2 research outputs found

    Linear pose estimate from corresponding conics

    Get PDF
    We propose here a new method to recover the orientation and position of a plane by matching at least three projections of a conic lying on the plane itself. The procedure is based on rearranging the conic projection equations such that the non linear terms are eliminated. It works with any kind of conic and does not require that the shape of the conic is known a-priori. The method was extensively tested using ellipses, but it can also be used for hyperbolas and parabolas. It was further applied to pairs of lines, which can be viewed as a degenerate case of hyperbola, without requiring the correspondence problem to be solved first. Critical configurations and numerical stability have been analyzed through simulations. The accuracy of the proposed algorithm was compared to that of traditional algorithms and of a trinocular vision system using a set of landmarks

    Conic geometry and autocalibration from two images

    No full text
    We show how the classical theory of projective conics provides new insights and results on the problem of 3D reconstruction from two images taken with uncalibrated cameras. The close relationship between Kruppa equations and Poncelet's Porism is investigated, leading, in particular, to a closed-form geometrically meaningful parameterization of the set of Euclidean reconstructions compatible with two images taken with cameras with constant intrinsic parameters and known pixel shape. An experiment with real images, showing the applicability of the method, is included
    corecore