17,135 research outputs found

    Counting Connected Graphs Asymptotically

    Get PDF
    We find the asymptotic number of connected graphs with kk vertices and k−1+lk-1+l edges when k,lk,l approach infinity, reproving a result of Bender, Canfield and McKay. We use the {\em probabilistic method}, analyzing breadth-first search on the random graph G(k,p)G(k,p) for an appropriate edge probability pp. Central is analysis of a random walk with fixed beginning and end which is tilted to the left.Comment: 23 page

    The Minimum Spectral Radius of Graphs with the Independence Number

    Full text link
    In this paper, we investigate some properties of the Perron vector of connected graphs. These results are used to characterize that all extremal connected graphs with having the minimum (maximum) spectra radius among all connected graphs of order n=kαn=k\alpha with the independence number α\alpha, respectively.Comment: 28 pages, 3 figure

    A partition of connected graphs

    Full text link
    We define an algorithm k which takes a connected graph G on a totally ordered vertex set and returns an increasing tree R (which is not necessarily a subtree of G). We characterize the set of graphs G such that k(G)=R. Because this set has a simple structure (it is isomorphic to a product of non-empty power sets), it is easy to evaluate certain graph invariants in terms of increasing trees. In particular, we prove that, up to sign, the coefficient of x^q in the chromatic polynomial of G is the number of increasing forests with q components that satisfy a condition that we call G-connectedness. We also find a bijection between increasing G-connected trees and broken circuit free subtrees of G.Comment: 8 page

    Forbidden Subgraphs in Connected Graphs

    Get PDF
    Given a set ξ={H1,H2,...}\xi=\{H_1,H_2,...\} of connected non acyclic graphs, a ξ\xi-free graph is one which does not contain any member of % \xi as copy. Define the excess of a graph as the difference between its number of edges and its number of vertices. Let {\gr{W}}_{k,\xi} be theexponential generating function (EGF for brief) of connected ξ\xi-free graphs of excess equal to kk (k≥1k \geq 1). For each fixed ξ\xi, a fundamental differential recurrence satisfied by the EGFs {\gr{W}}_{k,\xi} is derived. We give methods on how to solve this nonlinear recurrence for the first few values of kk by means of graph surgery. We also show that for any finite collection ξ\xi of non-acyclic graphs, the EGFs {\gr{W}}_{k,\xi} are always rational functions of the generating function, TT, of Cayley's rooted (non-planar) labelled trees. From this, we prove that almost all connected graphs with nn nodes and n+kn+k edges are ξ\xi-free, whenever k=o(n1/3)k=o(n^{1/3}) and ∣ξ∣<∞|\xi| < \infty by means of Wright's inequalities and saddle point method. Limiting distributions are derived for sparse connected ξ\xi-free components that are present when a random graph on nn nodes has approximately n2\frac{n}{2} edges. In particular, the probability distribution that it consists of trees, unicyclic components, ......, (q+1)(q+1)-cyclic components all ξ\xi-free is derived. Similar results are also obtained for multigraphs, which are graphs where self-loops and multiple-edges are allowed

    Inductive Construction of 2-Connected Graphs for Calculating the Virial Coefficients

    Full text link
    In this paper we give a method for constructing systematically all simple 2-connected graphs with n vertices from the set of simple 2-connected graphs with n-1 vertices, by means of two operations: subdivision of an edge and addition of a vertex. The motivation of our study comes from the theory of non-ideal gases and, more specifically, from the virial equation of state. It is a known result of Statistical Mechanics that the coefficients in the virial equation of state are sums over labelled 2-connected graphs. These graphs correspond to clusters of particles. Thus, theoretically, the virial coefficients of any order can be calculated by means of 2-connected graphs used in the virial coefficient of the previous order. Our main result gives a method for constructing inductively all simple 2-connected graphs, by induction on the number of vertices. Moreover, the two operations we are using maintain the correspondence between graphs and clusters of particles.Comment: 23 pages, 5 figures, 3 table

    Complexes of not ii-connected graphs

    Full text link
    Complexes of (not) connected graphs, hypergraphs and their homology appear in the construction of knot invariants given by V. Vassiliev. In this paper we study the complexes of not ii-connected kk-hypergraphs on nn vertices. We show that the complex of not 22-connected graphs has the homotopy type of a wedge of (n−2)!(n-2)! spheres of dimension 2n−52n-5. This answers one of the questions raised by Vassiliev in connection with knot invariants. For this case the SnS_n-action on the homology of the complex is also determined. For complexes of not 22-connected kk-hypergraphs we provide a formula for the generating function of the Euler characteristic, and we introduce certain lattices of graphs that encode their topology. We also present partial results for some other cases. In particular, we show that the complex of not (n−2)(n-2)-connected graphs is Alexander dual to the complex of partial matchings of the complete graph. For not (n−3)(n-3)-connected graphs we provide a formula for the generating function of the Euler characteristic
    • …
    corecore