8,715 research outputs found

    An Ant-based Approach for Dynamic RWA in Optical WDM Networks

    Get PDF

    A Wised Routing Protocols for Leo Satellite Networks

    Full text link
    This Study proposes a routing strategy of combining a packet scheduling with congestion control policy that applied for LEO satellite network with high speed and multiple traffic. It not only ensures the QoS of different traffic, but also can avoid low priority traffic to be "starve" due to their weak resource competitiveness, thus it guarantees the throughput and performance of the network. In the end, we set up a LEO satellite network simulation platform in OPNET to verify the effectiveness of the proposed algorithm.Comment: The 10th Asian Control Conference (ASCC), Universiti Teknologi Malaysia, Malaysi

    Ant-inspired Interaction Networks For Decentralized Vehicular Traffic Congestion Control

    Get PDF
    Mimicking the autonomous behaviors of animals and their adaptability to changing or foreign environments lead to the development of swarm intelligence techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) now widely used to tackle a variety of optimization problems. The aim of this dissertation is to develop an alternative swarm intelligence model geared toward decentralized congestion avoidance and to determine qualities of the model suitable for use in a transportation network. A microscopic multi-agent interaction network inspired by insect foraging behaviors, especially ants, was developed and consequently adapted to prioritize the avoidance of congestion, evaluated as perceived density of other agents in the immediate environment extrapolated from the occurrence of direct interactions between agents, while foraging for food outside the base/nest. The agents eschew pheromone trails or other forms of stigmergic communication in favor of these direct interactions whose rate is the primary motivator for the agents\u27 decision making process. The decision making process at the core of the multi-agent interaction network is consequently transferred to transportation networks utilizing vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct interactions are replaced by dedicated short range communications for wireless access in vehicular environments (DSRC/WAVE) messages used for a variety of applications like left turn assist, intersection collision avoidance, or cooperative adaptive cruise control. Each vehicle correlates the traffic on the wireless network with congestion in the transportation network and consequently decides whether to reroute and, if so, what alternate route to take in a decentralized, non-deterministic manner. The algorithm has been shown to increase throughput and decrease mean travel times significantly while not requiring access to centralized infrastructure or up-to-date traffic information

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF
    corecore