1,022 research outputs found

    The Many Functions of Discourse Particles: A Computational Model of Pragmatic Interpretation

    Get PDF
    We present a connectionist model for the interpretation of discourse\ud particles in real dialogues that is based on neuronal\ud principles of categorization (categorical perception, prototype\ud formation, contextual interpretation). It can be shown that\ud discourse particles operate just like other morphological and\ud lexical items with respect to interpretation processes. The description\ud proposed locates discourse particles in an elaborate\ud model of communication which incorporates many different\ud aspects of the communicative situation. We therefore also\ud attempt to explore the content of the category discourse particle.\ud We present a detailed analysis of the meaning assignment\ud problem and show that 80%– 90% correctness for unseen discourse\ud particles can be reached with the feature analysis provided.\ud Furthermore, we show that ‘analogical transfer’ from\ud one discourse particle to another is facilitated if prototypes\ud are computed and used as the basis for generalization. We\ud conclude that the interpretation processes which are a part of\ud the human cognitive system are very similar with respect to\ud different linguistic items. However, the analysis of discourse\ud particles shows clearly that any explanatory theory of language\ud needs to incorporate a theory of communication processes

    Dialogue Act Recognition Approaches

    Get PDF
    This paper deals with automatic dialogue act (DA) recognition. Dialogue acts are sentence-level units that represent states of a dialogue, such as questions, statements, hesitations, etc. The knowledge of dialogue act realizations in a discourse or dialogue is part of the speech understanding and dialogue analysis process. It is of great importance for many applications: dialogue systems, speech recognition, automatic machine translation, etc. The main goal of this paper is to study the existing works about DA recognition and to discuss their respective advantages and drawbacks. A major concern in the DA recognition domain is that, although a few DA annotation schemes seem now to emerge as standards, most of the time, these DA tag-sets have to be adapted to the specificities of a given application, which prevents the deployment of standardized DA databases and evaluation procedures. The focus of this review is put on the various kinds of information that can be used to recognize DAs, such as prosody, lexical, etc., and on the types of models proposed so far to capture this information. Combining these information sources tends to appear nowadays as a prerequisite to recognize DAs

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Transfer Learning for Speech Recognition on a Budget

    Full text link
    End-to-end training of automated speech recognition (ASR) systems requires massive data and compute resources. We explore transfer learning based on model adaptation as an approach for training ASR models under constrained GPU memory, throughput and training data. We conduct several systematic experiments adapting a Wav2Letter convolutional neural network originally trained for English ASR to the German language. We show that this technique allows faster training on consumer-grade resources while requiring less training data in order to achieve the same accuracy, thereby lowering the cost of training ASR models in other languages. Model introspection revealed that small adaptations to the network's weights were sufficient for good performance, especially for inner layers.Comment: Accepted for 2nd ACL Workshop on Representation Learning for NL

    Artificial Intelligence in the Context of Human Consciousness

    Get PDF
    Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence attempts to simulate these functions through techniques like artificial neural networks, Markov Decision Processes, Human Language Technology, and Multi-Agent Systems, which rely upon a combination of mathematical models and hardware
    • …
    corecore