10,955 research outputs found

    Connectivity in Secure Wireless Sensor Networks under Transmission Constraints

    Full text link
    In wireless sensor networks (WSNs), the Eschenauer-Gligor (EG) key pre-distribution scheme is a widely recognized way to secure communications. Although connectivity properties of secure WSNs with the EG scheme have been extensively investigated, few results address physical transmission constraints. These constraints reflect real-world implementations of WSNs in which two sensors have to be within a certain distance from each other to communicate. In this paper, we present zero-one laws for connectivity in WSNs employing the EG scheme under transmission constraints. These laws help specify the critical transmission ranges for connectivity. Our analytical findings are confirmed via numerical experiments. In addition to secure WSNs, our theoretical results are also applied to frequency hopping in wireless networks.Comment: Full version of a paper published in Annual Allerton Conference on Communication, Control, and Computing (Allerton) 201

    Complexity of increasing the secure connectivity in wireless ad hoc networks

    Get PDF
    We consider the problem of maximizing the secure connectivity in wireless ad hoc networks, and analyze complexity of the post-deployment key establishment process constrained by physical layer properties such as connectivity, energy consumption and interference. Two approaches, based on graph augmentation problems with nonlinear edge costs, are formulated. The first one is based on establishing a secret key using only the links that are already secured by shared keys. This problem is in NP-hard and does not accept polynomial time approximation scheme PTAS since minimum cutsets to be augmented do not admit constant costs. The second one extends the first problem by increasing the power level between a pair of nodes that has a secret key to enable them physically connect. This problem can be formulated as the optimal key establishment problem with interference constraints with bi-objectives: (i) maximizing the concurrent key establishment flow, (ii) minimizing the cost. We prove that both problems are NP-hard and MAX-SNP with a reduction to MAX3SAT problem

    k-connectivity of Random Graphs and Random Geometric Graphs in Node Fault Model

    Full text link
    k-connectivity of random graphs is a fundamental property indicating reliability of multi-hop wireless sensor networks (WSN). WSNs comprising of sensor nodes with limited power resources are modeled by random graphs with unreliable nodes, which is known as the node fault model. In this paper, we investigate k-connectivity of random graphs in the node fault model by evaluating the network breakdown probability, i.e., the disconnectivity probability of random graphs after stochastic node removals. Using the notion of a strongly typical set, we obtain universal asymptotic upper and lower bounds of the network breakdown probability. The bounds are applicable both to random graphs and to random geometric graphs. We then consider three representative random graph ensembles: the Erdos-Renyi random graph as the simplest case, the random intersection graph for WSNs with random key predistribution schemes, and the random geometric graph as a model of WSNs generated by random sensor node deployment. The bounds unveil the existence of the phase transition of the network breakdown probability for those ensembles.Comment: 6 page

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    On the strengths of connectivity and robustness in general random intersection graphs

    Full text link
    Random intersection graphs have received much attention for nearly two decades, and currently have a wide range of applications ranging from key predistribution in wireless sensor networks to modeling social networks. In this paper, we investigate the strengths of connectivity and robustness in a general random intersection graph model. Specifically, we establish sharp asymptotic zero-one laws for kk-connectivity and kk-robustness, as well as the asymptotically exact probability of kk-connectivity, for any positive integer kk. The kk-connectivity property quantifies how resilient is the connectivity of a graph against node or edge failures. On the other hand, kk-robustness measures the effectiveness of local diffusion strategies (that do not use global graph topology information) in spreading information over the graph in the presence of misbehaving nodes. In addition to presenting the results under the general random intersection graph model, we consider two special cases of the general model, a binomial random intersection graph and a uniform random intersection graph, which both have numerous applications as well. For these two specialized graphs, our results on asymptotically exact probabilities of kk-connectivity and asymptotic zero-one laws for kk-robustness are also novel in the literature.Comment: This paper about random graphs appears in IEEE Conference on Decision and Control (CDC) 2014, the premier conference in control theor

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs
    corecore