3,433 research outputs found

    Towards human control of robot swarms

    Get PDF
    In this paper we investigate principles of swarm control that enable a human operator to exert influence on and control large swarms of robots. We present two principles, coined selection and beacon control, that differ with respect to their temporal and spatial persistence. The former requires active selection of groups of robots while the latter exerts a passive influence on nearby robots. Both principles are implemented in a testbed in which operators exert influence on a robot swarm by switching between a set of behaviors ranging from trivial behaviors up to distributed autonomous algorithms. Performance is tested in a series of complex foraging tasks in environments with different obstacles ranging from open to cluttered and structured. The robotic swarm has only local communication and sensing capabilities with the number of robots ranging from 50 to 200. Experiments with human operators utilizing either selection or beacon control are compared with each other and to a simple autonomous swarm with regard to performance, adaptation to complex environments, and scalability to larger swarms. Our results show superior performance of autonomous swarms in open environments, of selection control in complex environments, and indicate a potential for scaling beacon control to larger swarms

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    A Survey on Passing-through Control of Multi-Robot Systems in Cluttered Environments

    Full text link
    This survey presents a comprehensive review of various methods and algorithms related to passing-through control of multi-robot systems in cluttered environments. Numerous studies have investigated this area, and we identify several avenues for enhancing existing methods. This survey describes some models of robots and commonly considered control objectives, followed by an in-depth analysis of four types of algorithms that can be employed for passing-through control: leader-follower formation control, multi-robot trajectory planning, control-based methods, and virtual tube planning and control. Furthermore, we conduct a comparative analysis of these techniques and provide some subjective and general evaluations.Comment: 18 pages, 19 figure

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    A Networking Framework for Multi-Robot Coordination

    Get PDF
    Autonomous robots operating in real environments need to be able to interact with a dynamic world populated with objects, people, and, in general, other agents. The current generation of autonomous robots, such as the ASIMO robot by Honda or the QRIO by Sony, has showed impressive performances in mechanics and control of movements; moreover, recent literature reports encouraging results about the capability of such robots of representing themselves with respect to a dynamic external world, of planning future actions and of evaluating resulting situations in order to make new plans. However, when multiple robots are supposed to operate together, coordination and communication issues arise; while noteworthy results have been achieved with respect to the control of a single robot, novel issues arise when the actions of a robot influence another''s behavior. The increase in computational power available to systems nowadays makes it feasible, and even convenient, to organize them into a single distributed computing environment in order to exploit the synergy among different entities. This is especially true for robot teams, where cooperation is supposed to be the most natural scheme of operation, especially when robots are required to operate in highly constrained scenarios, such as inhospitable sites, remote sites, or indoor environments where strict constraints on intrusiveness must be respected. In this case, computations will be inherently network-centric, and to solve the need for communication inside robot collectives, an efficient network infrastructure must be put into place; once a proper communication channel is established, multiple robots may benefit from the interaction with each other in order to achieve a common goal. The framework presented in this paper adopts a composite networking architecture, in which a hybrid wireless network, composed by commonly available WiFi devices, and the more recently developed wireless sensor networks, operates as a whole in order both to provide a communication backbone for the robots and to extract useful information from the environment. The ad-hoc WiFi backbone allows robots to exchange coordination information among themselves, while also carrying data measurements collected from surrounding environment, and useful for localization or mere data gathering purposes. The proposed framework is called RoboNet, and extends a previously developed robotic tour guide application (Chella et al., 2007) in the context of a multi-robot application; our system allows a team of robots to enhance their perceptive capabilities through coordination obtained via a hybrid communication network; moreover, the same infrastructure allows robots to exchange information so as to coordinate their actions in order to achieve a global common goal. The working scenario considered in this paper consists of a museum setting, where guided tours are to be automatically managed. The museum is arranged both chronologically and topographically, but the sequence of findings to be visited can be rearranged depending on user queries, making a sort of dynamic virtual labyrinth with various itineraries. Therefore, the robots are able to guide visitors both in prearranged tours and in interactive tours, built in itinere depending on the interaction with the visitor: robots are able to rebuild the virtual connection between findings and, consequently, the path to be followed. This paper is organized as follows. Section 2 contains some background on multi-robot coordination, and Section 3 describes the underlying ideas and the motivation behind the proposed architecture, whose details are presented in Sections 4, 5, and 6. A realistic application scenario is described in Section 7, and finally our conclusions are drawn in Section 8

    A d

    Get PDF

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas
    • …
    corecore