19,575 research outputs found

    Extremal Infinite Graph Theory

    Get PDF
    We survey various aspects of infinite extremal graph theory and prove several new results. The lead role play the parameters connectivity and degree. This includes the end degree. Many open problems are suggested.Comment: 41 pages, 16 figure

    On the extremal properties of the average eccentricity

    Get PDF
    The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G)ecc (G) of a graph GG is the mean value of eccentricities of all vertices of GG. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, introducing two graph transformations that increase or decrease ecc(G)ecc (G). Furthermore, we resolve four conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (the clique number, the Randi\' c index and the independence number), refute one AutoGraphiX conjecture about the average eccentricity and the minimum vertex degree and correct one AutoGraphiX conjecture about the domination number.Comment: 15 pages, 3 figure

    Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree

    Get PDF
    The Tree Decomposition Conjecture by Bar\'at and Thomassen states that for every tree TT there exists a natural number k(T)k(T) such that the following holds: If GG is a k(T)k(T)-edge-connected simple graph with size divisible by the size of TT, then GG can be edge-decomposed into subgraphs isomorphic to TT. So far this conjecture has only been verified for paths, stars, and a family of bistars. We prove a weaker version of the Tree Decomposition Conjecture, where we require the subgraphs in the decomposition to be isomorphic to graphs that can be obtained from TT by vertex-identifications. We call such a subgraph a homomorphic copy of TT. This implies the Tree Decomposition Conjecture under the additional constraint that the girth of GG is greater than the diameter of TT. As an application, we verify the Tree Decomposition Conjecture for all trees of diameter at most 4.Comment: 18 page
    • …
    corecore