53 research outputs found

    Connectedness of the graph of vertex-colourings

    Get PDF
    For a positive integer k and a graph G, the k-colour graph of G , Ck(G), is the graph that has the proper k-vertex-colourings of G as its vertex set, and two k -colourings are joined by an edge in Ck(G) if they differ in colour on just one vertex of G . In this note some results on the connectedness of Ck(G) are proved. In particular, it is shown that if G has chromatic number k∈{2,3}, then Ck(G) is not connected. On the other hand, for k⩾4 there are graphs with chromatic number k for which Ck(G) is not connected, and there are k -chromatic graphs for which Ck(G) is connected

    The kk-Dominating Graph

    Get PDF
    Given a graph GG, the kk-dominating graph of GG, Dk(G)D_k(G), is defined to be the graph whose vertices correspond to the dominating sets of GG that have cardinality at most kk. Two vertices in Dk(G)D_k(G) are adjacent if and only if the corresponding dominating sets of GG differ by either adding or deleting a single vertex. The graph Dk(G)D_k(G) aids in studying the reconfiguration problem for dominating sets. In particular, one dominating set can be reconfigured to another by a sequence of single vertex additions and deletions, such that the intermediate set of vertices at each step is a dominating set if and only if they are in the same connected component of Dk(G)D_k(G). In this paper we give conditions that ensure Dk(G)D_k(G) is connected.Comment: 2 figure, The final publication is available at http://link.springer.co

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b≥3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dn−m(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure
    • …
    corecore