250 research outputs found

    Connected rigidity matroids and unique realizations of graphs

    Get PDF
    AbstractA d-dimensional framework is a straight line realization of a graph G in Rd. We shall only consider generic frameworks, in which the co-ordinates of all the vertices of G are algebraically independent. Two frameworks for G are equivalent if corresponding edges in the two frameworks have the same length. A framework is a unique realization of G in Rd if every equivalent framework can be obtained from it by an isometry of Rd. Bruce Hendrickson proved that if G has a unique realization in Rd then G is (d+1)-connected and redundantly rigid. He conjectured that every realization of a (d+1)-connected and redundantly rigid graph in Rd is unique. This conjecture is true for d=1 but was disproved by Robert Connelly for dâ©ľ3. We resolve the remaining open case by showing that Hendrickson's conjecture is true for d=2. As a corollary we deduce that every realization of a 6-connected graph as a two-dimensional generic framework is a unique realization. Our proof is based on a new inductive characterization of 3-connected graphs whose rigidity matroid is connected

    Slider-pinning Rigidity: a Maxwell-Laman-type Theorem

    Get PDF
    We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteley's direction networks.Comment: Accepted, to appear in Discrete and Computational Geometr

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    Linking Rigid Bodies Symmetrically

    Full text link
    The mathematical theory of rigidity of body-bar and body-hinge frameworks provides a useful tool for analyzing the rigidity and flexibility of many articulated structures appearing in engineering, robotics and biochemistry. In this paper we develop a symmetric extension of this theory which permits a rigidity analysis of body-bar and body-hinge structures with point group symmetries. The infinitesimal rigidity of body-bar frameworks can naturally be formulated in the language of the exterior (or Grassmann) algebra. Using this algebraic formulation, we derive symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of body-bar frameworks with Abelian point group symmetries in an arbitrary dimension. In particular, from the patterns of these new matrices, we derive combinatorial characterizations of infinitesimally rigid body-bar frameworks which are generic with respect to a point group of the form Z/2ZĂ—â‹ŻĂ—Z/2Z\mathbb{Z}/2\mathbb{Z}\times \dots \times \mathbb{Z}/2\mathbb{Z}. Our characterizations are given in terms of packings of bases of signed-graphic matroids on quotient graphs. Finally, we also extend our methods and results to body-hinge frameworks with Abelian point group symmetries in an arbitrary dimension. As special cases of these results, we obtain combinatorial characterizations of infinitesimally rigid body-hinge frameworks with C2\mathcal{C}_2 or D2\mathcal{D}_2 symmetry - the most common symmetry groups found in proteins.Comment: arXiv:1308.6380 version 1 was split into two papers. The version 2 of arXiv:1308.6380 consists of Sections 1 - 6 of the version 1. This paper is based on the second part of the version 1 (Sections 7 and 8

    Generic rigidity of reflection frameworks

    Full text link
    We give a combinatorial characterization of generic minimally rigid reflection frameworks. The main new idea is to study a pair of direction networks on the same graph such that one admits faithful realizations and the other has only collapsed realizations. In terms of infinitesimal rigidity, realizations of the former produce a framework and the latter certifies that this framework is infinitesimally rigid.Comment: 14 pages, 2 figure

    One brick at a time: a survey of inductive constructions in rigidity theory

    Full text link
    We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. We summarize the key outstanding open problems related to inductions.Comment: 24 pages, 12 figures, final versio
    • …
    corecore