sub-systems, whereas relaxed compositional-
ity with flattening allow replacing “atomic” behaviours.2

Modularity By combining the requirement that the equivalence relation ' must respect the
semantics of the framework (4) with compositionality (7), we obtain a special case that is important
enough to be considered a separate property:

for all i ∈ [1, n], C1, . . . , Cn ∈ A and f ∈ G , f(C1, . . . , Ci, . . . , Cn) ' f(C1, . . . , σ(Ci), . . . , Cn) .
(9)

Compositionality and modularity are related to the concepts of encapsulation and information
hiding from object-oriented programming. Component-based frameworks provide a disciplined
mechanism for restricting access to component’s data, exposing only those elements that are
explicitly used for communication, e.g. shared memory and buffers used for receiving messages from
the environment. However, in order to provide full modularity, designers must have the possibility
to bundle several components together with the connecting glue operators into a new component
in order to hide from the user the details of the component implementation. This achieves two main
goals: 1) the use of the component cannot rely on the specifics of its implementation, allowing
the component to be replaced with an alternative solution; 2) components can be delivered to the
user without disclosing the details of complex solutions constituting intellectual property of the
designer.

The central subject of this paper is the semantics of the BIP component-based framework [5],
which we introduce below. Glue operators in BIP are n-ary. Hence, we will focus our attention
on compositionality, modularity and flattening, disregarding incrementality. Indeed, as mentioned
above, incrementality can be viewed as generalised associativity, which is mainly useful, in our
context, to be able to reason about binary operators and generalise the results to n-ary ones.

One can make the following observations about the relations between compositionality and
modularity:

1. Compositionality implies modularity and relaxed compositionality.

2. Modularity and relaxed compositionality together imply compositionality:

Proof. Without loss of generality, let i = 1; for all C1, . . . , Cn, C
′
1 ∈ A and f ∈ G , we have

σ(C1) ' C1 ' C ′1 ' σ(C ′1) and, consequently,

f(C1, . . . , Cn) ' f
(
σ(C1), . . . , σ(Cn)

)
' f

(
σ(C ′1), . . . , σ(Cn)

)
' f(C ′1, . . . , Cn) .

3. If the semantic mapping is structural and its defining operators f̃ , for all f ∈ G , have relaxed
compositionality, then the framework has compositionality:

2A formal definition of the notion of behaviour atomicity is given in Section 2.3. Here, we use it intuitively to
designate the behaviours at the lowest level the structural hierarchy of a system in the sense of (1).

3

Proof. Without loss of generality, let i = 1; for all C1, . . . , Cn, C
′
1 ∈ A and f ∈ G , we have

f(C1, . . . , Cn) ' σ
(
f(C1, . . . , Cn)

)
= f̃

(
σ(C1), . . . , σ(Cn)

)
' f̃

(
σ(C ′1), . . . , σ(Cn)

)
= σ

(
f(C ′1, . . . , Cn)

)
' f(C ′1, . . . , Cn) .

In this paper, we study the semantics and algebraic representations of glue operators in BIP, a
component framework for constructing concurrent systems by superposing three layers: Behaviour,
Interaction and Priorities. BIP is based on the separation of concerns between coordination and
computation, which is essential for component-based design of concurrent systems. This separa-
tion allows systems to be built from units processing sequential code insulated from concurrent
execution issues. The isolation of coordination mechanisms allows global treatment and analysis.

In BIP, component behaviour is defined in terms of Labelled Transition Systems (LTS). Glue
operators are separated in two categories: interaction models define the sets of allowed interactions,
that is synchronisations between the transitions of their operand components; priority models
define the scheduling—or conflict resolution—policies, reducing non-determinism when several
synchronisations allowed by the interaction model are enabled simultaneously. The semantics of
glue operators is given in terms of Structural Operational Semantics (SOS) rules [33] following
a certain restricted sub-format of GSOS [12]. The semantics of interaction models is given by
rules involving only positive premises, whereas that of priorities introduces additional negative
premises. The intuition behind is clear: an enabled interaction can be fired only if all higher-
priority interactions are disabled. The use of SOS rules to define the semantics of glue operators
has lead us to consider yet another property—that of full expressiveness. Indeed, it is desirable,
in the above setting, that all combinations of SOS rules in the sub-format that we are considering,
be expressible as glue operators in BIP.

In the previous work [7, 9, 10, 11], we have conducted an extensive study of the semantics and
algebraic representations of the BIP glue operators. While the semantics of interaction models is
very straightforward and did not change throughout those papers, that of the priority models has
proven to be much subtler. In Section 2, we provide a concise overview of the historical evolution of
the semantics of glue operators in BIP: from the semantics that, here, we call classical [7], through
a very slight modification introduced in [9], to the latest semantics, proposed in [11], which we call
offer semantics, since it relies on a different kind of negative premises—the offer predicate—than
those used in the classical semantics of priority models.

The new contributions of this paper :

� We show how these minor, apparently innocuous modifications have impacted the flattening,
modularity and expressiveness of BIP glue operators:

– the classical BIP semantics [7] is structural, it has compositionality (hence also modu-
larity), but does not have flattening and full expressiveness;

– a very slightly modified version [9] has flattening, full expressiveness and relaxed com-
positionality, but it does not have modularity (hence also compositionality), since it is
not structural;

– the offer semantics [11] is structural, it has compositionality, flattening and full expres-
siveness.

� In [11], we have shown that, in general, the classical and the offer semantics are incompa-
rable. In this paper, we provide a characterisation of a hierarchy of behaviours that allows
to establish the correspondence between the classical and the proposed semantics and to
evaluate the impact of changing the semantics on the existing systems.

4

In addition, this paper integrates our results published in the Proceedings of the 6th Inter-
action and Concurrency Experience workshop [4], where we transposed the theory of algebraic
representations of BIP interaction models to the new semantics. In particular, these results allow
the synthesis of connectors, encompassing both interaction and priority models, from Boolean
formulas representing the state properties to be imposed by the glue operators. Thus, this paper
provides a summary of all currently available results on the new semantics for BIP glue operators,
defined using the offer predicate.

The paper is structured as follows. In Section 2, we provide a historical perspective on the
evolution of the BIP glue operator semantics and exhibit the impact of this evolution on their
flattening, modularity and expressiveness. In Section 3, we provide a characterisation of a hierarchy
of behaviours, establishing the correspondence between the classical and the proposed semantics.
In Section 4, we briefly recall the algebras, their syntax and semantics, introduced in our previous
work to represent the interaction models. In Section 5, we present the extension of these algebras
encompassing the priority models in the semantics based on the offer predicate. In Section 6,
we illustrate the use of these extended algebras with a connector synthesis example. Finally, in
Section 7, we provide a brief overview of related work. Section 8 concludes the paper.

2 A historical perspective on the evolution of the BIP glue
semantics

2.1 Classical semantics

In the classical BIP semantics [24, 7], component behaviour is modelled by Labelled Transition
Systems.

Definition 2.1. A labelled transition system (LTS) is a triple (Q,P,−→), where Q is a set of states,
P is a set of ports, and −→⊆ Q× 2P ×Q is a set of transitions labelled by sets of ports, such that
only self-loops can be labelled by the empty set of ports, i.e. (q, ∅, q′) ∈−→ implies q = q′.

For q, q′ ∈ Q and a ∈ 2P , we write q
a−→ q′ iff (q, a, q′) ∈−→. A label a ∈ 2P is active in a state

q ∈ Q (denoted q
a−→), iff there exists q′ ∈ Q such that q

a−→ q′. We abbreviate q 6 a−→ def
= ¬(q

a−→).

Intuitively, transitions labelled by ∅ represent idling: a component that remains idle should not
change state, hence the restriction to self-loops. Notice that we distinguish idling from unobserv-
able internal transitions, which we do not model explicitly. To model unobservable transitions,
one can use a reserved label, e.g. τ or ε, and restrict the ways it can be syncrhonised with other
transitions. This is the approach traditionally taken in the litterature [30, 25].

Note 2.2. In the rest of the paper, whenever we speak of a set of LTS Bi = (Qi, Pi,−→i), for
i ∈ [1, n], we assume that all Pi and Qi are pairwise disjoint, i.e. i 6= j implies Pi∩Pj = Qi∩Qj = ∅.
We denote P

def
=
⋃n
i=1 Pi. We will drop the indices on transition relations and denote them by −→,

whenever the indices are clear from the context.

Glue operators are defined using interaction and priority models.

Interaction models We call an interaction a subset of ports a ⊆ P . An interaction model is a
set of interactions γ ⊆ 2P . The component γ(B1, . . . , Bn) is defined by the behaviour (Q,P,−→γ),
with Q =

∏n
i=1Qi and the transition relation −→γ inductively defined by the rule

a ∈ γ
{
qi

a∩Pi−−−→ q′i

∣∣∣ i ∈ I} {
qi = q′i

∣∣∣ i 6∈ I}
q1 . . . qn

a−→γ q
′
1 . . . q

′
n

(10)

5

where, in the second rule, I = {i ∈ [1, n] | a ∩ Pi 6= ∅}.
Intuitively, this means that an interaction a allowed by the interaction model γ can be fired

when all the components involved in a are ready to fire the corresponding transitions. All the
components that are not involved in a remain in their current state. Notice that, when the
interaction model allows idling, i.e. ∅ ∈ γ, the composed component has a self-loop labelled by
∅ in every state. The fact that components can have idling self-loops does not introduce any

ambiguity in the interpretation of (10), since, by Definition 2.1, q
∅−→ q′ implies q = q′.

Priority models For a behaviour B = (Q,P,−→), a priority model is a strict partial order

π ⊆ 2P × (2P \ {∅}) (we write a ≺ b as a shorthand for (a, b) ∈ π). We put π(B)
def
= (Q,P,−→π),

with the transition relation −→π inductively defined by the rule

q
a−→ q′

{
q 6 b−→

∣∣∣ a ≺ b}
q
a−→π q

′
. (11)

Intuitively, this means that an interaction can be fired only if no higher-priority interaction is
enabled. Notice that we exclude the priority a ≺ ∅. Indeed, if idling is allowed by the interaction
model, it will always be possible, effectively suppressing interaction a in all states. If this is the
desired outcome, then a should rather be removed from the interaction model. Furthermore, such
a priority could induce a kind of “disguised deadlock”, when an interaction is suppressed in favour
of doing nothing (cf. also Lemma 2.8).

Note 2.3. The rules (10) and (11) defining the semantics of BIP operators require that a partition⋃n
i=1 Pi = P be defined, but not on the specific behaviours B1, . . . , Bn.

We are now in position to introduce the BIP glue operators.

Definition 2.4. A BIP glue operator is a quadruple
(
P, (Pi)

n
i=1, γ, π

)
, where P is a set of ports,⋃n

i=1 Pi = P is a partition of P , γ ⊆ 2P and π ⊆ 2P × (2P \ {∅}) are, respectively interaction and
priority models on P .

To avoid excessive notation, in the rest of the paper, we will only mention explicitly the
interaction and priority models defining a BIP glue operator. The set of ports and the partition
P =

⋃n
i=1 Pi will be implicitly assumed known.

Notice that both interaction and priority models can be neutral. Indeed, a neutral interaction
model over the set of ports P is the set 2P of all possible interactions. A neutral priority model is
empty with none of the interactions having higher priority than any other. Thus, both interaction
and priority models are also considered as BIP glue operators on their own.

We define the behaviour equivalence as follows.

Definition 2.5. Two behaviours Bi = (Qi, Pi,−→), for i = 1, 2 are equivalent if P1 = P2, and the
two LTS are bisimilar, i.e. there exists a bisimulation [32] relation R ⊆ Q1 ×Q2 total on both Q1

and Q2.

Example 2.6. Consider the two components B1 and B2 shown in Figures 1a and 1b, with
P1 = {p, q} and P2 = {r}, and put γ = {p, q, r, qr} and π = {q ≺ r}.3 The glue operator defined

3To simplify the notation we use the juxtaposition γ = {p, q, r, qr} instead of the set notation γ ={
{p}, {q}, {r}, {q, r}

}
for interactions. Similarly, we directly write π = {q ≺ r} instead of π = {(q, r)}

6

B1
qp

2 31

(a)

B2
r

1 2

(b)

πγ(B1, B2)

r

q

qr

q

r
p

rp

32

31

21

22

12

11

(c)

Figure 1: Component behaviours for Example 2.6

by the combination of the interaction model γ and the priority model π is given by the following
four rules:

q1
p−→ q′1

q1q2
p−→ q′1q2

,
q2

r−→ q′2

q1q2
r−→ q1q

′
2

,
q1

q−→ q′1 q2
r−→ q′2

q1q2
qr−→ q′1q

′
2

,
q1

q−→ q′1 q2 6
r−→

q1q2
q−→ q′1q2

. (12)

The composed component πγ(B1, B2) is shown in Figure 1c. The dashed arrow 21
q−→ 31 shows

the transition present only in γ(B1, B2), but not in πγ(B1, B2). Solid arrows show the transitions
of πγ(B1, B2).

Among the transitions labeled by q, only the transition 22
q−→ 32 is enabled and not 21

q−→ 31
(Figure 1c). Indeed, the negative premise in the fourth rule of (12), generated by the priority q ≺ r,
suppresses the interaction q when a transition labeled r is possible in the second component.

It is important to observe that the rules in (12) are obtained by composing rules of forms (10)
and (11). In particular, the fourth rule is obtained by the following derivation:

q ∈ γ q1
q−→ q′1 q2 = q′2

q1q2
q−→γ q

′
1q
′
2

r 6∈ γ ∨ q2 6
r−→

q1q2 6
r−→γ

(*)

q1q2
q−→π q

′
1q
′
2

. (13)

The sub-derivation (*) in (13) is obtained by negating the premises of the instance of the second
rule in (10) with a = r. This is possible because the transition relation in γ(B1, B2) is defined by
(10) inductively, i.e. it is the minimal transition relation satisfying (10).

In (12), we have simplified (13) by removing premises, whereof satisfaction does not depend
on the state of the operand components: q ∈ γ (satisfied in all states) and r 6∈ γ (dissatisfied in
all states), and by replacing q′2 with q2. Notice that the priority q ≺ r affects the behaviour of the
composed system only because r ∈ γ. Indeed, if r did not belong to γ, the premise r 6∈ γ would
always be satisfied independently of the state of the system.

Notice that, after the simplification by removing the constant premises all rules used to define
the semantics of BIP glue operators follow the following format (a restriction of GSOS [12]):{

qi
a∩Pi−−−→ q′i

∣∣∣ i ∈ I} {
qi = q′i

∣∣∣ i 6∈ I} {
qj 6

bkj−−→
∣∣∣ j ∈ J, k ∈ Kj

}
q1 . . . qn

a−→ q′1 . . . q
′
n

, (14)

7

p q
1

2

q p

r s
3

4

s r

t

6

5

t

t

g

f

{

{
p ≺ r

{p, q, s, rt}

{p, q, s, r}

∅

B1 B2

B3

(a) Composed system

s

s

rt
rt

rt

s

s

q qppq q

rt

p p

245

136146

246

135

235

145

236

(b) Composed LTS (in dashed, the transitions
suppressed by the priority model)

Figure 2: BIP component that cannot be flattened (Example 2.9).

where I = {i ∈ [1, n] | a ∩ Pi 6= ∅}, J,Kj ⊆ [1, n] and, for each j ∈ J and k ∈ Kj , b
k
j ⊆ Pj .

The classical BIP semantics presented defined by (10) and (11) is structural. Furthermore,
since both rule schemata follow the GSOS format, they preserve bisimilarity [12], i.e. they have
relaxed compositionality and, consequently, the classical semantics has compositionality (see the
discussion in Section 1).

Example 2.9, below, shows that BIP glue operators with the classical semantics presented above
do not possess neither flattening, nor full expressiveness: in general, when combined hierarchically
BIP glue operators with the classical semantics above cannot be flattened w.r.t. any bisimilarity-
compatible equivalence; there exist operators defined by rules in format (14) that cannot be
expressed as a combination of an interaction and a priority model.

First, we recall an important property of the BIP glue operators with the above semantics,
which was originally shown in [24], is that application of a priority model does not introduce
deadlocks.

Definition 2.7. Let B = (Q,P,−→) be a behaviour. A state q ∈ Q is a deadlock iff holds

∀a ⊆ P, q 6 a−→.

Lemma 2.8 ([24]). Let Bi = (Qi, Pi,−→), for i ∈ [1, n], be a set of behaviours, γ and π be
respectively interaction and priority models on P =

⋃n
i=1 Pi. A state q ∈

∏n
i=1Qi is a deadlock in

πγ(B1, . . . , Bn) if and only if it is a deadlock in γ(B1, . . . , Bn).

Proof. The “if” implication is trivial. To prove the “only if” implication, assume that, for some
a ∈ γ, we have q

a−→γ . Let b ⊆ P be an interaction, maximal w.r.t. π, such that b ∈ γ, a ≺ b and

q
b−→γ . If such b exists, holds q

b−→π. Otherwise holds q
a−→π. In both cases, q is not a deadlock in

πγ(B1, . . . , Bn).

Although Definition 2.7 is strict in the sense that it does not consider idling as a deadlock,
the result of Lemma 2.8 can be straightforwardly strengthened to include idling states: if q is a
purely idling state in πγ(B1, . . . , Bn), i.e. q 6 a−→π, for all a 6= ∅, then q is a purely idling state in
γ(B1, . . . , Bn).

Example 2.9. Consider the composed behaviour f(g(B1, B2), B3) (Figure 2a), with the glue
operator g defined by the interaction model γ1 = {p, q, r, s} and priority model π1 = {p ≺ r};

8

f defined by the interaction model γ2 = {p, q, s, rt} and the empty priority model. The LTS
of the composed behaviour is shown in Figure 2b with the transitions, suppressed as the result
of applying priority in g, shown as dashed arrows. Composing the rules corresponding to these
operators as shown in (13), we obtain the four rules

p ∈ γ1 ∩ γ2 q1
p−→ q′1 (q2 6

r−→ ∨ r 6∈ γ1)

q1q2q3
p−→ q′1q2q3

,
q ∈ γ1 ∩ γ2 q1

q−→ q′1

q1q2q3
q−→ q′1q2q3

,

s ∈ γ1 ∩ γ2 q2
s−→ q′2

q1q2q3
s−→ q1q

′
2q3

,
r ∈ γ1 rt ∈ γ2 q2

r−→ q′2 q3
t−→ q′3

q1q2q3
rt−→ q1q

′
2q
′
3

. (15)

Assume that an interaction model γ and a priority model π are such that πγ(B1, B2, B3) is

equivalent to f(g(B1, B2), B3). By the first rule in (15), the transition 14x
p−→ 24x is possible

in (f ◦ g)(B1, B2, B3), for any x ∈ {5, 6}. Hence, p ∈ γ. Clearly, 136 is a deadlock state in
(f ◦ g)(B1, B2, B3). Hence, 136 must be a deadlock state in πγ(B1, B2, B3) and, by Lemma 2.8,
also in γ(B1, B2, B3), which is not possible, since all the premises of the rule

p ∈ γ q1
p−→ q′1

q1q2q3
p−→ q′1q2q3

,

corresponding to p in the semantics (10) of γ, are satisfied for q1 = 1 and q′1 = 2.

In the Example 2.9, flattening is not possible due to the fact that the information used by the
priority model refers only to interactions authorised by the underlying interaction model. All the
information about transitions enabled in sub-components is lost (cf. r 6∈ γ1 in the last premise of
the first rule in (15)).

Simplifying (15) by removing the constant premises, we obtain a set of rules in the format (14)

q1
p−→ q′1 q2 6

r−→

q1q2q3
p−→ q′1q2q3

,
q1

q−→ q′1

q1q2q3
q−→ q′1q2q3

,
q2

s−→ q′2

q1q2q3
s−→ q1q

′
2q3

, q
q2

r−→ q′2 q3
t−→ q′3

q1q2q3
rt−→ q1q

′
2q
′
3

,

(16)
defining an operator that cannot be expressed as a BIP glue operator in the classical semantics,
which shows that this semantics does not have full expressiveness.

2.2 Achieving flattening and full expressiveness

Whereas combining the application of two interaction models in the classical semantics is straightforward—
intuitively such a combination applies the synchronisation constraints imposed by both—, com-
bining priority models is less intuitive. Consider, for instance, the following example.

Example 2.10. Let B1, B2 and B3 be three behaviours with one state and one self-loop transition

each, labelled by the ports p, q and r, respectively. Thus, for instance, B1 =
(
{∗}, {p}, {∗ p−→ ∗}

)
.

Consider a unary glue operator f and a ternary glue operator g, obtained by combining the
interaction model γ = {p, q, r} with priority models πf = {p ≺ q} and πg = {q ≺ r}, respectively.

9

Hence, the rules defining the semantics of the two operators are4

f :
q
p−→ q′ q 6 q−→

q
p−→f q

′
,

q
q−→ q′

q
q−→f q

′
,

q
r−→ q′

q
r−→f q

′
, (17)

g :
q1

p−→ q′1

q1q2q3
p−→g q

′
1q2q3

,
q2

q−→ q′2 q3 6
r−→

q1q2q3
q−→g q1q

′
2q3

,
q3

r−→ q′3

q1q2q3
r−→g q1q2q

′
3

. (18)

Consider now the operator f ◦ g. The priority model πg inhibits port q when port r is active.

Hence, g(B1, B2, B3) =
(
{∗}, {p, q, r}, {∗ p−→ ∗, ∗ r−→ ∗}

)
. Similarly, the priority model πf inhibits

port p when port q is active, however the port q becomes inactive after the application of g. Thus,

we also have (f ◦ g)(B1, B2, B3) =
(
{∗}, {p, q, r}, {∗ p−→ ∗, ∗ r−→ ∗}

)
, i.e. the priority p ≺ q does not

affect the system, even though transition labelled by q is actually enabled in B2.
Assume that firing the transition labelled by p leads the system to a critical state, whereas

firing the transition labelled by q takes the system out of such state. If q is active, p should not
be fired even if q is inhibited by another transition, here the one labelled by r.

Another manifestation of the same problem can be observed by composing the rules corre-
sponding to the two operations. Composing the first rule in (17) with the first and second rules
in (18), we obtain

q1
p−→ q′1

q1q2q3
p−→g q

′
1q2q3

q2 6
q−→ ∨ q3

r−→

q1q2q3 6
q−→g

q1q2q3
p−→f◦g q

′
1q2q3

,

which can be expanded to the first two rules of (19) below. The other two rules are obtained in a
more straightforward manner, so we omit their derivations:

q1
p−→ q′1 q2 6

q−→

q1q2q3
p−→f◦g q

′
1q2q3

,
q1

p−→ q′1 q3
r−→

q1q2q3
p−→f◦g q

′
1q2q3

,
q2

q−→ q′2 q3 6
r−→

q1q2q3
q−→f◦g q1q

′
2q3

,
q3

r−→ q′3

q1q2q3
r−→f◦g q1q2q

′
3

.

(19)
Notice, however, that the second rule does not respect the format (14), in particular, since the

label of the conclusion, p, is not the union of the labels of the premises.
In [24], this problem is addressed by defining the combination of two priority models as a single

one by taking the transitive closure of their unions. For instance, the combination of πf with πg is
the priority model πfg = {p ≺ q ≺ r} (notice that since priority models in the classical semantics
are strict partial orders, we also have p ≺ r). In combination with γ = {p, q, r} this gives the
following set of rules:

q1
p−→ q′1 q2 6

q−→ q3 6
r−→

q1q2q3
p−→f◦g q

′
1q2q3

,
q2

q−→ q′2 q3 6
r−→

q1q2q3
q−→f◦g q1q

′
2q3

,
q3

r−→ q′3

q1q2q3
r−→f◦g q1q2q

′
3

. (20)

The rules in (20) can be obtained from the rules (17) and (18) by combining, for each of the
considered rule conclusions, the relevant negative premises from both sets of rules and adding the
negative premise q3 6

r−→ in the first rule, which corresponds to the priority p ≺ r, induced by the

4 Although, for the rules defining the operator f , we overload letter q, the meaning is clear from the context: in

q
q−→ q′, q on the arrow is the port, whereas q and q′ at the ends of the arrow are states.

10

transitive closure on the union of priority models. Combining the negative premises from both sets
essentially corresponds to discarding the requirement that a priority can only refer to interactions
belonging to the interaction model.

In [9], we have adopted this approach—relaxing the transitive closure requirement—to define
a slightly modified version of the semantics of the BIP glue operators. Instead of defining the
semantics of a BIP system structurally, by applying the rules (10) and (11) starting from the
atomic behaviours and proceeding up in the hierarchy of the system, we proceed in two steps.
1) We combine the rules in the top-down in the hierarchy, by deriving the positive premises in the
usual way and keeping all negative premises along the way; 2) The previous step produces a set
of rules defining a single operator, which we apply to the set of atomic behaviours to obtain the
overall behaviour of the system.

In particular, the semantics of a combination of an interaction model γ with a priority model
π, is defined directly by the following set of rules:

a ∈ γ
{
qi

a∩Pi−−−→ q′i

}
i∈I

{
qi = q′i

}
i6∈I

{
qjb 6

b∩Pjb−−−−→
∣∣∣ a ≺ b}

q1 . . . qn
a−→πγ q

′
1 . . . q

′
n

, (21)

where I = {i ∈ [1, n] | a ∩ Pi 6= ∅} and, for each b in the last premise, jb ∈ [1, n] is such that
b ∩ Pjb 6= ∅. We take all rules (21), for all a ∈ γ and all possible choices of jb. Intuitively, for
each interaction b having higher priority than a, it is required that at least one of the components
involved in b be unable to take the corresponding transition.

We give the formal definition of the composition f ◦ g of a unary operator f and an n-ary
operator g defined respectively by the sets of rules Rf and Rg in the format (14). Notice that,
since f is unary, the rules in Rf have the following format

r :
q
ar−→ q′

{
q 6 b−→

∣∣∣ b ∈ Nr}
q
ar−→f q

′
,

where we denote by ar and Nr the label of the conclusion (and, since f is unary, the only positive
premise) and the set of the labels of the negative premises of a rule r ∈ Rf . Similarly, for a rule
r ∈ Rg, we denote ar the label of the conclusion of r and N i

r the set of labels of the negative

premises qi 6
·−→ in r, for i ∈ [1, n]. The composed operator f ◦ g is then defined by the following

set of rules
{
qi

a∩Pi−−−→ q′i

∣∣∣ i ∈ I} {
qi = q′i

∣∣∣ i 6∈ I}{
qi 6

b−→
∣∣∣ i ∈ [1, n], b ∈ N i

rg

} {
qjb 6

b∩Pjb−−−−→
∣∣∣ b ∈ Nrf}

q1 . . . qn
a−→f◦g q

′
1 . . . q

′
n

∣∣∣∣∣∣∣∣∣
rf ∈ Rf , rg ∈ Rg : s.t. arf = arg = a

I = {i ∈ [1, n] | a ∩ Pi 6= ∅}

∀b ∈ Nrf , (jb ∈ [1, n] ∧ b ∩ Pjb 6= ∅)

 .

(22)
We omit here the generalisation of this definition to the composition f ◦ (g1, . . . , gm) of an m-ary
operator with m operators, such that the sum of their arities is equal to n. Such generalisation is
straightforward, but cumbersome.

Example 2.11. Applying this definition to the composition f ◦ g from Example 2.10, we obtain
the following rules.

q1
p−→ q′1 q2 6

q−→

q1q2q3
p−→f◦g q

′
1q2q3

,
q2

q−→ q′2 q3 6
r−→

q1q2q3
q−→f◦g q1q

′
2q3

,
q3

r−→ q′3

q1q2q3
r−→f◦g q1q2q

′
3

.

11

tp q r s

{p, q, s, rt}

p ≺ r

B3B1 B2

Figure 3: Flat system in the modified semantics equivalent to that in Figure 2a

Notice that, when all three interactions p, q, and r are enabled, both p and q are inhibited
by q and r respectively, since the semantics of priority models is defined in terms of transitions
of individual components, rather than their synchronisations obtained after the application of an
interaction model. This allows us to relax the transitivity restriction in the definition of priority
models.

Definition 2.12. Let P be a set of ports. A relaxed priority model on P is a relation π ⊆
2P × (2P \ {∅}).

Notice that we do not require, in Definition 2.12, the relation π to be acyclic. If all interactions
involved in a cyclic dependency in π are enabled simultaneously, they block each other, potentially
introducing a deadlock. However, as it was shown in Section 2.1, preservation of deadlock-freedom
by priorities is incompatible with full expressiveness. In the modified semantics, full expressiveness
is a consequence of the results obtained in [9].5

Proposition 2.13. Any operator defined by rules in format (14) can be represented by a combi-
nation of an interaction model and a relaxed priority model with the modified semantics presented
in this section.

Example 2.14. Recall Example 2.9. The composed operator defined by the rules (16), which
cannot be flattened in the classical semantics, can be obtained, with the modified semantics by
combining the interaction model γ = {p, q, s, rt} with the priority model π = {p ≺ r} (Figure 3).

Corollary 2.15. Lemma 2.8 does not hold in the modified semantics.

Proof. In the modified semantics, the state 136 is a deadlock in πγ(B1, B2, B3), with π = {p ≺ r},
γ = {p, q, s, rt}, and B1, B2, B3 from Figure 2a. However, 136 is not a deadlock in γ(B1, B2, B3).

Proposition 2.16 (Flattening). Any hierarchical BIP glue operator can be flattened, when con-
sidered with the modified semantics.

Sketch of the proof. The modified semantics associates to any BIP glue operator, i.e. a combination
of an interaction and a priority model, a set of rules in the format (14). Composition (22) of
operators, defined by such rules is an operator defined by rules in format (14). By Proposition 2.13,
any such operator can again be expressed as a combination of an interaction and a priority model.

5In [9, Proposition 4], we have mistakenly claimed that any such operator can be expressed as a combination of
an interaction model and a classical priority model, i.e. a strict partial order on interactions. Replacing this claim
by Proposition 2.13 does not fundamentally affect any of the other results in [9].

12

The semantic modification, introduced in this sub-section, provides the flattening of glue op-
erators by definition, but at the price of loosing compositionality and even modularity. Indeed,
consider again the hierarchical system from Example 2.10. Replacing the sub-system g(B1, B2, B3)
by its corresponding semantic behaviour, would eliminate the transition labelled by q. Hence,
the priority p ≺ q will not affect the behaviour of the system, exactly as illustrated by Exam-
ple 2.10 in the classical semantics. Thus denoting, as in Section 1, σ

(
g(B1, B2, B3)

)
, we have

f
(
g(B1, B2, B3)

)
6' f

(
σ
(
g(B1, B2, B3)

))
, which proves that modularity does not hold in the mod-

ified semantics.

2.3 Reconciling compositionality, flattening and full expressiveness

In order to recover compositionality, we have to redefine the semantics structurally. On the other
hand, in order to maintain flattening, we have to provide the information about the active ports
of atomic (see Definition 2.17 below) components throughout the composition process. In order
to simultaneously achieve these two goals, we must enrich the notion of behaviour.

Definition 2.17 (Extended behaviour [11]). An extended behaviour is a quadruple B = (Q,P,−→
,↑), where (Q,P,−→) is an LTS and ↑ is an offer predicate on Q × P , such that q ↑ p holds (a
port p ∈ P is offered in a state q ∈ Q) whenever there is a transition from q containing p, that is

(∃a ∈ 2P : p ∈ a ∧ q a−→)⇒ q↑p. If the converse implication also holds, i.e. (∃a ⊆ P : p ∈ a ∧ q a−→
)⇐⇒ q↑p, we call the extended behaviour atomic.

The offer predicate extends to sets of ports: for a ∈ 2P , q ↑ a def
=
∧
p∈a q ↑ p. Notice that

q↑∅ ≡ tt. We denote q 6 ↑a def= ¬(q↑a) =
∨
p∈a q 6 ↑p.

Notice that, for any behaviour, an offer predicate can be defined that makes it atomic [11].
Thus, our notion of atomicity is weaker than the intuitive one. For instance, if a composed
component is obtained by putting in parallel two atomic components without any coordination
constraints, we consider it as one atomic component. In other words, we use the offer predicate
to make explicit part of the information about the transitions of the atomic behaviours that is
lost when these are composed by a restrictive operator. This notion of atomicity of behaviours is,
however, more formal than that used in the introduction. We use it in Section 3 to characterize
BIP systems for which classical glue operators can be systematically transformed into offer-based
operators.

Definition 2.18. Two extended behaviours Bi = (Qi, Pi,−→i,↑i), with i = 1, 2, are equivalent if
P1 = P2 and there exists a bisimulation relation R ⊆ Q1 × Q2, total on both Q1 and Q2, such
that the offer predicates coincide on bisimilar states, i.e. for all (q1, q2) ∈ R and p ∈ P1, holds
q1 ↑1 p⇔ q2 ↑2 p.

BIP composition operators, consisting of an interaction and a relaxed priority model, can be
given new operational semantics in terms of the offer predicate as follows.

For a set of behaviours Bi = (Qi, Pi,−→,↑)6 and an interaction model γ ⊆ 2P , the transition
relation −→γ of the behaviour γ(B1, . . . , Bn) = (Q,P,−→γ , ↑γ) is inductively defined by (10) and

the offer predicate is defined by putting q1 . . . qn ↑γ p
def⇐⇒ ∃i ∈ [1, n] : qi ↑ p, for all p ∈ P and

q1 . . . qn ∈ Q.
For a behaviour B = (Q,P,−→,↑) and a relaxed priority model π ⊆ 2P × (2P \ {∅}) (see

Definition 2.12), we define π(B)
def
= (Q,P,−→π,↑), with the same sets of states and ports, and the

6As in Note 2.2, we omit the indices on ↑ , whenever they are clear from the context.

13

same offer predicate as those of B and the transition relation π inductively defined by the rule

q
a−→ q′

{
q 6 ↑b

∣∣∣ a ≺ b}
q
a−→π q

′
. (23)

In [11], we have considered a more general set of operators, defined by the rules in the following
format:{

qi
a∩Pi−−−→ q′i

∣∣∣ i ∈ I} {
qi = q′i

∣∣∣ i 6∈ I} {
qk 6 ↑blk

∣∣∣ k ∈ K, l ∈ Lk} {
qj ↑cj

∣∣∣ j ∈ J}
q1 . . . qn

a−→ q′1 . . . q
′
n

, (24)

where I = {i ∈ [1, n] | a ∩ Pi 6= ∅}, J,K,Lk ⊆ [1, n] and cj ⊆ Pj , blk ⊆ Pk, for all j ∈ J , k ∈ K and
l ∈ Lk. In (24), we have three types of premises respectively called firing, witness, and negative
premises. Firing and witness premises are collectively called positive. Notice that q ↑c1 ∧ q ↑c2 =
q ↑c1c2. Hence one witness premise per component behaviour is sufficient to define any inference
rule.

For a set of ports P , we denote Ṗ
def
= {ṗ | p ∈ P}. We call the elements of P and Ṗ respectively

activation and firing port typings. The above generalisation can be translated into BIP terms by
generalising interaction models to include witness port typings.

Definition 2.19. Let P be a set of ports. An interaction with witnesses is a subset a ⊆ P ∪ Ṗ .

An interaction model with witnesses over P is a set γ ⊆ 2P∪Ṗ of interactions with witnesses.

The component γ(B1, . . . , Bn) is defined by the behaviour (Q,P,−→γ ,↑γ), with Q =
∏n
i=1Qi

and the transition relation −→γ inductively defined by the following rule in format (24)

a ∈ γ
{
qi
{p∈Pi | ṗ∈a}−−−−−−−−→ q′i

∣∣∣ i ∈ I} {
qi = q′i

∣∣∣ i 6∈ I} {
qj ↑(a ∩ Pj)

∣∣∣ j ∈ J}
q1 . . . qn

a−→γ q
′
1 . . . q

′
n

. (25)

where I = {i ∈ [1, n] | a ∩ Ṗi 6= ∅} and J = {j ∈ [1, n] | a ∩ Pj 6= ∅}. The offer predicate ↑γ is

defined, as above, by putting q1 . . . qn ↑γ p
def⇐⇒ ∃i ∈ [1, n] : qi ↑p, for all p ∈ P .

Boolean characterisation of operators defined by rules in format (24) In [11], we have
considered an algebra B[P, Ṗ] of Boolean formulas over activation variables P and the firing
variables Ṗ , with the additional axiom:

ṗ⇒ p, for all p ∈ P . (26)

Note 2.20. A valuation of an activation variable p ∈ P indicates whether the port p is active,
i.e. the corresponding component has an enabled transition containing p in its label, whereas a
valuation of a firing variable ṗ ∈ Ṗ indicates whether the corresponding port p will participate in
the next interaction. A formula in B[P, Ṗ] defines the constraints on the firing of ports, based on
their activation: in a given global state of the system, the valuations of the activation variables are
determined by the enabled transitions of the components; a valuation of the firing variables that
complements the valuation of the activation ones in such a manner, that the overall valuation sat-
isfies the formula, defines an admissible interaction (for formal presentation, see [11]). Obviously,
a port cannot participate in an interaction if it is not active, justifying axiom (26).

14

In [11], we have established a correspondence between B[P, Ṗ] and the glue operators defined
by the rules in the format (24). For a rule r, denote A =

⋃
i∈I ai and C =

⋃
j∈J cj . We associate

to such a rule the formula ϕr ∈ B[P, Ṗ] defined by putting

ϕr
def
=

∧
p∈A

ṗ ∧
∧

p∈P\A

ṗ ∧
∧
p∈C

p ∧
∧
k∈K

∧
l∈Lk

blk , (27)

where blk =
∨
p∈blk

p. A formula associated to a glue operator is then the disjunction of formulas

associated to the rules defining the operator.
Notice that the formulas that we obtain in this manner are in firing-full Disjunctive Normal

Form (DNF), i.e. each firing variable appears in a positive or negative form in each monomial.
The firing variables that appear in the negative form are precisely those, for which the respective
ports do not appear in the firing premises of the corresponding rule.

In the opposite direction, given a formula ϕ ∈ B[P, Ṗ], we consider its firing-full DNF. By
grouping the monomials with the same positive variables, we have

ϕ =
∨
a∈γ

∧
p∈a

p ∧
∧

ṗ∈Ṗ\a

ṗ ∧ ϕa

 , (28)

with some γ ⊆ 2P∪Ṗ and, for each a ∈ γ, ϕa is a purely negative formula on activation variables,
i.e. a DNF formula, where all variables are negative. (Notice that p ∈ a, in the sub-script of the
first conjunct, can be both an activation and a firing variable.) To each monomial b in the DNF
of ϕa, we associate the following rule{
qi
{p∈Pi | ṗ∈a}−−−−−−−−→ q′i

∣∣∣ i ∈ I} {
qi = q′i

∣∣∣ i 6∈ I} {
qj ↑(a ∩ Pj)

∣∣∣ j ∈ J} {
qi 6 ↑p

∣∣∣ i ∈ [1, n], p ∈ b ∩ Pi
}

q1 . . . qn
a−→ q′1 . . . q

′
n

,

(29)
where I = {i ∈ [1, n] | a ∩ Ṗi 6= ∅} and J = {j ∈ [1, n] | a ∩ Pj 6= ∅}.

In particular, this correspondence gives the B[P, Ṗ] formulas a semantics in terms of operators
defined by rules in the format (24). The following proposition implies that the axioms of Boolean
algebra are sound w.r.t. the operator semantics (29) of B[P, Ṗ], which means that we can apply
the full power of Boolean calculus for the manipulation of glue operators.

Proposition 2.21. Consider two formulas ϕ,ψ ∈ B[P, Ṗ], such that ϕ ≡ ψ. Let fϕ and fψ be the
corresponding glue operators defined by the rules (29). Then, for any set of behaviours B1, . . . , Bn,
the behaviours fϕ(B1, . . . , Bn) and fψ(B1, . . . , Bn) are equivalent.

Sketch of the proof. The proof is straightforward, by considering the impact of each axiom on the
corresponding rules. Consider, for instance, the axiom of the excluded middle. In B[P, Ṗ], this
axiom can be instantiated by either ṗ ∨ ṗ = tt, or p ∨ p = tt. Clearly, if ϕ is obtained from ψ by
the conjunction of one of its sub-formulas with ṗ∨ ṗ, their firing-full DNF are the same, hence the
corresponding operators are the same. Assume that ϕ is obtained from ψ by the conjunction of
one of its sub-formulas with p∨ p. Then, for some of the rules corresponding to ψ, the set of rules
corresponding to ϕ would have two rules differing only by one premise: one rule with a positive
premise q↑p and another with the negative premise q 6 ↑p, all the other premises being the same as
in the rule for ψ. It is sufficient, now, to notice that exactly in the same states, where the rule for
ψ is applicable, one of the two rules would be applicable independently of the activation status of
the port p.

15

Properties of extended BIP glue operators in the offer semantics The above Boolean

characterisation allows us to associate an interaction model with witnesses γ ⊆ 2P∪Ṗ and a

relaxed priority model π ⊆ 2P∪Ṗ × (2P \ {∅})7 to any operator defined by the set of rules in the
format (24). We proceed in three steps: 1) we associate to the set of rules a B[P, Ṗ] formula ϕ
as in (27); 2) we rewrite ϕ as in (28); 3) for each a ∈ γ, we rewrite the positive formula ϕa in
DNF. The set γ in (28), is the extended interaction model, whereas the relaxed priority model is
π = {a ≺ b | b is a monomial of the DNF of ϕa}.

Thus, we conclude that, in the offer semantics, extended BIP glue operators consisting of an

extended interaction model γ ⊆ 2P∪Ṗ and a relaxed priority model π ⊆ 2P∪Ṗ ×(2P \{∅}) have full
expressiveness w.r.t. the rule format (24), as well as w.r.t. the algebra B[P, Ṗ] of Boolean formula
over the variables P and Ṗ .

Proposition 2.22. Operators defined by sets of rules in the format (24) have relaxed composi-
tionality w.r.t. the equivalence in Definition 2.18.

Sketch of the proof. The proof is straightforward by definition of bisimulation. Indeed, if two
behaviours are equivalent in the sense of Definition 2.18, the same rules are applicable to both of
them in the bisimilar states.

Since the semantics of the extended BIP glue operators is structural, Proposition 2.22 implies
that it has full compositionality (hence also modularity).

Finally, observe that, as a consequence of the discussion in Note 2.20, in the offer semantics,
an interaction a ⊆ P is enabled in a global state q1 . . . qn of a system f(B1, . . . , Bn) if and only if
the transition a ∩ Pi is enabled in Bi, for each i ∈ [1, n], such that a ∩ Pi 6= ∅, and the valuations
of variables from P and Ṗ defined, respectively, by the state q1 . . . qn and by a satisfy the B[P, Ṗ]
formula corresponding to f .

Proposition 2.23. Extended BIP glue operators in the offer semantics have the flattening prop-
erty.

Sketch of the proof. Consider a system C = f(C1, . . . , Ck, g(Ck+1, . . . , Cn)). Since extended BIP
glue operators in the offer semantics have compositionality, C ' f

(
σ(C1), . . . , σ(Ck), σ

(
g(Ck+1, . . . , Cn)

))
,

where σ is the semantic mapping (see Section 1), induced by the offer semantics. Hence, an inter-
action a is possible in a global state of C if and only if the transitions labelled by the projections
of a onto the sets of ports of σ(Ci), for i ∈ [1, k], and onto the set of ports of σ

(
g(Ck+1, . . . , Cn)

)
are enabled and the valuations of variables from P and Ṗ defined, respectively, by the global state
of C and by a satisfy the B[P, Ṗ] formula ϕf corresponding to f .

Similarly, the transition labelled by the projection of a onto the set of ports of σ
(
g(Ck+1, . . . , Cn)

)
is enabled if and only if the transitions labelled by the projections of a onto the sets of ports of Ci,
for i ∈ [k + 1, n], are enabled and the valuations of variables from P and Ṗ defined, respectively,
by the global state of g(Ck+1, . . . , Cn) and by a satisfy the B[P, Ṗ] formula ϕg corresponding to
g. Thus, we conclude that a transition labelled by a is enabled in C if and only if the transitions
labelled by the corresponding projections of a are enabled in σ(Ci), for i ∈ [1, n], and the valu-
ations of variables from P and Ṗ defined, respectively, by the global state of C and by a satisfy
ϕf ∧ ϕg. Let h be the operator corresponding to ϕf ∧ ϕg. We have C ' h(C1, . . . , Cn).

To conclude this sub-section, observe that, if we restricted ourselves to 1) classical interaction
models, i.e. subsets of 2P , 2) rules in format (24) without the witness premises and 3) B[P, Ṗ]
formulas without positive occurrences of activation variables in the firing-full DNF form, all three
properties—compositionality, full expressiveness and flattening—would still hold. However, we

7Notice that 2P ⊂ 2P∪Ṗ .

16

would loose the soundness of some Boolean axioms. For instance, the excluded middle would not
hold for activation variables, since the positive disjunct would introduce witness premises in the
corresponding rules.

2.4 Further extension of interaction models to encompass priority

In this section, we further extend the notions of interaction and interaction model to include
the negative port typings. This allows us to incorporate priorities into interaction models and,
therefore, also extend the theory of algebraic representations of interaction models to encompass
priorities.

In addition to the activation and firing port typings introduced in the previous sub-section, we

consider the negative port typing P
def
= {p | p ∈ P}.

Definition 2.24. An extended interaction is a subset a ⊆ P ∪ Ṗ ∪ P . An extended interaction
model is a set γ ⊆ 2P∪Ṗ∪P .

For a given extended interaction a, we define the following sets of ports:

� act(a)
def
= a ∩ P , the activation support of a,

� fire(a)
def
= {p ∈ P | ṗ ∈ a}, the firing support of a,

� neg(a)
def
= {p ∈ P | p ∈ a}, the negative support of a.

Definition 2.25. Let Bi = (Qi, Pi,−→,↑), with i ∈ [1, n] and P =
⋃n
i=1 Pi, be a set of component

behaviours. Let γ ⊆ 2P∪Ṗ∪P be a set of extended interactions. The composition of {Bi}ni=1 with

γ is a behaviour γ(B1, . . . , Bn)
def
= (Q,P,−→γ ,↑γ) with Q =

∏n
i=1Qi, the offer predicate ↑ defined

by putting, as above, q1 . . . qn ↑γ p
def⇐⇒ ∃i ∈ [1, n] : qi ↑p, for all p ∈ P and the transition relation

−→γ inductively defined by the rule

a ∈ γ
{
qi

fire(a)∩Pi−−−−−−−→ q′i

}
i∈I

{
qi = q′i

}
i 6∈I

{
qi ↑
(
act(a) ∩ Pi

)}n
i=1

{
qi 6 ↑p

∣∣∣ p ∈ neg(a) ∩ Pi
}n
i=1

q1 . . . qn
fire(a)−−−−→γ q

′
1 . . . q

′
n

,

(30)
where I = {i ∈ [1, n] |fire(a) ∩ Pi 6= ∅}.

Taking on the Example 2.9, a flat composition of B1, B2 and B3 equivalent to that of Figure 2a

in the semantics of Definition 2.25 is obtained by taking γ = {ṗ r, q̇, ṡ, ṙ ṫ} ⊆ 2P∪Ṗ∪P .
It is important to observe that, as stated by Lemma 2.26 below, sets of interactions can have

redundancies.

Lemma 2.26. Let γ1 ⊆ 2P∪Ṗ∪P be a set of interactions, γ2 = γ1 ∪ {a}, with a ⊆ P ∪ Ṗ ∪ P ,
such that there is an interaction b ∈ γ1, b ⊆ a and fire(b) = fire(a). Then γ1(B1, . . . , Bn) =
γ2(B1, . . . , Bn).

Proof. According to rule (30) any transition generated by the interaction a can also be generated
by the interaction b. Thus, interaction a does not impact the behaviour of the composed system,
and γ1(B1, . . . , Bn) = γ2(B1, . . . , Bn).

Intuitively, this lemma states that if any interaction that allows the same transition in the
composed behaviour as another interaction, but under more restrictive conditions, cannot impact
the composed system and, therefore, can be removed from the extended interaction model.

17

ba

ab

a b

c

c

2
3

1

4

{a, b, ab, c}

c ≺ ab

Figure 4: Behaviours of a system inexpressible in offer semantics.

3 Transformation of systems in classical semantics into offer
semantics

In [11] it was shown that the expressiveness of BIP glue in the classical (Section 2.1) and in the
offer (Section 2.3) semantics are incomparable. Not all BIP systems in the classical semantics can
be expressed in the offer semantics. For the sake of simplicity and in order to better distinguish
the BIP glues considered in the classical and in the offer semantics, we will refer to the former
through pairs consisting of an interaction model γ ⊆ 2P and a priority model π ⊆ 2P × (2P \ {∅});
the latter will be given by extended interaction models γ ⊆ 2P∪Ṗ∪P (Section 2.4). Recall that,
in the classical semantics, interactions that do not appear in the interaction model have no effect,
when used in the priority model. Therefore, in this section, we will assume that all interactions
appearing in a priority model also belong to the corresponding interaction model.

Example 3.1. Consider a system of two behaviours, in the classical semantics, shown in Figure 4.
The interaction model is {a, b, ab, c} and priority model is {c ≺ ab}. Since, classical priority
semantics refers to the activation of an interaction, in the composed system the interaction c is
available at the state 14, and not available at the state 24. In the offer semantics, all three ports
are offered in both states 14 and 24 of this system. Therefore, these states are indistinguishable
and c is inhibited in both.

Note 3.2. In the remainder of this section, we will compare composed systems in the classical and
offer semantics obtained by applying glue operators to the same set of behaviours. To simplify the
presentation, we will assume that the predicate ↑ ⊆ Q×P is also defined, in the classical semantics,
on atomic behaviours as in Definition 2.17 and, for composed systems as in Definition 2.25. Notice
that this unambiguously defines the offer predicate in both cases. Hence, we will not explicitly
provide it in the examples of this section. Furthermore, sets of states and ports of composed
systems, as well as the corresponding offer predicates do not depend on the glue operator used
to obtain them. Therefore, to prove that two composed behaviours coincide, we will only have to
check that their respective transition relations are equal. (Indeed, in this context, bisimilarity and
equality coincide.) The following lemma shows that it is not necessary to consider target states of
transitions and it is sufficient to compare labels of outgoing transitions for each state of composed
systems.

Lemma 3.3. Let Bi = (Qi, Pi,−→,↑) for i ∈ [1, n] be a set of behaviours and let P =
⋃n
i=1 Pi.

Let πγ and γ′ be glue operators on P in the classical and offer semantics respectively. Then for
composed systems (Q,P,−→c,↑) = πγ(B1, . . . , Bn) and (Q,P,−→o,↑) = γ′(B1, . . . , Bn) the following

holds: for any state q and for any transition label a, if q
a−→c ⇔ q

a−→o then {q′|(q, a, q′) ∈−→c} =
{q′|(q, a, q′) ∈−→o}.

18

bc

bc

cb

3

1

2

∅

∅

(a) ∅ ≺ b

ba

a

a b

2
3

1

(b) a ≺ b, a 6= ∅ and b ⊆ a

ba

a

a b

b\a

2
3

1

(c) a ≺ b, a 6= ∅ and b 6⊆ a

Figure 5: Behaviours for Theorem 3.4.

Proof. If q 6 a−→c then q 6 a−→o and both sets are empty.

If q
a−→c then there is an interaction a ∈ γ. By (10) (q, a, q′) ∈−→c iff for all i ∈ [1, n], qi

a∩Pi−−−→ q′i,

if a ∩ Pi 6= ∅, and qi = q′i otherwise. At the same time q
a−→o and there is an interaction a′ ∈ γ′,

such that fire(a′) = a. By (30) (q, a, q′) ∈−→o iff for all i ∈ [1, n], qi
fire(a′)∩Pi

−−−−−−−→ q′i, fire(a′)∩Pi 6= ∅,
and qi = q′i otherwise. Since a = fire(a′), {q′|(q, a, q′) ∈−→c} = {q′|(q, a, q′) ∈−→o}.

If a priority model of a glue operator is empty, then such glue operator can be easily transformed
into an operator in the offer semantics. However, for any non-empty priority model there exists
a set of behaviours, such that the transformation of this glue operator into the offer semantics is
not possible.

Theorem 3.4. Let πγ be a glue operator on a set of ports P in the classical semantics, such that
γ contains at least two non-empty interactions and π has at least one priority a ≺ b with a 6= b.
There exists a set of atomic8 behaviours Bi = (Qi, Pi,−→,↑) for i ∈ [1, n], where

⋃n
i=1 Pi = P , such

that, for any extended interaction model γ′ in the offer semantics, the composed systems would
not be equivalent, i.e. for (Q,P,−→c) = πγ(B1, . . . , Bn) and (Q,P,−→o,↑) = γ′(B1, . . . , Bn) holds
−→c 6= −→o.

Proof. Let a ≺ b, with a 6= b, be a priority in π and assume that the rule a ≺ ab is not in π
(otherwise consider, instead, the rule a ≺ ab). There are three cases. If a = ∅, let B1 be the
behaviour in Figure 5a, and assume c ∈ γ, c 6= b and c 6= ∅ (such c exists by the assumption of
the theorem). Recall that a ≺ ∅ is not an valid priority. Therefore, we only have to consider two
other cases, where neither a nor b are empty interactions: if b ⊆ a, let B1 be the behaviour in
Figure 5b; otherwise let B1 be the behaviour in Figure 5c. The proof below applies identically to
all three cases.

States 1 and 2 offer the same sets of ports. There is a transition a from both states. However,
transition b is available only in the state 1. Let P1 be a set of ports in B1. Consider a second

atomic behaviour B2 =
(
{∗}, P \ P1, {∗

p−→ ∗ | p ∈ P \ P1},↑
)
, such that the union of sets of ports

of B1 and B2 is equal to P . Both πγ and γ′ can be applied to the pair of behaviours (B1, B2).
In the composed behaviour, transition a is available in the state 2∗, but not available in the state
1∗. Since these states offer the same ports, for any glue operator in the offer semantics transition
a is either available in both states or in none of them.

We are now in position to define three classes of behaviours, for which it is possible to generate
an equivalent system in the offer semantics. The first class of behaviours is characterised by
Property 3.5. For any glue operator in the classical semantics there exists a glue operator in
the offer semantics, such that their applications to any set of behaviours satisfying Property 3.5
result in equivalent composed systems. The two remaining classes of behaviours comprise sets
of components, such that the transformation for any glue operator exists, but depends on the

8Here and in the rest of the paper, the term atomic has the meaning provided in Definition 2.17.

19

Input: A glue operator in the classical semantics: an interaction model γ and a priority model π.
Output: A glue operator in the offer semantics: an extended interaction model γ′.

1. I := {ȧ | a ∈ γ};
2. for each (a ≺ b) ∈ π
3. m := b \ a;
4. for each c ∈ I, such that fire(c) = a;
5. C := {c p | p ∈ m};
6. I := (I \ {c}) ∪ C;
7. γ′ := I;

Figure 6: Algorithm transforming a glue operator in the classical semantics into a glue operator
in the offer semantics.

set of behaviours. Behaviours from the first of these two classes, characterised by Property 3.10,
allow a transformation without activation port typings. Finally, behaviours, characterised by
Property 3.14, allow a transformation using activation port typings.

Below, we use the following notations: for a ∈ 2P , we denote ȧ
def
= {ṗ | p ∈ a} and a

def
=

{p | p ∈ a}.

3.1 Behaviours allowing transformation of arbitrary glue

Consider a class of behaviours, which satisfy the following property:

Property 3.5. Let L be a set of transition labels of a behaviour B. For any state q of the behaviour
B, and any a ∈ L \ {∅}, holds q↑a⇒ q

a−→.

For any system, such that the behaviours of all its sub-systems belong to this class, any glue
operator in the classical semantics can be transformed into a glue operator in the offer semantics.
Applying the initial and the generated glue operators to any set of behaviours from this class
would result in two equal composed systems.

Given a classical (non-extended) interaction model and a classical (non-relaxed) priority model,
the algorithm in Figure 6 computes an extended interaction model, corresponding to the same
interaction and priority models considered in the offer semantics. In particular, all interactions,
generated starting from an interaction a, have the firing support fire(a′) = a, since no firing ports
are added after initial generation of the set I.

Lemma 3.6. Let Bi = (Qi, Pi,−→,↑) for i ∈ [1, n] be a set of behaviours, all satisfying Property 3.5.
Let (Q,P,→,↑) = πγ(B1, . . . , Bn) be a composed system, with γ an interaction model and π a
priority model. Then, in any state q ∈ Q, any offered interaction a in γ is active in (Q,P,→,↑)
if and only if it is not inhibited by a priority:(

@b ∈ γ : a ≺ b ∧ q b−→γ

)
⇔ q

a−→π . (31)

Proof. ⇐ is straightforward by (11).

⇒: Since, for all i ∈ [1, n], behaviours Bi satisfy Property 3.5, qi ↑(a ∩ Pi)⇒ qi
a∩Pi−−−→. Hence,

by (10), for any a ∈ γ, q↑a⇒ q
a−→γ . By (11), @b ∈ γ : a ≺ b ∧ q b−→γ implies q

a−→π.

Theorem 3.7. Let πγ be a glue operator on a set of ports P in the classical semantics and let
γ′ be a glue operator obtained by applying the algorithm in Figure 6. Let Bi = (Qi, Pi,−→,↑),
for i ∈ [1, n], be a set of behaviours, all satisfying Property 3.5, and

⋃n
i=1 Pi = P . Then for

(Q,P,−→c,↑) = πγ(B1, . . . , Bn) and (Q,P,−→o,↑) = γ′(B1, . . . , Bn) holds −→c = −→o.

20

4

5

st

r
2

3

r q

q s tp

p

1

(a) First set of behaviours for Example 3.8

rt
qs

pr

124 125

134 135

(b) Composed system from the first set of
behaviours for Example 3.8

Figure 7: Second set of behaviours and composed behaviour for Example 3.8.

5

t

2

p
q

p

p q s

3

4

s
r

r

r

t
6

1

(a) Second set of behaviours for Example 3.8

rt rt

rt
pr

pr

pr

qsqs rt

135

245 246

136 236

146145

235

(b) Composed system from the second set
of behaviours for Example 3.8

Figure 8: Second set of behaviours and composed behaviour for Example 3.8.

Proof. 1) q
a−→o =⇒ q

a−→c: Since q
a−→o, there is an interaction a′ ∈ γ′, having fire(a′) = a. By

construction, the generation of a′ started from the interaction a ∈ γ. Since q
a−→o, q ↑fire(a′) and

q 6 ↑neg(a′). For any b, such that a ≺ b, we have b ∩ neg(a′) 6= ∅ and, consequently, q 6 b−→c, since

at least one port of b is not available. By Lemma 3.6 we have q
a−→c.

2) q
a−→c =⇒ q

a−→o: Since q
a−→c, for all b ∈ γ, such that a ≺ b, holds q 6 b−→c. By Lemma 3.6, if

all ports of b are offered at the state q, then either b is enabled or some b′ : b ≺ b′ is enabled. The
priority model is a partial order and, in particular, is transitive. Hence, a has to be suppressed due
to availability of b or b′. Thus, at least one port of b is not offered at the state q. Consider a subset
c ⊆

⋃
a≺b(b \ a), such that, for all ports p ∈ c, we have q 6 ↑p and, for all a ≺ b, the set c ∩ (b \ a)

contains exactly one port, i.e. |c ∩ (b \ a)| = 1. By construction of γ′, we have a′ = ȧ ∪ c ∈ γ′.
Thus, fire(a′) = a and, for all p ∈ neg(a′), q 6 ↑p. Hence by Definition 2.17 q

a−→o.

Example 3.8. Consider γ = {pr, qs, rt} and π = {pr ≺ qs, pr ≺ rt} in the classical semantics.
The algorithm in Figure 6 generates an extended interaction model in the offer semantics. In the
first step the set I = {ṗṙ, q̇ṫ, ṙṫ}. Considering the first priority rule pr ≺ qs we have m = qs \ pr =
qs. For each interaction in I with firing support pr we generate a set of new interactions, thus from
the interaction ṗṙ we obtain a pair of interactions ṗṙq and ṗṙs. The new set I = {ṗṙq, ṗṙs, q̇ṫ, ṙṫ}.
For the second priority rule pr ≺ rt we have m = rt \ pr = t. There are two interactions in I with
firing support pr: ṗṙq and ṗṙs. The algorithm adds t to both of them and the final glue in the
offer semantics is γ′ = {ṗṙq t, ṗṙs t, q̇ṫ, ṙṫ}.

Consider behaviours in Figure 7a. All of them satisfy Property 3.5. Applying glues in the
classical and in the offer semantics we obtain equal composed behaviours shown in Figure 7b.
Transitions qs and rt are available in the states 124 and 135 respectively in both composed
behaviours. Ports p and r are offered in the states 134 and 135. The priority rule pr ≺ rt forbids
the transition pr in the state 135, thus in the system in the classical semantics this transition is

21

available only in the state 134. In the system in the offer semantics in the state 134 ports q and t
are not offered, thus the interaction ṗṙq t allows a transition from this state, whereas in the state
135 t is offered and none of the interactions allows a transition pr from this state.

Consider behaviours in Figure 8a and the same glue. All of them also satisfy Property 3.5.
Applying glues in the classical and in the offer semantics we obtain equal composed behaviours
shown in Figure 8b. Transitions qs and rt are available simultaneously in both composed be-
haviours, since they depend only on availability of the corresponding ports. There are transitions
qs from states 135 and 136, transitions rt from states 135, 145, 235 and 245. Ports p and r are
offered in all states. The priority rules forbids transition pr from all states where qs or rt are
available, thus there are transitions pr from states 146, 236 and 246. In the system in the offer
semantics the interaction ṗṙq t allows transitions pr from states 236 and 246, the interaction ṗṙs t
allows transitions pr from the state 146.

Theorem 3.9. Let Bi = (Qi, Pi,−→,↑) for i ∈ [1, n] and n ≥ 2 be a set of behaviours, such that
at least one of them violates Property 3.5, and let P =

⋃n
i=1 Pi. There exists πγ, a glue operator

on P in the classical semantics, such that for the glue γ′ computed by the algorithm in Figure 6,
and for (Q,P,−→c,↑) = πγ(B1, . . . , Bn) and (Q,P,−→o,↑) = γ′(B1, . . . , Bn) holds −→c 6= −→o.

Proof. Without loss of generality, we assume that B1 violates Property 3.5. Thus there is a state
q1 and a transition a, such that q1 ↑a and q 6 a−→. Let b be a transition from a state q2 in B2. Let
γ = {a, b} and π = {b ≺ a}. The algorithm in Figure 6 computes γ′ = {ȧ} ∪ {ḃ p | p ∈ a \ b}. The
transition labelled b is available in the state q1 . . . qn of (Q,P,−→c), but it is not available in the
state q1 . . . qn of (Q,P,−→o,↑), since all ports of a are offered in this state.

3.2 Behaviours allowing glue transformation without using activation
port typings

Let us now consider the class of behaviours, satisfying the following property:

Property 3.10. Let L be a set of transition labels of B. For any state q, such that Sq
def
= {a ∈

L \ {∅} | q ↑ a ∧ q 6 a−−→} 6= ∅, the following holds: for any state q′ 6= q, such that ∃ a ∈ Sq : q′
a−→,

there exists a port p, such that q′ ↑p and q 6 ↑p.

Intuitively, this property means the following. Assume there is a state that offers an interaction
a, which does not correspond to an enabled transition, e.g. a is a proper subset of a label of an
enabled transition. Assume, furthermore, that there is also a state that actually has an enabled
transition labelled by a. Then Property 3.10 requires that these two states be distinguishable by
considering whether some other port p is offered or not.

If the Property 3.10 holds for a set of behaviours, we can build a composed system in the offer
semantics without using activation port typings. Let Bi = (Qi, Pi,−→,↑) for i ∈ [1, n] be a set of
behaviours, let P =

⋃n
i=1 Pi and let πγ be a glue operator on P in the classical semantics. We start

the transformation by applying the algorithm in Figure 6. This algorithm generates an extended
interaction model γ′′ in the offer semantics. However, this property is weaker than Property 3.5
and composed behaviours πγ(B1, . . . , Bn) and γ′′(B1, . . . , Bn) can be not equal. A transition
relation of the former composed behaviour can contain transitions, which are not present in the
latter one. For each such transition a from the state q we add the interaction ȧb to the interaction
model, where b = {p | q 6 ↑p}. The application of the final extended interaction model γ′ results in
an equivalent composed system.

Theorem 3.11. Let Bi = (Qi, Pi,−→,↑) for i ∈ [1, n] be a set of behaviours, such that all of
them satisfy Property 3.10 and let P =

⋃n
i=1 Pi. Let πγ be a glue operator on P in classical

22

p q

r

s

t

s tpq

rr
q

p 21

3
4

5

(a) Set of behaviours for Example 3.12

rtrt

q

q

pq

pq

p

p

s s

15 25 35

14 3424

(b) Composed system for Example 3.12

Figure 9: Behaviours and composed behaviour for Example 3.12

semantics. Let γ′ be the extended interaction model generated in the way it was shown above.
Then for (Q,P,−→c,↑) = πγ(B1, . . . , Bn) and (Q,P,−→o,↑) = γ′(B1, . . . , Bn) holds −→c = −→o.

Proof. 1) q
a−→o =⇒ q

a−→c: By construction if q
a−→o then there exists an interaction a′ ∈ γ′, such

that fire(a′) = a and neg(a′) = {p | q 6 ↑p}. There are two possibilities for the moment, when a′

was added to γ′. Let γ′′ be the extended interaction model computed by the algorithm in Figure 6.
If a′ ∈ γ′′, the proof is similar to the one in Theorem 3.7. By construction the generation of

a′ started from interaction a ∈ γ. Since q
a−→o, we have q↑a and q 6 ↑neg(a′). For any b, such that

a ≺ b we have b ∩ neg(a′) 6= ∅ and, consequently, q 6 b−→c, as at least one port of b is not available.

Thus q
a−→c.

If a′ was added during the second step of the computation above, a′ could have been added to
γ′ only if there is a state q′ = q′1 . . . q

′
n in the composed system (Q,P,−→c,↑), such that q′

a−→c and

neg(a′) = {p | q′ 6 ↑p}. Assume q 6 a−→c. Since q
a−→o, we have q ↑ a. Thus, a was forbidden by the

application of some priority rule a ≺ b and q
c−→ b. Since q′

a−→c, we also have q′ 6 b−→c. If q′ 6 ↑b then
there exists p ∈ b, such that q′ 6 ↑ p, so p ∈ a′ and q 6 a−→o. If q′ ↑ b then there exists a behaviour

Bi, such that q′i ↑(b ∩ Pi) and q′i 6
b∩Pi−−−−→. Let q = q1 . . . qn then qi ↑(b ∩ Pi) and, by Property 3.10,

there exists a port p, such that q′i 6 ↑ p and qi ↑ p. Consequently, q′ 6 ↑ p and q ↑ p, so p ∈ a′ and

q 6 a−→o, which contradicts the assumption q 6 a−→c.
2) q

a−→c =⇒ q
a−→o: By construction of γ′, either the extended interaction model γ′′, obtained

after the application of the algorithm in Figure 6 contains an interaction, which generates this
transition in the composed system, or an additional interaction is added to γ′, such that this
transition is present in the composed system.

Example 3.12. Consider behaviours in Figure 9a and a glue operator in the classical semantics
with γ = {p, pq, q, rt, s} and π = {s ≺ p}. Both behaviours satisfy Property 3.10. The composed
system in the classical semantics is shown in Figure 9b. The algorithm in Figure 6 generates the
extended interaction model γ′′ = {ṗ, ṗq̇, q̇, ṙṫ, ṡp}. If we apply γ′′ to the behaviours in Figure 9a
the composed behaviour would not contain a transition s from the state 14 (dashed in Figure 9b),
as port p is offered at this state. Thus we need to add an interaction to the extended interaction
model, such that this transition becomes available, but no other transitions are added. The
interaction ṡr adds the transition s from the state 14 in the composed behaviour and it does not
add a transition from the state 24, since r is offered at the state 24. Thus, the final extended
interaction model is γ′ = {ṗ, ṗq̇, q̇, ṙṫ, ṡp, ṡr}.

Theorem 3.13. For any set of behaviours Bi = (Qi, Pi,−→,↑) for i ∈ [1, n] and n ≥ 2, such that
at least one of Bi violates Property 3.10, there exists a glue operator πγ on P =

⋃n
i=1 Pi in the

23

classical semantics, such that the composed system πγ(B1, . . . , Bn) cannot be expressed through
the offer semantics without using the activation port typings.

Proof. Without loss of generality assume that B1 violates Property 3.10. Thus, there exists a
state q1 and a transition a, such that q1 ↑a and q1 6

a−→ and there exists a state q′1, such that q′1
a−→

and all ports which are not offered in q1 are also not offered in q′1.

Let b be some transition label of the behaviour B2, and let q2 be a state, such that q2
b−→. Let

γ = {a, b} and π = {b ≺ a}. In a composed system πγ(B1, . . . , Bn), a transition labeled by b is
available from the state q1q2 . . . qn, but not available from the state q′1q2 . . . qn.

Assume there exists an extended interaction model γ′ without activation port typings, such
that γ′(B1, . . . , Bn) = πγ(B1, . . . , Bn). In order to have a transition labelled by b from the state
q1 . . . qn, γ′ has to contain the interaction ḃc, where c ⊆ {p | q1 6 ↑p}. However this interaction
allows a transition b from the state q′1q2 . . . qn, which contradicts the assumption of the existence
of γ′.

3.3 Behaviours allowing glue transformation using witness ports

We now consider the third class of behaviours, characterised by the following property:

Property 3.14. There are no two states q1, q2 in the behaviour, such that {p | q1 ↑p} = {p | q2 ↑p}
and {a | q1

a−→} \ {∅} 6= {a | q2
a−→} \ {∅}.

A composed system in the offer semantics can be built with the following idea. Let Bi =
(Qi, Pi,−→,↑) for i ∈ [1, n] be a set of behaviours. To each state q of each behaviour, we associate
a set χ(q) = {p | q↑p}∪{p | q 6 ↑p}. Notice, that since sets of ports of behaviours are pairwise disjoint,
χ(q) and χ(q′) are disjoint if q and q′ are states of different behaviours. Let πγ be a glue operator
on P in the classical semantics. Let (Q,P,→,↑) = πγ(B1, . . . , Bn) be the corresponding composed
system. To each state q1 . . . qn of the composed system, we associate a set χ(q1 . . . qn) =

⋃n
i=1 χ(qi).

For each transition q1 . . . qn
a−→ q′1 . . . q

′
n of the composed system, we generate the interaction

{ṗ | p ∈ a} ∪ {p | p ∈ χ(q1 . . . qn), p 6∈ a}. Since q1 . . . qn
a−→, all ports of a are offered in q1 . . . qn.

The set of all these interactions forms an extended interaction model γ′, such that if all B1, . . . , Bn
satisfy Property 3.14, then γ′(B1, . . . , Bn) is equivalent to (Q,P,→,↑). Notice, that for any
interaction a ∈ γ′, fire(a) ∪ act(a) ∪ neg(a) = P .

Theorem 3.15. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of behaviours, such that all
of them satisfy Property 3.14 and let P =

⋃n
i=1 Pi. Let πγ be a glue operator on P in the

classical semantics. Let γ′ be the extended interaction model obtained by the application of the
algorithm described above. Then, for composed behaviours (Q,P,−→c,↑) = πγ(B1, . . . , Bn) and
(Q,P,−→o,↑) = γ′(B1, . . . , Bn), holds −→c = −→o.

Proof. 1) q
a−→o =⇒ q

a−→c: By construction if q
a−→o then there is an interaction a′ ∈ γ′, such

that fire(a′) = a, fire(a′) ∪ act(a′) = {p | q↑p} and neg(a′) = {p|q 6 ↑ p}. Assume q 6 a−→c. Since

a′ ∈ γ′, there is a state q′, such that q′
a−→c, fire(a′) = a, fire(a′) ∪ act(a′) = {p|q′ ↑ p} and

neg(a′) = {p|q′ 6 ↑p}. Thus a ∈ γ. Let q = q1 . . . qn and q′ = q′1 . . . q
′
n. Since {p|q ↑p} = {p|q′ ↑p},

we have {p|qi ↑p} = {p|q′i ↑p}, for all i ∈ [1, n]. By Property 3.14, for any i ∈ [1, n], holds {b|qi
b−→

} = {b|q′i
b−→}. Thus {b|q b−→} = {b|q′ b−→} in γ(B1, . . . , Bn) and consequently {b|q b−→} = {b|q′ b−→}

in (Q,P,−→c,↑). Since q′
a−→c, we also have q

a−→c.

2) q
a−→c =⇒ q

a−→o: By construction, if q
a−→c then the interaction a′ = {ṗ|p ∈ a} ∪ {p|p ∈

χ(q), p 6∈ a} ∈ γ′. Since all ports from fire(a′) are available at state q, all ports from act(a′) are

offered and all ports from neg(a′) are inhibited, thus q
fire(a′)
−−−−−→o.

24

5

6

st

s t

r

rp q

2

31

pq
pq

p p

4

(a) Set of behaviours for Example 3.16

p

ss

pq

pq

p
rtrt s

pq

p

pq

p

145 245 345

146 246 346

(b) Composed system for Example 3.16

Figure 10: Behaviours and composed behaviour for Example 3.16

Example 3.16. Consider the behaviours in Figure 10a and the glue operator in the classical
semantics defined by γ = {p, pq, rt, s} and π = {rt ≺ p}. Both behaviours satisfy Property 3.14.
The composed system in the classical semantics is shown in Figure 10b. This system cannot be
expressed in the offer semantics without activation port typings. There should be a transition rt
from the state 146, but any interaction allowing it also allows interaction rt from the state 246,
as all ports, which are not offered in the state 146, are also not offered in the state 246.

In order to transform the system into one in the offer semantics we associate a set χ to each
state as follows:

χ(145) = {p, q, r, s, t}, χ(245) = {p, q, r, s, t}, χ(345) = {p, q, r, s, t},
χ(146) = {p, q, r, s, t}, χ(246) = {p, q, r, s, t}, χ(346) = {p, q, r, s, t}.

Now, we start generating γ′, considering all transition labels in the composed system. From the
state 145 there are transitions pq and s, thus we take interactions ṗ q̇ r s t and ṡ p q r t. From the
state 146 there are transitions pq and rt, hence we add interactions ṗ q̇ r s t and ṙ ṫ p q s. Proceeding
similarly for the remaining states, we obtain γ′:

{ṗ q̇ r s t, ṡ p q r t, ṗ q̇ r s t, ṙ ṫ p q s, ṗ r s q t, ṗ r t q s, ṡ p r q t}.

Noticing, that s and t are mutually exclusive and p, r are offered in all states, this extended
interaction model can be simplified to γ′′ = {ṗ q̇, ṗ q, ṡ, ṙ ṫ q}.

Theorem 3.17. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n] and n ≥ 2, be a set of behaviours, such that
at least one of them violates Property 3.14, and let P =

⋃n
i=1 Pi. There exists a glue operator in

the classical semantics with an interaction model γ and a priority model π, such that the system
πγ(B1, . . . , Bn) cannot be expressed in the offer semantics.

Proof. Without loss of generality assume that B1 violates Property 3.14. Thus there is a pair of
states q1, q

′
1, such that {p|q1 ↑p} = {p|q′1 ↑p} and q1

a−→, while q′1 6
a−→. Let b be a transition from a

state q2 in B2. Let γ = {a, b} and π = {b ≺ a}. A composed system πγ(B1, . . . , Bn) cannot be
expressed in the offer semantics.

Consider two states q1q2 . . . qn and q′1q2 . . . qn. In the system πγ(B1, . . . , Bn), transition b is
forbidden from the first state by the priority rule, but b is allowed from the second state. However,
sets of offered ports from both states are equal. Thus, for any interaction b′, such that fire(b′) = b,
either b′ can be allowed from both states or it is forbidden from both states. These states cannot
be distinguished in the offer semantics, which implies that the system πγ(B1, . . . , Bn) cannot be
expressed in the offer semantics.

3.4 Hierarchical systems

In hierarchical systems, glue operators can be applied not only to atomic behaviours, but also to
composed ones. If we consider behaviours that satisfy Property 3.10 or Property 3.14, application

25

p

q

r

s
q

q

rr s s

p

13

2414

23

Figure 11: Composed behaviour of a hierarchical system from Example 3.20.

of any glue operator results in a composed behaviour of the same class.

Proposition 3.18. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of behaviours, such that all of
them satisfy Property 3.10 and let P =

⋃n
i=1 Pi. Then, for any interaction model γ on P , and for

any priority model π on P , the composed behaviour πγ(B1, . . . , Bn) satisfies Property 3.10.

Proof. Assume πγ(B1, . . . , Bn) violates this property. There are two states q = q1 . . . qn, q′ =

q′1 . . . q
′
n and a transition a, such that q↑a, q 6 a−→, q′

a−→ and there exists no port p, such that q′ ↑p
and q 6 ↑p. Since q 6 a−→, for some i ∈ [1, n], qi ↑a∩Pi and qi 6

a∩Pi−−−−→. Since Bi satisfies Property 3.10

and q′i
a∩Pi−−−→, there exists p, such that qi 6 ↑p and q′i ↑p. By Definition 2.17, q 6 ↑p and q′ ↑p. Thus,

states q and q′ cannot violate Property 3.10.

Proposition 3.19. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of behaviours, such that all of
them satisfy Property 3.14, and let P =

⋃n
i=1 Pi. Then for any interaction model γ on P and for

any priority model π on P the composed behaviour πγ(B1, . . . , Bn) satisfies Property 3.14.

Proof. Assume πγ(B1, . . . , Bn) violates this property. Thus, there are two states q = q1 . . . qn and

q′ = q′1 . . . q
′
n, such that {p|q↑p} = {p|q′ ↑p} and {a|q a−→} 6= {a|q′ a−→}. By Definition 2.17, we can

deduce that, for i ∈ [1, n], holds {p|qi ↑p} = {p|q′i ↑p}. Since all B1, . . . , Bn satisfy Property 3.14,

we have {a|qi
a−→} = {a|q′i

a−→}, for i ∈ [1, n]. Consequently, if only the interaction model is applied,

{a|q a−→} = {a|q′ a−→} by (10). The priority model can only remove transitions from these states
simultaneously, as the sets of outgoing transitions are equal. Thus, states q and q′ cannot violate
Property 3.14.

Propositions 3.18 and 3.19 show that composition of behaviours with glue operators in the clas-
sical semantics preserves, respectively, Properties 3.10 and 3.14. Therefore, for an application of
a hierarchical glue operator in the classical semantics to a set of atomic components, all satisfying
the same property (recall that Property 3.10 implies Property 3.14), we can iteratively construct
the corresponding operator in the offer semantics. We start at the lowest level of operator hier-
archy, i.e. from the atomic behaviours. Since atomic behaviours satisfy one of the properties, the
corresponding glue operator in the offer semantics can be generated and the composed behaviour
also satisfies the property. Repeating this reasoning for the operators on higher levels, we obtain
the corresponding hierarchy of glues in the offer semantics.

In general, glue operators do not preserve Property 3.5.

Example 3.20. Recall Example 2.9. All behaviours in Figure 2a satisfy Property 3.5. Applying
the glue operator defined, in the classical semantics, by the interaction model γ = {p, q, r, s}
and the priority model π = {p ≺ r} to B1 and B2, results in the composed behaviour shown in
Figure 11. In the state 13, p is offered, since it is offered by B1, however it is forbidden by the

26

qq q qp p

s s

s s

r r

r r

t
t

t
t tt

135

235 236

146145

245 246

136

Figure 12: Composed behaviour of a hierarchical system from Example 3.20.

priority model. If we consider a glue operator on the next level of hierarchy with γ = {p, q, r, s, t}
and π = {t ≺ p} (notice that this is a different glue operator from the one used in the top level
of Example 2.9) the application of the algorithm in Figure 6 will generate an incorrect extended
interaction model (see the next example).

Note 3.21. Notice that Property 3.5 is preserved by glue operators in hierarchical systems where
all priority models are applied after all interaction models.

For any behaviour, Property 3.5 implies Property 3.10. Thus, hierarchical systems with atomic
behaviours that satisfy Property 3.5 can always be transformed into offer semantics, but the
algorithm in Figure 6 can only be applied to the lowest level of hierarchy.

Example 3.22. Consider behaviours and glue operators from the previous example. For the
first level of hierarchy the algorithm in Figure 6 generates the extended interaction model γ′1 =
{ṗr, q̇, ṙ, ṡ}. The composed behaviour B (Figure 11) does not satisfy Property 3.5, but it satisfies
Property 3.10. Thus, the extended interaction model on the second level of hierarchy can be
generated. If we consider behaviours B (Figure 11) and B3 (Figure 2a) and a glue operator on
the next level of hierarchy defined by γ = {p, q, r, s, t} and π = {t ≺ p} the application of the
algorithm in Figure 6 will generate an incorrect extended interaction model. The final composed
system in the classical semantics is shown in Figure 12. The algorithm in Figure 6 generates the
extended interaction model γ′′2 = {ṗ, q̇, ṙ, ṡ, ṫ p}. Two transitions t from the state 135 (dashed in
Figure 12) are present in the system in the classical semantics, as interaction p is not available
in this state, however p is offered at this state and interaction ṫ p does not allow transitions from
this state. The extended interaction model has to be enlarged with the interaction ṫ q s, which
allows transitions t from the state 135 and does not add transitions from the state 145, as s is
offered at that state. Thus, the hierarchy of extended interaction models γ′1 = {ṗ r, q̇, ṙ, ṡ} and
γ′2 = {ṗ, q̇, ṙ, ṡ, ṫ p, ṫ q s} generates the equivalent composed system.

If we consider a hierarchical system in the classical semantics, such that all atomic behaviours
satisfy Property 3.14, it is possible to build an equivalent flat system in the offer semantics directly.
Since extended interaction model generation depends only on the composed system, the extended
interaction model generated for the highest level of hierarchy can be applied directly to the set
of atomic behaviours, from which we start building the hierarchical system. Thus, instead of
considering each level of hierarchy separately, we can start from the final composed system and,
based on the knowledge of its states, generate a flat glue operator in the offer semantics.

27

4 Representations of the interaction model

In the remainder of the paper, we adapt the existing algebraic theory of representations of interac-
tion models to the semantics based on the offer predicate. Indeed, as it was shown in Section 2.4,
this semantics allows us to encode priorities as an extension to the interaction models, by using
additional port typings. Hence, the existing algebraic theory can also be adapted to encompass
priorities in the offer-based semantics. In the following sections, we rely on these algebra exten-
sions to define transformations from glue operators into Boolean formulas and vice-versa, which,
in particular, allow the synthesis of connectors from Boolean state properties.

In this section, we briefly recall the syntax and semantics of the algebras used to represent BIP
interaction models. All the algebras are parameterised by a set P of all the ports in a given system.
The semantics of the Algebra of Interactions is given in terms of sets of interactions by a function

‖·‖ : AI(P) → 22
P

. The corresponding equivalence relation on AI(P) is defined as follows: two
terms x, y ∈ AI(P) are equivalent x ' y iff ‖x‖ = ‖y‖. For any other algebra, A(P), among those
appearing in the paper, we define its semantics by the function |·| : A(P) → AI(P). A function

‖·‖ : A(P) → 22
P

is obtained by composing |·| : A(P) → AI(P) and ‖·‖ : AI(P) → 22
P

. The
axiomatisation of AI(P) given in [7] is sound and complete with respect to '. Hence, for other
algebras, the equivalences induced by ‖·‖ and |·| coincide.

Below, we assume that a set of ports P is given, such that 0, 1 6∈ P .
For any set X of propositional variables, we denote by B[X] the corresponding Boolean algebra

generated by X. For presentation clarity, we will often omit the conjunction operator and write
a ∨ bc instead of a ∨ (b ∧ c).

4.1 Algebra of Interactions

The Algebra of Interactions is used to define the interaction semantics of other algebras. The
elements of this algebra can be bijectively mapped to interaction models, i.e. subsets of 2P .

Syntax. The syntax of the Algebra of Interactions, AI(P), is defined by the following grammar

x ::= 0 | 1 | p ∈ P | x · x | x+ x , (32)

where ‘+’ and ‘·’ are binary operators, respectively called union and synchronisation. Synchroni-
sation binds stronger than union.

As follows from the interaction semantics given below, the additive identity element 0 repre-
sents blocking, since it does not authorise any interaction. The multiplicative identity element
1 corresponds to the empty interaction, which represents idling (see the discussion after Defini-
tion 2.1).

Semantics. The semantics of AI(P) is given by the function ‖ · ‖ : AI(P)→ 22
P

, defined by

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
{
{p}
}
,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,

‖x1 · x2‖ =
{
a1 ∪ a2

∣∣∣ a1 ∈ ‖x1‖, a2 ∈ ‖x2‖},
(33)

for p ∈ P , x1, x2 ∈ AI(P). Terms of AI(P) represent sets of interactions between the ports P .

Sound and complete axiomatisation of AI(P) with respect to the semantic equivalence is
provided in [7]. In a nutshell, (AI(P),+, ·, 0, 1) is a commutative semi-ring idempotent in both +
and ·.

28

4.2 Algebra of Connectors

The Algebra of Connectors provides an algebraic formalisation for structuring the interaction
models. It underlies the graphical notation (e.g. Figure 13) and the syntax for connectors used in
the BIP language.

Syntax. The syntax of the Algebra of Connectors, AC(P), is defined by the following grammar

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | x+ x ,

(34)

for p ∈ P , and where ‘+’ is a binary operator called union, ‘·’ is a binary operator called fusion,
and brackets ‘[·]’ and ‘[·]′’ are unary typing operators. Fusion binds stronger than union.

Union has the same meaning as union in AI(P). Fusion is a generalisation of the synchronisa-
tion in AI(P). Typing is used to form typed connectors: ‘[·]’ defines synchrons (need synchroni-
sation with other ports in order to interact) and ‘[·]′’ defines triggers (can initiate an interaction).

In order to simplify notation, we will omit brackets on 0, 1, and ports p ∈ P , as well as ‘·’ for
the fusion operation.

Definition 4.1. In a system with a set of ports P , connectors are elements of AC(P).

The operations of the Algebra of Connectors satisfy the following axioms.

� Union ‘+’ is associative, commutative, idempotent and has the identity element 0.

� Fusion ‘·’ is associative, commutative and has the identity element 1. It is idempotent on
monomial connectors, i.e., for any x ∈ AC(P), not involving the union operation, we have
x · x = x.

� Typing ‘[·]∗’ satisfies the following axioms, for x, y, z ∈ AC(P) and [·]α, [·]β ∈
{

[·]′, [·]
}

arbitrary typings (trigger or synchron):

1. [0] = [0]′,

2. [[x]α]β = [x]β ,

3. [x+ y]α = [x]α + [y]α,

4. [x]′[y]′ = [x]′[y] + [x][y]′.

Complete axiomatisation of AC(P) with respect to the semantic equivalence is provided in [8].

Semantics. The semantics of AC(P) is given by the function | · | : AC(P)→ AI(P) (we use the∑
and

∏
notation for, respectively, the union and fusion of multiple terms of AC(P)):

|[p]| = p , |x1 + x2| = |x1|+ |x2| ,

∣∣∣∣∣
n∏
i=1

[xi]

∣∣∣∣∣ =

n∏
i=1

|xk| , (35)∣∣∣∣∣∣
n∏
i=1

[xi]
′
m∏
j=1

[yj]

∣∣∣∣∣∣ =

n∑
i=1

|xi|

∏
k 6=i

(
1 + |xk|

) m∏
j=1

(
1 + |yj |

) (36)

for n > 0, m ≥ 0, x1, . . . , xn, y1, . . . , ym ∈ AC(P) and p ∈ P ∪ {0, 1}.

Figure 13 shows four basic examples of the graphical representation of connectors. Triggers
are denoted by triangles, whereas synchrons are denoted by bullets. The interaction semantics of
the four connectors is given in the sub-figure captions.

29

p q r

(a)
Rendezvous pqr
‖pqr‖ = {pqr}

p q r

(b) Broadcast p′qr
‖p′qr‖ = {p, pq, pr, pqr}

p q r

(c) Atomic
broadcast p′[qr]
‖p′[qr]‖ = {p, pqr}

p q r

(d) Causal chain p′[q′r]
‖p′[q′r]‖ = {p, pq, pqr}

Figure 13: Basic connector examples

4.3 Algebra of Causal Interaction Trees

The Algebra of Causal Interaction Trees serves as pivot for transformations between all other
algebraic representations. It makes explicit the causal dependencies between ports contributing
to the interactions defined by a connector. In particular, this allows efficient computation of the
Boolean representation for connectors and, conversely, the synthesis of connectors from Boolean
formulas.

Syntax. The syntax of the Algebra of Causal Interaction Trees, T (P), is given by

t ::= a | a→ t | t⊕ t , (37)

where a ∈ AI(P) is an interaction, i.e. 0, 1 or a synchronisation of ports (without the use of
the union operator), and ‘→’ and ‘⊕’ are respectively the causality and the parallel composition
operators. Causality binds stronger than parallel composition. Notice that a causal interaction
tree can have several roots.

“Atomic” strongly synchronised interactions in the nodes of a causal interaction tree are the
building blocks for the interactions provided by the connector. The causality operator defines
a dependency between two interactions: a → b means that for b to participate in the overall
interaction, a must also participate. The parallel composition allows to combine interactions
without introducing dependencies: any combination of a and b can participate in a⊕ b.

The causality operator is right- (but not left-) associative, for interactions a1, . . . , an, we have
a1 → (a2 → (· · · → an) . . .)) = a1 → a2 → · · · → an. We call this construction a causal chain.

Semantics. The semantics of T (P) is given by the function | · | : T (P)→ AI(P)

|a| = a , |a→ t| = a
(

1 + |t|
)
, |t1 ⊕ t2| = |t1|+ |t2|+ |t1| |t2| , (38)

where a ∈ 2P ∪ {0, 1} is an interaction and t, t1, t2 ∈ T (P).

A sound axiomatisation of T (P) is provided in [10]. Rather than reproduce it here, we directly
provide the extended version in Section 5.1.

4.4 Systems of Causal Rules

Systems of causal rules represent an intermediate structure between causal interaction trees and
arbitrary Boolean formulas. They directly encode the causality information explicit in the causal
interaction trees, by transforming causality relations into dual Horn clauses. Apart from support-
ing connector synthesis, they provide a convenient way for expressing properties to be enforced by
the glue operators (see Section 6 for some examples). Causal rules have also served as basis for
the macro-notation used to specify the glue in Dy-BIP—a dynamic flavour of BIP [15].

30

Definition 4.2. A causal rule is a Boolean formula in B[P] of the form E ⇒ C. The effect E is
either the constant tt or a port variable p ∈ P . The cause C is either a constant, tt or ff, or a
disjunction of interactions, i.e.

∨n
i=1 ai where, for all i ∈ [1, n], ai are conjunctions of positive port

variables.

Note 4.3. Notice that a1 ∨ a1 a2 = a1, and therefore causal rules can be simplified by replacing
p⇒ a1 ∨a1 a2 with p⇒ a1). We assume that all the causal rules are simplified by this absorption
rule.

Definition 4.4. A system of causal rules is a set R = {p⇒ xp}p∈P∪{tt}. An interaction a ∈ 2P

satisfies the system R (denoted a |= R), iff the characteristic valuation of a on P satisfies the

formula
∧
p∈P∪{tt}(p⇒ xp). We denote by |R| def=

∑
a|=R a the union (in terms of the Algebra of

Interactions) of the interactions satisfying R. Thus we have | · | : CR(P)→ AI(P), where CR(P)
is the set of all systems of causal rules over the set of port variables P .

4.5 Transformations between algebraic representations of interaction
models

Transformations AC(P)
τ

�
σ
T (P), T (P)

R

� CR(P) and CR(P) � B[P] were defined in [10] and

have been shown to respect '. Below, we recall the transformations, which will be used later in
the paper.

σ : T (P)→ AC(P) is defined recursively by putting

σ(a) = [a] , σ(a→ t) = [a]′ [σ(t)] , σ(t1 ⊕ t2) = [σ(t1)]′ [σ(t2)]′ . (39)

We define R : T (P)→ CR(P) by putting

R(t) = {p⇒ cp(t)}p∈P∪{tt} , (40)

where the function cp : T (P) → B[P] is defined recursively as follows. For a ∈ 2P (with p 6∈ a)
and t, t1, t2 ∈ T (P), we put

cp(0) = ff , ctt(0) = ff ,

cp(p→ t) = tt , ctt(1→ t) = tt ,

cp(pa→ t) = a , ctt(a→ t) = a ,

cp(a→ t) = a ∧ cp(t) ,
cp(t1 ⊕ t2) = cp(t1) ∨ cp(t2) , ctt(t1 ⊕ t2) = ctt(t1) ∨ ctt(t2) .

Observe that this transformation associates to each port p ∈ P a causal rule p⇒ C, where C
is the disjunction of all prefixes leading from roots of t to some node containing p, including the
ports of this node other than p.

The transformation CR(P) → T (P) consists of two steps. First, one saturates the system of
causal rules. Definition 4.5 below, defines the notion of a saturated system fo causal rules formally.
Intuitively, saturation consists in making all causal rules self-contained in terms of information
about the constraints imposed by the system.

Definition 4.5. A system of causal rules {pi ⇒ xi}ni=1 is saturated iff, for all i ∈ [1, n], xi =
xi[xj/pj], where xi[xj/pj] is obtained by substituting xj for pj in xi, for all j 6= i.

For a given system of causal rules R = {pi ⇒ xi}ni=1, we denote by Rsat the corresponding
saturated system.

In [10] it was shown that R and the corresponding Rsat are equivalent.

31

Given a saturated system of causal rules Rsat = {p⇒ xp}p∈P∪{tt} with xp =
∨mp

i=1 a
p
i we build

an auxiliary set
Y = {papi | p ∈ P, i ∈ [1,mp]} ∪ {atti | i ∈ [1,mtt]} (41)

by taking all monomials from the causes of the rules conjuncted with the corresponding effects. As
shown in [10], this set comprises all “atomic” interactions allowed by the system of causal rules,
that is sets of ports that can only appear together in a valid interaction. An inclusion tree, built
from the elements of the set Y , is a corresponding causal tree for the system of causal rules.

5 Algebra extensions

In Section 2.3, we have replaced the classical BIP combination of interaction and priority models
with an extended interaction model, where each occurrence of a port in an interaction is annotated
with one of the three types: firing, activation and negative.

Recall (Section 4) that, for any algebra A(P) in our context, we define, the equivalence on

A(P) by putting, for x, y ∈ A(P), x ' y iff ‖x‖ = ‖y‖, where ‖·‖ : A(P)→ 22
P

is the interaction
semantics of the algebra. As a simple corollary of the results in [9], ‖x‖ = ‖y‖ is equivalent to
‖x‖(B) = ‖y‖(B), for any finite family B of behaviours (where ‖x‖(B) denotes the application
of an interaction model ‖x‖ to the set of behaviours B). However, this is not the case for ex-
tended interaction models, where ‖x‖ = ‖y‖ implies ‖x‖(B) = ‖y‖(B), for any finite family B of
behaviours, but the converse implication does not hold (cf. Lemma 2.26).

Definition 5.1. Let A(P) be an algebra, ‖·‖ : A(P)→ 22
P

. Two terms x, y ∈ A(P) are equivalent
x ∼ y iff, for any finite family B of behaviours, ‖x‖(B) = ‖y‖(B).

The Algebra of Interactions, AI(P), extends in a straightforward manner. Indeed, it is suffi-
cient to consider AI(P ∪ Ṗ ∪ P) with the equivalence ∼.

We can now similarly extend the other algebras [4]. The interaction semantics of the causal
interaction trees |·| : T (P) → AI(P) is transposed without any change to |·| : T (P ∪ Ṗ ∪ P) →
AI(P ∪Ṗ ∪P). Similarly, the functions τ : AC(P)→ T (P) and σ : T (P)→ AC(P) are transposed
identically to AC(P ∪ Ṗ ∪P) and T (P ∪ Ṗ ∪P). The same goes for the mapping R(t) associating
to a causal interaction tree t ∈ T (P) the corresponding system of causal rules [10]. The only
difference is that, in CR(P ∪ Ṗ ∪ P) we introduce the following additional axiom: ṗ ⇒ p, for all
p ∈ P (cf. the discussion leading up to (26)).

The first consequence of this extension is that, rather than extending the existing graphical
representation of connectors, it can be used as is to express priorities and activation conditions (the
use of the offer predicate in the positive premises of the rule (30)) by adding a trivalued attribute
to ports: firing, activation and negative. It is important to observe the difference between, on
one hand, adding an attribute to ports and, on the other hand, modifying the typing operator
(synchron vs. trigger typing), since the latter is applied at each level of the connector hierarchy,
whereas the former is applied to ports, that is only at the leaves of the connector.

Example 5.2. Let P = {p, q, r, s} and consider the (non-extended) interaction model γ =
{p, q, pr, ps, prs} and the priority model π = {pr ≺ q, ps ≺ q, prs ≺ q}. The glue operator
πγ can be equivalently representated in the extended algebas as follows. The corresponding ex-
tended interaction model is {ṗ, q̇, ṗ q ṙ , ṗ q ṡ , ṗ q ṙ ṡ}, which can be represented by the union of
two extended connectors: q̇+ ṗ′[q′ ṙ ṡ] or, equivalently, q̇+ ṗ′[ṙ q][ṡ q]. The causal interaction trees
corresponding to the second summands in these connectors are shown, respectively, in Figure 14a
and Figure 14b.

32

ṗ

q

ṙ ṡ

(a)

ṗ

q ṙ q ṡ

(b)

Figure 14: A pair of equivalent causal interaction trees.

5.1 Refinement of the extension

When we apply x, y ∈ AI(P ∪ Ṗ ∪ P) to compose behaviour with operational semantics of Defi-
nition 2.25, ‖x‖(B) = ‖y‖(B) does not imply x = y. AI axioms are not complete (although still
sound) with respect to ∼, since this equivalence is weaker than '. Consequently, on T (P ∪ Ṗ ∪P),
∼ is also weaker than '.

Example 5.3. Let P = {p, q, r, s} and consider the T (P ∪ Ṗ ∪ P) trees shown in Figure 14.
The causal interaction tree in Figure 14a defines a redundant interaction. Indeed,

‖ṗ→ q → (ṙ ⊕ ṡ)‖ = {ṗ, ṗ q , ṗ q ṙ , ṗ q ṡ , ṗ q ṙ ṡ } .

Although the interaction ṗ q does contain a firing port ṗ, it is redundant (Lemma 2.26). We
conclude, therefore, that the causal interaction trees in Figure 14a and Figure 14b are equivalent,
since

‖ṗ→ (q ṙ ⊕ q ṡ)‖ = {ṗ, ṗ q ṙ , ṗ q ṡ , ṗ q ṙ ṡ } .

The above example illustrates the idea that the nodes of causal interaction trees, which do not
contain firing ports, can be “pushed” down the tree.

Another notable case leading to redundant interactions corresponds to trees containing contra-
dictory port typings. For example, either of the two equivalent trees p→ ṗ and p ṗ authorises the
interaction p ṗ. However, when considered in the context of the rule (30), this interaction generates

two conflicting premises qi
p−→ q′i and qi 6 ↑p. Thus, this instance of the rule (30) does not authorise

any transitions and the interaction p ṗ can be safely discarded. This example corresponds to the
additional axiom ṗ⇒ p imposed in [11] on the Boolean formulas in B[P, Ṗ]. Similarly, redundant
interactions appear when a tree contains other distinct port typings of the same port: p and p,
generating conflicting premises qi ↑p and qi 6 ↑p; p and ṗ, whereof the former generates the premise

qi ↑p redundant alongside the premise qi
p−→ q′i generated by the latter.

Below, we provide a set of axioms reducing interaction redundancy. We enrich axioms for
T (P ∪ Ṗ ∪ P) from [10] by adding some new ones, specific for the trivalued port attribute.

Axioms. 1. For all p ∈ P and a ⊆ P ∪ Ṗ ∪ P such that a 6= ∅,

(a) a · 0 = 0,

(b) a · 1 = a, for a 6= 0,

(c) ṗ · p = ṗ (cf. the additional axiom ṗ⇒ p in CR(P ∪ Ṗ ∪ P)),

(d) ṗ · p = p · p = 0.

2. Parallel composition, ‘⊕’, is associative, commutative, idempotent, and its identity element
is 0.

33

3. a→ 0 = a, for all a ⊆ P ∪ Ṗ ∪ P .

4. 0→ t = 0, for all t ∈ T (P ∪ Ṗ ∪ P).

5. ap→ b = ap→ bp for all a, b ⊆ P ∪ Ṗ ∪ P , p ∈ P ∪ Ṗ ∪ P .

6. c → a → b → t = c → ab → t for all a, b, c ⊆ P ∪ Ṗ ∪ P , such that fire(a) = ∅, and
t ∈ T (P ∪ Ṗ ∪ P).

7. a→ (t1 ⊕ t2) = a→ t1 ⊕ a→ t2, for all a ⊆ P ∪ Ṗ ∪ P , t1, t2 ∈ T (P ∪ Ṗ ∪ P).

Axioms 1 equalise redundant interactions due to contradictory port typings, whereas Axiom 5
propagates ports down in order to find contradictory port typings. Axiom 6 eliminates the nodes
with empty firing support. Axioms 2, 3, 4 and 7 are the same as in [10]. The two remaining
axioms from [10] are replaced by Lemmata 5.6 and 5.7 in this paper.

Proposition 5.4. The equivalence relation ∼ on T (P ∪ Ṗ ∪ P) is a congruence.

Sketch of the proof. The proof is the same as for T (P) [10]. For any two trees t1, t2 ∈ T (P ∪Ṗ ∪P)
and for any context C(z) ∈ T (P ∪ Ṗ ∪ P ∪ {z}), we have to show that the equivalence t1 ∼ t2
implies C(t1/z) ∼ C(t2/z), where C(ti/z) is the tree obtained, by replacing in C(z) all occurrences
of z by ti. Since the semantics T is compositional [10, Proposition 4.6], structural induction on
the context C(z) proves the proposition.

Proposition 5.5. The above axiomatisation is sound with respect to ∼.

Proof. Since, by Proposition 5.4, the equivalence relation ∼ is a congruence, it is sufficient to show
that all the axioms respect ∼. This is proved by verifying that the semantics for left and right
sides coincide.

Axioms 2, 3, 4 and 7 are the same as in [10]. Hence, their respective left- and right-hand sides
are related by ', which is stronger than ∼. Axiom 1(a) and Axiom 1(b) are trivial. Axiom 1(c)
is a consequence of Lemma 2.26. In the Axiom 1(d), both pairs p and p, and ṗ and p produce
conflicting premises in the rule (30) and, therefore, do not generate any transitions. For the
Axiom 6, we have

‖c→ a→ b→ t‖ = {c, a c, a b c} ∪ {a b c a2 | a2 ∈ ‖t‖} , (42)

‖c→ ab→ t‖ = {c, a b c} ∪ {a b c a2 | a2 ∈ ‖t‖} . (43)

Hence, ‖c→ a→ b→ t‖ = ‖c→ ab→ t‖ ∪ {ac}. Since c ⊆ ac and fire(a) = ∅, we conclude, by
Lemma 2.26, that the two causal interaction trees are equivalent: c→ a→ b→ t ∼ c→ ab→ t.

For the Axiom 5, we have ‖ap→ b‖ = {ap, abp} = ‖ap→ bp‖. Thus ap→ b ' ap→ bp, which
implies ap→ b ∼ ap→ bp.

Notice that, for the soundness of Axiom 6, it is essential that a is not a root node, since
application of Lemma 2.26 is made possible by the presence of the interaction c ∈ ‖c→ a→ b→ t‖.
For a counter-example, consider two interaction trees p→ q̇ and pq̇. The former allows self-loops
in states of a composed system, where p is not offered, whereas the latter does not.

Lemma 5.6. For all a, b ⊆ P ∪ Ṗ ∪ P , such that fire(b) = ∅, holds the equality a→ b = a.

Proof. a→ b = a→ b→ 0→ 0 = a→ b · 0→ 0 = a→ 0→ 0 = a (Axioms 3, 6)

Lemma 5.7. For all a ⊆ P ∪ Ṗ ∪P and t ∈ T (P ∪ Ṗ ∪P), holds the equality a→ 1→ t = a→ t.

34

Proof. If t = 0 the statement of this lemma is a special case of Lemma 5.6 with b = 1. If t 6= 0 it can
be represented as a parallel composition of non-zero trees t =

⊕n
i=1 ri → ti, with ri ⊆ P ∪ Ṗ ∪ P .

By Axioms 6 and 7, we have

a→ 1→ t =

n⊕
i=1

(a→ 1→ ri → ti) =

n⊕
i=1

(a→ ri → ti) = a→
n⊕
i=1

(ri → ti) = a→ t .

Lemma 5.8. For all a, bi, c ⊆ P ∪ Ṗ ∪ P , such that fire(a) = ∅ and ti ∈ T (P ∪ Ṗ ∪ P), holds the
equality

c→ a→
n⊕
i=1

(bi → ti) = c→
n⊕
i=1

(abi → ti) .

Proof. As above, applying Axioms 6 and 7, we have

c→ a→
n⊕
i=1

(bi → ti) =

n⊕
i=1

(c→ a→ bi → ti) =

n⊕
i=1

(c→ abi → ti) = c→
n⊕
i=1

(abi → ti) .

5.2 Normalisation of extended algebras

As it was shown in Example 5.3, causal interaction trees can contain nodes generating redun-
dant interactions. These nodes can be removed by consecutively applying semantics-preserving
transformations based on the axioms of the Algebra of Causal Interaction Trees.

Definition 5.9. A causal interaction tree t ∈ T (P ∪ Ṗ ∪ P) is in normal form if it satisfies the
following properties:

1. All nodes of t except roots have non-empty firing support.

2. In any causal chain of t a port p can appear more than once only in the form ap→ · · · → bṗ,
where a, b ⊆ P ∪ Ṗ ∪ P and p ∈ P .

In the proof of Proposition 5.10 below, we provide a constructive procedure for normalising
causal interaction trees.

Proposition 5.10 (Normal form for causal interaction trees). Every causal interaction tree t ∈
T (P ∪ Ṗ ∪ P) has a normal form t = t̃ ∈ T (P ∪ Ṗ ∪ P).

Proof. Consider t ∈ T (P ∪Ṗ ∪P). We start by computing t1 = t with all nodes, except potentially
the roots, having non-empty firing support.

Let a be a non-root node of t with fire(a) = ∅, such that the tree s rooted in a does not have
any nodes with empty firing support. If s is empty, that is a is a leaf then remove a from the tree
(Lemma 5.6). Otherwise, let c be the parent of a, which exists since a is not a root and move the
parallel composition operator up using Axiom 7:

c→

(
(a→ s)⊕

n⊕
i=1

ti

)
= (c→ a→ s)⊕

(
n⊕
i=1

c→ ti

)
. (44)

The sub-tree s can be further decomposed as s =
⊕n

i=1(bi → si), so, by Lemma 5.8, we have

c→ a→ s = c→ a→
n⊕
i=1

(bi → si) = c→
n⊕
i=1

(abi → si) . (45)

35

Each of nodes abi has non-empty firing support, since fire(bi) 6= ∅ by the choice of a. Substituting
(45) into (44) and applying Axiom 7, we obtain(

c→
n⊕
i=1

(abi → si)

)
⊕

(
n⊕
i=1

c→ ti

)
= c→

((
n⊕
i=1

abi → si

)
⊕

n⊕
i=1

ti

)
.

In the resulting tree, there is one node with empty firing support less than in t. Hence,
repeating this procedure as long as there are such nodes, we will compute a tree t1, where all
nodes except roots have non-empty firing support. This computation is confluent, since the order
is irrelevant among causally independent nodes, whereas among causally dependent ones it is fixed
by the algorithm.

Consider a causal chain ap̃ → · · · → bp̂ within t1, with p̃ and p̂ being two typings of the
same port. If p̃ = p and p̂ = ṗ, there is nothing to do, since such dependencies are allowed by
Definition 5.9. Otherwise, we propagate p̃ down by applying Axiom 5:

ap̃→ c1 → · · · → ck → bp̂ = ap̃→ c1p̃→ · · · → ck → bp̂ = . . . = ap̃→ c1p̃→ · · · → ckp̃→ bp̂p̃ .

Case 1: p̃ = p̂ or both p̃, p̂ 6= p. We apply Axioms 1(c) and 5:

ap̃ → c1p̃ → · · · → ckp̃ → bp̂p̃ = ap̃ → c1p̃ → · · · → ckp̃ → bp̃ = ap̃ → c1 → · · · → ck → b .

Case 2: p̃ 6= p̂ and either p̃ = p or p̂ = p. We apply Axioms 1(d), 3 and 5:

ap̃→ c1p̃→ · · · → ckp̃→ bp̂p̃ = ap̃→ c1p̃→ · · · → ckp̃→ 0 =

= ap̃→ c1 → · · · → ck → 0 = ap̃→ c1 → · · · → ck .

To compute t̃, we apply this transformation to all relevant causal chains within t1.

When synthesising connectors from causal interaction trees, their complexity can be reduced
by tree normalization. Furthermore, since semantics-preserving transformations can be applied in
both directions, a normal form on causal interaction trees induces a normal form on connectors.

Definition 5.11. A connector x ∈ AC(P ∪ Ṗ ∪ P) is in normal form iff x = σ(t), where t is a
causal interaction tree in normal form and σ is the function defined in (39).

The following proposition is a direct consequence of the definitions of the normal form of causal
interaction trees and function σ.

Proposition 5.12 (Normal form for connectors). A connector x ∈ AC(P ∪ Ṗ ∪ P) in normal
form has the following properties:

1. Nodes at every hierarchical level of the connector, except the bottom one, have at least one
trigger.

2. Each node at the bottom hierarchical level, is a strong synchronisation of pairwise distinct
ports.

3. Every node at the bottom hierarchical level, without firing ports, has only triggers as ances-
tors.

36

5.3 Simplification of systems of causal rules

The port typings in the algebraic representations of extended interaction models, increase the
complexity of systems of causal rules: without additional simplifications, the number of rules in
the system is essentially tripled. The goal of this sub-section is to prove that we can consider only
rules with firing port typings or tt as effects, and other rules can be removed as redundant.

The generation of systems of causal rules from Boolean formula starts with φ ∈ B[P ∪ Ṗ] with
additional axiom ṗ ⇒ p. This formula is transformed into conjunctive normal form (CNF). At
this point we change the domain to consider φ as a formula from B[P ∪ Ṗ ∪P] with two additional
axioms: ṗ ⇒ p and p XOR p. Essentially, this boils down to considering negative occurrences
of variables from P as positive occurrences of variables from P . Thus, seen as a formula from
B[P ∪ Ṗ ∪P], φ only has firing port variables in negative form. All other variables appear only in
positive form.

We then proceed exactly as in [10]: We have φ′ = C1 ∧ C2 ∧ · · · ∧ Cn with, for k ∈ [1, n],
Ck =

∨
i∈Ik pi ∨

∨
j∈Jk pj , where Ik ∩ Jk = ∅, pi ∈ P ∪ Ṗ ∪ P and pj ∈ Ṗ for all i ∈ Ik and

j ∈ Jk. We can now rewrite every clause Ck, with Jk 6= ∅, as a disjunction of dual Horn clauses
Ck =

∨
j∈Jk

(
pj ∨

∨
i∈Ik pi

)
. By distributivity, we obtain a representation of φ′ as a disjunction of

dual Horn formulas and, after combining the clauses with the same negative variable, we obtain
φ′ = R1 ∨R2 ∨ · · · ∨Rm with, for k ∈ [1,m],

Rk =
∧
i∈Ĩk

pi ∨ ∨
j∈J̃k,i

aj

 =
∧
i∈Ĩk

pi ⇒ ∨
j∈J̃k,i

aj

 ,

where, for all i ∈ Ĩk, pi ∈ Ṗ ∪ tt and, for all j ∈ J̃k,i, aj is ff, tt, or a conjunction of positive
variables. Thus, each Rk is a system of causal rules, with only firing variables in the effects.

The algorithm synthesising causal interaction trees from systems of causal rules (see Sec-
tion 4.4) expects that the input system is complete in the sense that it should have one rule for
each port variable. Thus, for each p ∈ P ∪ P the rule p ⇒ tt has to be added to the system.
However, the rules with non-firing effects do not impose additional constraints on the system.
Theorem 5.13 shows that such rules do not affect the causal interaction tree generated from the
system of causal rules. Therefore, the synthesis algorithm remains correct, even when simplified
by excluding all causal rules with effect p ∈ P ∪ P .

Theorem 5.13. Let R be a system of causal rules over P ∪ Ṗ ∪P , where all rules with the effect
p ∈ P ∪ P have the form p ⇒ tt, and let R′ be a set of causal rules containing only rules from
R with effects p ∈ Ṗ ∪ tt. Then, the causal interaction trees, generated for R and R′ with the
procedure described in Section 4.5, are equivalent with respect to ∼.

Proof. The construction of causal interaction trees consists of two steps: saturation of the system
of causal rules and building the tree. Clearly, rules of the form p⇒ tt do not affect the saturation
of other rules. On the other hand, such rules are saturated to p ⇒ C, where C is the saturated
cause of the rule with the effect tt.

Let Y and Y ′ be the auxiliary sets (41) containing monomials of the causes composed with
the effects of the corresponding rules, for R and R′ respectively. Clearly, Y ′ ⊆ Y and Y \ Y ′ ⊆
{pc | p ∈ P ∪P , c ∈ Y ′∪{∅}}.9 Hence, in the inclusion tree corresponding to R, elements of Y \Y ′
can generate additional nodes compared to the inclusion tree corresponding to R′. Every such
node necessarily appears in a context of the form c→ pc→

⊕
(pcqi → ti) for some port variables

qi and sub-trees ti. However, by Axioms 1 and 6, c → pc →
⊕

(pcqi → ti) = c →
⊕

(pcqi → ti),
which is a fragment of the tree corresponding to R′.

9 It is possible that c = ∅ if the rule for the effect tt is tt ⇒ tt. Recall that the empty interaction corresponds
to 1 in the algebra of Causal Interaction Trees.

37

The complexity of causal interaction tree synthesis algorithm [10] greatly depends on the
number of rules in the system. Indeed, the saturation phase consists in substituting each port in
the cause part of each rule with the cause of the corresponding rule, where this port is the effect.
This is repeated until a fixpoint is reached. Theorem 5.13 removes two thirds of the rules, thus
greatly reducing the synthesis complexity.

We have shown above that, while synthesising causal interaction trees from Boolean formulas,
we can discard rules with non-firing effects in the intermediate systems of causal rules. The-
orem 5.14 below shows that we can also discard rules with non-firing effects, when generating
systems of causal rules from causal interaction trees, thus considerably reducing the obtained
Boolean formulas.

Theorem 5.14. Consider a causal interaction tree t ∈ T (P ∪ Ṗ ∪P) and a system of causal rules
R(t) = {p⇒ Cp(t)}p∈P∪Ṗ∪P∪{tt} obtained by the transformation R : T (P∪Ṗ∪P)→ CR(P∪Ṗ∪P)

defined in Section 4.5. Let R̃(t) = {p⇒ Cp(t)}p∈Ṗ∪{tt} be a system of causal rules, obtained from

R(t) by omitting rules for port variables in P ∪ P . Then holds the equivalence R(t) ∼ R̃(t).

Proof. Recall that applying the transformation R : T (P)→ CR(P) defined in Section 4.5 to a tree
t ∈ T (P), gives a system of causal rules of the form p ⇒ C, where C is a DNF Boolean formula
and each monomial is a conjunction of the nodes on the way from a root of t to p (some prefix in
t leading to p, excluding p).

R̃(t) has less constraints than R(t). Hence, it allows more interactions, i.e. ‖R(t)‖ ⊆ ‖R̃(t)‖.
Let a ∈ ‖R̃(t)‖ \ ‖R(t)‖, i.e. there exists p ∈ P ∪ P , such that p ∈ a and the rule p ⇒ C1 is
violated by a. First of all, notice that this implies immediately that a 6= ∅. Furthermore, we have
∅ ∈ ‖R(t)‖ ⇔ ∅ ∈ ‖R̃(t)‖. Let ã = a \ p.

Assume ã /∈ ‖R̃(t)‖, i.e. there exists q̇ ∈ Ṗ and a rule (q̇ ⇒ C2) ∈ R̃(t), such that q̇ ∈ ã and the
rule q̇ ⇒ C2 is violated by ã. This rule is not violated by a. Hence C2 = pC ′2 and, consequently,
p lies on all prefixes in t, leading to q̇. a ∈ ‖R̃(t)‖, q̇ ∈ ã ⊆ a, thus there is at least one prefix in
t, leading to q̇ and contained in a. As p lies on this prefix, the rule (p ⇒ C1) is satisfied by a,
contradicting the conclusion above. Therefore our assumption is wrong and ã ∈ ‖R̃(t)‖.

Since ‖R̃(t)‖ is finite and ã is a proper subset of a (i.e. ã ⊂ a and ã 6= a), by applying this
reasoning iteratively, we conclude that, for all a ∈ ‖R̃(t)‖ \ ‖R(t)‖, there exists ã ⊆ a, such that
fire(ã) = fire(a) and ã ∈ ‖R(t)‖. Hence, by Lemma 2.26, we have ‖R̃(t)‖(B) = ‖R(t)‖(B), for
any finite family of behaviours B, i.e. R(t) ∼ R̃(t).

6 Connector synthesis (example)

In order to synthesise AC(P ∪ Ṗ ∪P) connectors from B[P ∪ Ṗ] constraints, one must perform the
following steps.

1. Take the conjunction of all the constraints;

2. By adding the axioms ṗ ⇒ p and p XOR p, transform the obtained formula into a set of
systems of causal rules over P ∪ Ṗ ∪ P , as described in the previous section;

3. Saturate the obtained systems of causal rules;

4. Convert each saturated system of causal rules into a causal interaction tree;

5. Normalize all trees;

6. Generate corresponding connectors from causal interaction trees.

38

on

off

off

err

b

on off b

1

2

3

Figure 15: Main module.

This procedure is illustrated by the following example.
Consider a system providing some given functionality in two modes: normal and backup. The

system consists of four modules: the Backup module A can only perform one action a; the Main
module B (Figure 15) can perform an action b corresponding to the normal mode activity, it can
also be switched on and off , as well as perform an internal (unobservable) error transition err;
the Monitor module M is a black box, which performs some internal logging by observing the two
actions a and b through the corresponding ports al and bl; finally, the black box Controller module
C takes the decisions to switch on or off the main module through the corresponding ports onc
and offc, furthermore, it can perform a test to check whether the main module can be restarted.

We want to synthesise connectors ensuring the properties below (encoded by Boolean con-
straints).

� The main and backup actions must be logged: ȧ⇔ ȧl and ḃ⇔ ḃl ;

� Only Controller can turn on the Main module: ȯn⇔ ˙onc ;

� When Controller switches off, the Main module must stop operation: ˙offc ⇒ ˙off and

ḃ⇒ ˙offc ;

� Controller can only test the execution of Backup: ˙test⇒ ȧ ;

� Backup can only execute when Main is not possible: ȧ⇒ b ∨ ˙off ;

� Main can only switch off when ordered to do so or after a failure: ˙off ⇒ b ∨ ˙offc ;

In order to compute the required glue, we take the conjunction of the above constraints together
with the progress constraint ȧ ∨ ḃ ∨ ȯn ∨ ˙off ∨ ˙test ∨ ȧl ∨ ḃl ∨ ˙offc ∨ ˙onc stating that at every
round some action must be taken. Notice that, combined with the above constraints, the progress
constraint can be immediately simplified by absorption to ȧ ∨ ḃ ∨ ȯn ∨ ˙off . In order to simplify
the resulting connectors, we also use part of the information about the behaviour of the Main
module, namely the fact that on, on one hand, and b or off , on the other, are mutually exclusive:
on⇒ b ∧ off . We obtain the following global constraint (omitting the conjunction symbol):

(ȧ⇒ ȧl b ∨ ȧl ˙off)(ȧl ⇒ ȧ)(ḃ⇒ ḃl ˙offc)(ḃl ⇒ ḃ)(˙off ⇒ b ∨ ˙offc)(˙offc ⇒ ˙off)(˙test⇒ ȧ)

∧ (ȯn⇒ ˙onc)(˙onc ⇒ ȯn)(on⇒ b off)(ȧ ∨ ḃ ∨ ȯn ∨ ˙off) .

Recall now that causal rules must have the form p⇒ C, where p ∈ Ṗ ∪ {tt} and C is a DNF
Boolean formula on P ∪ Ṗ ∪P without negative firing variables or a logical constant. A system of
causal rules is a conjunction of such clauses. Among the constraints above, there are two that do

not have this form: on⇒ b off and ḃ⇒ ḃl ˙offc. We rewrite them as on ∨ b off and ḃ ∨ ḃl ˙offc,
and distribute over the conjunction of the rest of the constraints. Finally, we implicitly apply the
additional axioms ṗ ⇒ p and p XOR p and, making some straightforward simplifications, obtain

39

Table 1: Systems of causal rules for the example of Section 6

tt ⇒ ȧ b off ∨ ȯn b off tt ⇒ ȧ ȧl b off ∨ ȯn ˙onc b off

ȧ ⇒ ȧl b ∨ ȧl ˙off ȧ ⇒ ȧl b off

ȧl ⇒ ȧ ḃ ⇒ ff ȧl ⇒ ȧ b off ḃ ⇒ ff

ȯn ⇒ ˙onc ḃl ⇒ ḃ ȯn ⇒ ˙onc b off ḃl ⇒ ff

˙onc ⇒ ȯn ˙off ⇒ ff ˙onc ⇒ ȯn b off ˙off ⇒ ff

˙test ⇒ ȧ ˙offc ⇒ ˙off ˙test ⇒ ȧ ȧl b off ˙offc ⇒ ff

tt ⇒ ḃ ḃl on tt ⇒ ḃ ḃl on

ȧ ⇒ ȧl b ∨ ȧl ˙off ȧ ⇒ ff

ȧl ⇒ ȧ ḃ ⇒ tt ȧl ⇒ ff ḃ ⇒ ḃl on

ȯn ⇒ ff ḃl ⇒ ḃ ȯn ⇒ ff ḃl ⇒ ḃ on

˙onc ⇒ ȯn ˙off ⇒ b ∨ ˙offc ˙onc ⇒ ff ˙off ⇒ ff

˙test ⇒ ȧ ˙offc ⇒ ff ˙test ⇒ ff ˙offc ⇒ ff

tt ⇒ ȧ on ∨ ˙off on tt ⇒ ȧ ȧl b on ∨ ˙off ˙offc on ∨ ˙off b on

ȧ ⇒ ȧl b ∨ ȧl ˙off ȧ ⇒ ȧl b on ∨ ȧl ˙off ˙offc on ḃ ⇒ ff

ȧl ⇒ ȧ ḃ ⇒ ff ȧl ⇒ ȧ b on ∨ ȧ ˙off ˙offc on ḃl ⇒ ff

ȯn ⇒ ff ḃl ⇒ ḃ ˙off ⇒ b on ∨ ˙offc on ȯn ⇒ ff

˙onc ⇒ ȯn ˙off ⇒ b ∨ ˙offc ˙offc ⇒ ˙off on ˙onc ⇒ ff

˙test ⇒ ȧ ˙offc ⇒ ˙off ˙test ⇒ ȧ ȧl b on ∨ ȧ ȧl ˙off ˙offc on

40

ȧ ȧl b off

˙test

⊕ ȯn ˙onc b off

(a) First tree

ḃ ḃl on

(b) Second tree

˙off ˙offc on

ȧ ȧl

˙test

⊕

ȧ ȧl b on

˙test

⊕ ˙off b on

(c) Third tree

Figure 16: Three causal interaction trees.

ȧ offbȧl ˙test ȯn ˙oncoff b off

(a) First connector

ḃ ḃl on

(b) Second connector

on ˙test ˙off bȧ bȧl

˙test˙offc on

ȧ ȧl on

˙off

(c) Third connector

Figure 17: Connectors corresponding to trees from Figure 16.

a disjunction of three systems of causal rules. In Table 1, these systems are shown in the first
column and their corresponding saturated equivalents are shown in the second column.

The corresponding auxiliary sets (41) obtained by combining the effects with the causes are
then:{

ȧ ȧl b off, ȯn ˙onc b off ȧ ȧl b off ˙test
}
,
{
ḃ ḃl on

}
,{

ȧ ȧl b on, ȧ ȧl b on ˙test, ˙off b on, ˙off ˙offc on, ȧ ȧl ˙off ˙offc on, ȧ ȧl ˙off ˙offc on ˙test
}

T (P ∪ Ṗ ∪ P) trees, shown on Figure 16, are obtained by normalising the inclusion trees
corresponding to these sets. Applying (39) we obtain AC(P ∪ Ṗ ∪ P) connectors in Figure 17.

In terms of classical BIP, one can, for example, easily distinguish here two priorities: x a al ≺
b bl and x off ≺ b bl for all x not containing off offc. In general, priorities are replaced by local
inhibitors. In this example, these appear to characterise states of the Main module. For instance,
ȧ ȧl b off defines possible interactions involving a al when neither b nor off are possible, i.e. in
state 1 (see Figure 15).

7 Related work

The results in this paper build mainly on our previous work. However, the following related work
should also be mentioned. The comprehensive presentation of the key properties, required from
a component-based framework for the design of concurrent software and systems, could be of
relevance to other hierarchical frameworks, such as, for instance, Sofa [20], Koala [38] or rCos [29],
and for languages implementing the Fractal specification [17].

41

Table 2: Correspondence between valuations of port variables in BIP and colours in the 3-colouring
model of Reo

p ṗ BIP Reo
tt tt active and firing data flows
tt ff active, but not firing no flow due to absence of take requests
ff ff not active no flow due to absence of write requests

The approach we used in [10] for the Boolean encoding of connectors is close to that used for
computing flows in Reo connectors in [22], where it is further extended to data flow. In [28], the
authors discuss the extension of the coloring semantics of Reo [21] from the 2-colouring to the 3-
colouring model. This extension is necessary to account for context-dependencies. For example, as
suggested by its name, a LossySync channel can loose data provided on its source end. However,
the semantics of Reo channels requires that this happens only if there is no take requests on the sink
end of the channel. In the BIP context, we call this requirement maximal progress: if two distinct
interactions a ⊆ b are enabled, then, under maximal progress, we implicitly assume a ≺ b. Thus,
in BIP, maximal progress is a special case of priority. In the Reo context, this is also supported
by the results in [14]. The authors of [28] encode context-dependency by duplicating all connector
nodes: to each base node they associate a dual context node with complementary flow constraints.
This is very similar to our use of firing and negative port typings to encode priority. Furthermore,
in [28, page 5], one reads: “Whereas 2-coloring models can express synchronization, they cannot
express context-dependency: to model context-sensitive connectors, three colors seem necessary.”
This observation reflects very closely our use of the additional axiom ṗ =⇒ p in B[P, Ṗ] (see,
in particular, Section 2.3). Indeed, this axiom excludes the valuation ṗ = tt, p = ff, leaving only
three possible valuations of the two variables. It seems that the correspondence between BIP
notions of activation and firing and colours in the Reo 3-colouring model can be established as
summarised in Table 2. This suggests that our notion of witness port typings could also be used in
Reo to define nodes that allow the flow of data only if data is available (but will not be consumed)
on an additional “control” channel.

Several methodologies for synthesis of component coordination have been proposed in the
literature, e.g. connector synthesis in [1, 2, 27]. Both approaches are very different from ours.
In [1], Reo circuits are generated from constraint automata [3]. This approach is limited, in
the first place, by the complexity of building the automaton specification of interactions. An
attempt to overcome this limitation is made in [2] by generating constraint automata from UML
sequence diagrams. In [27], connectors are synthesised in order to ensure deadlock freedom of
systems that follow a very specific architectural style imposing both the interconnection topology
and communication primitives (notification and request messages). Our approach, focuses on the
properties (expressed as glue constraints) that do not bear computation, which allows us to reduce
a very hard and, in general, undecidable problem of synthesising controllers [34] to a tractable
one.

Recently a comparative study [19] of three connector frameworks—tile model [18], wire calculus
[37] and BIP[5]—has been performed. From the operational semantics perspective, this comparison
only takes in account operators with positive premises. In particular, priority in BIP is not
considered. It would be interesting to see whether using “local” offer predicate instead of “global”
priorities of the classical BIP could help generalising this work.

Finally, we should mention that the offer predicate used in our formalism has, indeed, some
similarity with the concept of barbs [31]. Although, in [31], the barbs do not appear to be used in
the premises of the SOS rules defining the semantics of the processes, it would be interesting to
further explore this relation.

42

8 Conclusion

This paper summarises and extends our work on the semantics of the BIP component-based frame-
work and, in particular, on the composition operators defined by interaction and priority models,
which we collectively call glue operators. Over the years, the semantics of the BIP glue operators
was subject to some minor, apparently innocuous modifications, which happened to have consid-
erable impact on the properties of the BIP framework. In this paper, we have provided a concise
but comprehensive overview of the main properties: compositionality, incrementality, flattening,
modularity and expressiveness, on a very fundamental level, which applies to any component-based
framework.

In the light of these fundamental properties, we have reviewed the three modifications of the
BIP semantics: the classical semantics introduced in [7]; a very slight modification introduced in
[9]; and the offer semantics, proposed in [11], which relies on the offer predicate in the negative
premises defining the semantics of priority models. We provided theoretical results and examples
showing that the classical BIP semantics has compositionality, but does not have neither flatten-
ing, nor full expressiveness; the slightly modified version, introduced in [9], has flattening and full
expressiveness, but it does not have neither compositionality, nor modularity, since it is not struc-
tural; the offer semantics [11] is structural, it has all the desired properties above. Furthermore,
this semantics generalises to a larger class of operators—using the so-called witness ports in ad-
dition to the usual interaction models and priorities—in correspondence with formulas of B[P, Ṗ],
the Boolean algebra over the sets of activation and firing port variables, P and Ṗ , respectively,
with the additional axiom ṗ =⇒ p, for each port p ∈ P .

The classical and offer semantics are not comparable: there are systems that can be assembled
in the classical semantics, but not in the offer one. We have presented a characterisation of
the behaviour hierarchy, consisting of three properties. The first property, when satisfied by all
operand behaviours, guarantees that the same glue operators (interaction and priority models)
that are used with the classical semantics, can be used with the offer semantics to obtain an
equivalent system. In general, the first property is not preserved by composition. However, it is
preserved in hierarchical systems, where all priority models are applied after all interaction models.
This allows us to conclude that the behaviour of any such system, where atomic behaviours satisfy
the first property, is not affected by switching from the classical to the offer semantics.

The second and third properties are more technical. If satisfied by all atomic behaviours in the
system, the second property, which is weaker than the first one, guarantees that the combination
of glue operators (interaction and priority models) in the classical semantics can be adapted to
the offer semantics by some additional modifications to the priority model.

The third property—the weakest of the three—guarantees only that, for any system built in
the classical semantics, if the property is satisfied by all atomic behaviours, a glue operator can
be found in the offer semantics that would construct an equivalent system with the same atomic
behaviours.

This characterisation is strict in the sense that, if a given property is violated by at least one
atomic behaviour in a set, a glue operator in the classical semantics can be exhibited, for which
the result guaranteed by the violated property does not hold when the glue operator is applied to
this set of behaviours.

The correspondence between the offer semantics of the BIP glue operators and the formulas
of B[P, Ṗ] allows us to use the full power of the Boolean algebra for the manipulation of glue
operators and their representations. In particular, it allows the synthesis of connectors from
Boolean formulas encoding coordination properties to be imposed by the glue operators.

The equivalence induced by the new operational semantics on the algebras representing the glue
operators is weaker than the standard equivalence induced by the interaction semantics. Extending
accordingly the axioms of the Algebra of Causal Interaction Trees, T (P), we define normal forms

43

for connectors and causal interaction trees. Finally, we show that the causal rule representation
can also be simplified by considering only rules with firing effects. This has direct impact on the
complexity of the synthesis algorithm. Algebra extensions are illustrated on a connector synthesis
example.

In this paper, we have only extended the axiomatisation of T (P ∪ Ṗ ∪ P). Studying corre-
sponding extensions for the axiomatisations of other algebras as well as their completeness could
be part of the future work. Another question that we leave for future work, is how to map, for
example, the AC(P) connectors with separately specified priorities into AC(P ∪ Ṗ ∪P) and back.
Indeed, in this paper we focused only on comparing the semantics and on transferring the algebraic
representation theory to the offer semantics.

References

[1] Farhad Arbab, Christel Baier, Frank de Boer, Jan Rutten, and Marjan Sirjani. Synthesis of
Reo circuits for implementation of component-connector automata specifications. In Coor-
dination Models and Languages, volume 3454 of LNCS, pages 236–251, Berlin / Heidelberg,
2005. Springer.

[2] Farhad Arbab and Sun Meng. Synthesis of connectors from scenario-based interaction spec-
ifications. In CBSE’08, volume 5282 of LNCS, pages 114–129. Springer Berlin/Heidelberg,
2008.

[3] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten. Modeling component
connectors in Reo by constraint automata. Sci. Comput. Program., 61(2):75–113, 2006.

[4] Eduard Baranov and Simon Bliudze. Extended connectors: Structuring glue operators in
BIP. In ICE 2013, volume 131 of EPTCS, pages 20–35, 2013.

[5] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time com-
ponents in BIP. In 4th IEEE Int. Conf. on Software Engineering and Formal Methods
(SEFM06), pages 3–12, September 2006. Invited talk.

[6] Simon Bliudze. Towards a theory of glue. In ICE 2012: Distributed coordination, execution
models, and resilient interaction, volume 104 of EPTCS, pages 48–66, December 2012.

[7] Simon Bliudze and Joseph Sifakis. The algebra of connectors — Structuring interaction in
BIP. In Proc. of the EMSOFT’07, pages 11–20. ACM SigBED, October 2007.

[8] Simon Bliudze and Joseph Sifakis. The algebra of connectors—structuring interaction in BIP.
IEEE Transactions on Computers, 57(10):1315–1330, 2008.

[9] Simon Bliudze and Joseph Sifakis. A notion of glue expressiveness for component-based
systems. In Franck van Breugel and Marsha Chechik, editors, CONCUR 2008, volume 5201
of LNCS, pages 508–522. Springer, 2008.

[10] Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra of connectors. Formal
Methods in System Design, 36(2):167–194, June 2010.

[11] Simon Bliudze and Joseph Sifakis. Synthesizing glue operators from glue constraints for
the construction of component-based systems. In Sven Apel and Ethan Jackson, editors,
10th International Conference on Software Composition, volume 6708 of LNCS, pages 51–67.
Springer, 2011.

44

[12] Bard Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-Like Languages.
PhD thesis, Massachusetts Institute of Technology, 1989.

[13] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph Sifakis.
From high-level component-based models to distributed implementations. In Proceedings of
the tenth ACM international conference on Embedded software, EMSOFT ’10, pages 209–218,
New York, NY, USA, 2010. ACM.

[14] Marcello Bonsangue, Dave Clarke, and Alexandra Silva. A model of context-dependent com-
ponent connectors. Science of Computer Programming, 77(6):685–706, 2012. (1) Coordination
2009 (2) {WCRE} 2009.

[15] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Modeling dynamic
architectures using Dy-BIP. In Thomas Gschwind, Flavio Paoli, Volker Gruhn, and Matthias
Book, editors, Software Composition, volume 7306 of Lecture Notes in Computer Science,
pages 1–16. Springer Berlin Heidelberg, 2012.

[16] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture transfor-
mation for performance optimization in BIP. In Industrial Embedded Systems, 2009. SIES
’09. IEEE International Symposium on, pages 152–160, 2009.

[17] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Ste-
fani. The fractal component model and its support in java. Software: Practice and Experience,
36(11-12):1257–1284, 2006.

[18] Roberto Bruni, Ivan Lanese, and Ugo Montanari. A basic algebra of stateless connectors.
Theor. Comput. Sci., 366(1):98–120, 2006.

[19] Roberto Bruni, Hernn Melgratti, and Ugo Montanari. Connector algebras, petri nets, and bip.
In Edmund Clarke, Irina Virbitskaite, and Andrei Voronkov, editors, Perspectives of Systems
Informatics, volume 7162 of Lecture Notes in Computer Science, pages 19–38. Springer Berlin
Heidelberg, 2012.

[20] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing advanced features
in a hierarchical component model. In Software Engineering Research, Management and
Applications, 2006. Fourth International Conference on, pages 40–48. IEEE, 2006.

[21] Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and
context dependency. Electr. Notes Theor. Comput. Sci., 154(1):101–119, 2006.

[22] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab. Deconstructing Reo.
ENTCS, 229(2):43–58, 2009.

[23] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and
Y. Xiong. Taming heterogeneity: The Ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, 2003.

[24] Gregor Gößler and Joseph Sifakis. Priority systems. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO, volume 3188 of Lecture
Notes in Computer Science, pages 314–329. Springer, 2003.

[25] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International Series in
Computer Science. Prentice Hall, April 1985.

45

[26] Kohei Honda, VascoT. Vasconcelos, and Makoto Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In Chris Hankin, editor, Pro-
gramming Languages and Systems, volume 1381 of LNCS, pages 122–138. Springer Berlin
Heidelberg, 1998.

[27] Paola Inverardi and Simone Scriboni. Connectors synthesis for deadlock-free component-based
architectures. In ASE ’01, pages 174–181, Washington, DC, USA, 2001. IEEE Computer
Society.

[28] Sung-ShikT.Q. Jongmans, Christian Krause, and Farhad Arbab. Encoding context-sensitivity
in reo into non-context-sensitive semantic models. In Wolfgang De Meuter and Gruia-Catalin
Roman, editors, Coordination Models and Languages, volume 6721 of LNCS, pages 31–48.
Springer Berlin Heidelberg, 2011.

[29] Zhiming Liu, Charles Morisset, and Volker Stolz. rcos: Theory and tool for component-based
model driven development. In Farhad Arbab and Marjan Sirjani, editors, Fundamentals
of Software Engineering, volume 5961 of Lecture Notes in Computer Science, pages 62–80.
Springer Berlin Heidelberg, 2010.

[30] Robin Milner. Communication and Concurrency. Prentice Hall International Series in Com-
puter Science. Prentice Hall, 1989.

[31] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Automata,
Languages and Programming, volume 623 of Lecture Notes in Computer Science, pages 685–
695. Springer Berlin Heidelberg, 1992.

[32] David M. R. Park. Concurrency and Automata on Infinite Sequences. Proceedings of the 5th
GI-Conference on Theoretical Computer Science, pages 167–183, 1981.

[33] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[34] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. Annual
IEEE Symposium on Foundations of Computer Science, 2:746–757, 1990.

[35] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000.

[36] Joseph Sifakis. A framework for component-based construction. In 3rd IEEE Int. Conf.
on Software Engineering and Formal Methods (SEFM05), pages 293–300, September 2005.
Keynote talk.

[37] Pawel Sobocinski. A non-interleaving process calculus for multi-party synchronisation. In Fil-
ippo Bonchi, Davide Grohmann, Paola Spoletini, and Emilio Tuosto, editors, ICE, volume 12
of EPTCS, pages 87–98, 2009.

[38] Rob Van Ommering, Frank Van Der Linden, Jeff Kramer, and Jeff Magee. The Koala com-
ponent model for consumer electronics software. Computer, 33(3):78–85, 2000.

46

	Introduction
	A historical perspective on the evolution of the BIP glue semantics
	Classical semantics
	Achieving flattening and full expressiveness
	Reconciling compositionality, flattening and full expressiveness
	Further extension of interaction models to encompass priority

	Transformation of systems in classical semantics into offer semantics
	Behaviours allowing transformation of arbitrary glue
	Behaviours allowing glue transformation without using activation port typings
	Behaviours allowing glue transformation using witness ports
	Hierarchical systems

	Representations of the interaction model
	Algebra of Interactions
	Algebra of Connectors
	Algebra of Causal Interaction Trees
	Systems of Causal Rules
	Transformations between algebraic representations of interaction models

	Algebra extensions
	Refinement of the extension
	Normalisation of extended algebras
	Simplification of systems of causal rules

	Connector synthesis (example)
	Related work
	Conclusion

