23,046 research outputs found

    On the Fiedler value of large planar graphs

    Get PDF
    The Fiedler value λ2\lambda_2, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs GG with nn vertices, denoted by λ2max\lambda_{2\max}, and we show the bounds 2+Θ(1n2)λ2max2+O(1n)2+\Theta(\frac{1}{n^2}) \leq \lambda_{2\max} \leq 2+O(\frac{1}{n}). We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex degree~3, and outerplanar graphs. Furthermore, we derive almost tight bounds on λ2max\lambda_{2\max} for two more classes of graphs, those of bounded genus and KhK_h-minor-free graphs.Comment: 21 pages, 4 figures, 1 table. Version accepted in Linear Algebra and Its Application

    Recognizing Planar Laman Graphs

    Get PDF
    Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for recognizing planar Laman graphs. A simple algorithm with running time O(n^(3/2)) and a more complicated algorithm with running time O(n log^3 n) based on involved planar network flow algorithms. Both improve upon the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica, 7(5-6):465 - 497, 1992] with running time O(n sqrt{n log n}). To solve this problem we introduce two algorithms (with the running times stated above) that check whether for a directed planar graph G, disjoint sets S, T subseteq V(G), and a fixed k the following connectivity condition holds: for each vertex s in S there are k directed paths from s to T pairwise having only vertex s in common. This variant of connectivity seems interesting on its own

    A Complete Grammar for Decomposing a Family of Graphs into 3-connected Components

    Full text link
    Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family of graphs (with some stability conditions) in terms of the 3-connected subfamily. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar. As a main application we recover in a purely combinatorial way the analytic expression found by Gim\'enez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter.Comment: 39 page
    corecore