47 research outputs found

    E-EON : Energy-Efficient and Optimized Networks for Hadoop

    Get PDF
    Energy efficiency and performance improvements have been two of the major concerns of current Data Centers. With the advent of Big Data, more information is generated year after year, and even the most aggressive predictions of the largest network equipment manufacturer have been surpassed due to the non-stop growing network traffic generated by current Big Data frameworks. As, currently, one of the most famous and discussed frameworks designed to store, retrieve and process the information that is being consistently generated by users and machines, Hadoop has gained a lot of attention from the industry in recent years and presently its name describes a whole ecosystem designed to tackle the most varied requirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly focused on their interconnects, which is commonly considered to be the bottleneck of such ecosystem. We conducted research focusing on energy efficiency and also on performance optimizations as improvements on cluster throughput and network latency. Regarding the energy consumption, a significant proportion of a data center's energy consumption is caused by the network, which stands for 12% of the total system power at full load. With the non-stop growing network traffic, it is desired by industry and academic community that network energy consumption should be proportional to its utilization. Considering cluster performance, although Hadoop is a network throughput-sensitive workload with less stringent requirements for network latency, there is an increasing interest in running batch and interactive workloads concurrently on the same cluster. Doing so maximizes system utilization, to obtain the greatest benefits from the capital and operational expenditures. For this to happen, cluster throughput should not be impacted when network latency is minimized. The two biggest challenges faced during the development of this thesis were related to achieving near proportional energy consumption for the interconnects and also improving the network latency found on Hadoop clusters, while having virtually no loss on cluster throughput. Such challenges led to comparable sized opportunity: proposing new techniques that must solve such problems from the current generation of Hadoop clusters. We named E-EON the set of techniques presented in this work, which stands for Energy Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network energy consumption and yet, to reduce network latency while cluster throughput is improved at the same time. Furthermore, such techniques are not exclusive to Hadoop and they are also expected to have similar benefits if applied to any other Big Data framework infrastructure that fits the problem characterization we presented throughout this thesis. With E-EON we were able to reduce the energy consumption by up to 80% compared to the state-of-the art technique. We were also able to reduce network latency by up to 85% and in some cases, even improve cluster throughput by 10%. Although these were the two major accomplishment from this thesis, we also present minor benefits which translate to easier configuration compared to the stat-of-the-art techniques. Finally, we enrich the discussions found in this thesis with recommendations targeting network administrators and network equipment manufacturers.La eficiencia energética y las mejoras de rendimiento han sido dos de las principales preocupaciones de los Data Centers actuales. Con el arribo del Big Data, se genera más información año con año, incluso las predicciones más agresivas de parte del mayor fabricante de dispositivos de red se han superado debido al continuo tráfico de red generado por los sistemas de Big Data. Actualmente, uno de los más famosos y discutidos frameworks desarrollado para almacenar, recuperar y procesar la información generada consistentemente por usuarios y máquinas, Hadoop acaparó la atención de la industria en los últimos años y actualmente su nombre describe a todo un ecosistema diseñado para abordar los requisitos más variados de las aplicaciones actuales de Cloud Computing. Esta tesis profundiza sobre los clusters Hadoop, principalmente enfocada a sus interconexiones, que comúnmente se consideran el cuello de botella de dicho ecosistema. Realizamos investigaciones centradas en la eficiencia energética y también en optimizaciones de rendimiento como mejoras en el throughput de la infraestructura y de latencia de la red. En cuanto al consumo de energía, una porción significativa de un Data Center es causada por la red, representada por el 12 % de la potencia total del sistema a plena carga. Con el tráfico constantemente creciente de la red, la industria y la comunidad académica busca que el consumo energético sea proporcional a su uso. Considerando las prestaciones del cluster, a pesar de que Hadoop mantiene una carga de trabajo sensible al rendimiento de red aunque con requisitos menos estrictos sobre la latencia de la misma, existe un interés creciente en ejecutar aplicaciones interactivas y secuenciales de manera simultánea sobre dicha infraestructura. Al hacerlo, se maximiza la utilización del sistema para obtener los mayores beneficios al capital y gastos operativos. Para que esto suceda, el rendimiento del sistema no puede verse afectado cuando se minimiza la latencia de la red. Los dos mayores desafíos enfrentados durante el desarrollo de esta tesis estuvieron relacionados con lograr un consumo energético cercano a la cantidad de interconexiones y también a mejorar la latencia de red encontrada en los clusters Hadoop al tiempo que la perdida del rendimiento de la infraestructura es casi nula. Dichos desafíos llevaron a una oportunidad de tamaño semejante: proponer técnicas novedosas que resuelven dichos problemas a partir de la generación actual de clusters Hadoop. Llamamos a E-EON (Energy Efficient and Optimized Networks) al conjunto de técnicas presentadas en este trabajo. E-EON se puede utilizar para reducir el consumo de energía y la latencia de la red al mismo tiempo que el rendimiento del cluster se mejora. Además tales técnicas no son exclusivas de Hadoop y también se espera que tengan beneficios similares si se aplican a cualquier otra infraestructura de Big Data que se ajuste a la caracterización del problema que presentamos a lo largo de esta tesis. Con E-EON pudimos reducir el consumo de energía hasta en un 80% en comparación con las técnicas encontradas en la literatura actual. También pudimos reducir la latencia de la red hasta en un 85% y, en algunos casos, incluso mejorar el rendimiento del cluster en un 10%. Aunque estos fueron los dos principales logros de esta tesis, también presentamos beneficios menores que se traducen en una configuración más sencilla en comparación con las técnicas más avanzadas. Finalmente, enriquecimos las discusiones encontradas en esta tesis con recomendaciones dirigidas a los administradores de red y a los fabricantes de dispositivos de red

    Consistent high performance and flexible congestion control architecture

    Get PDF
    The part of TCP software stack that controls how fast a data sender transfers packets is usually referred as congestion control, because it was originally introduced to avoid network congestion of multiple competing flows. During the recent 30 years of Internet evolution, traditional TCP congestion control architecture, though having a army of specially-engineered implementations and improvements over the original software, suffers increasingly more from surprisingly poor performance in today's complicated network conditions. We argue the traditional TCP congestion control family has little hope of achieving consistent high performance due to a fundamental architectural deficiency: hardwiring packet-level events to control responses. In this thesis, we propose Performance-oriented Congestion Control (PCC), a new congestion control architecture in which each sender continuously observes the connection between its rate control actions and empirically experienced performance, enabling it to use intelligent control algorithms to consistently adopt actions that result in high performance. We first build the above foundation of PCC architecture analytically prove the viability of this new congestion control architecture. Specifically, we show that, controversial to intuition, with certain form of utility function and a theoretically simplified rate control algorithm, selfishly competing senders converge to a fair and stable Nash Equilibrium. With this architectural and theoretical guideline, we then design and implement the first congestion control protocol in PCC family: PCC Allegro. PCC Allegro immediate demonstrates its architectural benefits with significant, often more than 10X, performance gain on a wide spectrum of challenging network conditions. With these very encouraging performance validation, we further advance PCC's architecture on both utilty function framework and the learning rate control algorithm. Taking a principled approach using online learning theory, we designed PCC Vivace with a new strictly socially concave utility function framework and a gradient-ascend based learning rate control algorithm. PCC Vivace significantly improves performance on fast-changing networks, yields better tradeoff in convergence speed and stability and better TCP friendliness comparing to PCC Allegro and other state-of-art new congestion control protocols. Moreover, PCC Vivace's expressive utility function framework can be tuned differently at different competing flows to produce predictable converged throughput ratios for each flow. This opens significant future potential for PCC Vivace in centrally control networking paradigm like Software Defined Networks (SDN). Finally, with all these research advances, we aim to push PCC architecture to production use with a a user-space tunneling proxy and successfully integration with Google's QUIC transport framework

    Enhancing programmability for adaptive resource management in next generation data centre networks

    Get PDF
    Recently, Data Centre (DC) infrastructures have been growing rapidly to support a wide range of emerging services, and provide the underlying connectivity and compute resources that facilitate the "*-as-a-Service" model. This has led to the deployment of a multitude of services multiplexed over few, very large-scale centralised infrastructures. In order to cope with the ebb and flow of users, services and traffic, infrastructures have been provisioned for peak-demand resulting in the average utilisation of resources to be low. This overprovisionning has been further motivated by the complexity in predicting traffic demands over diverse timescales and the stringent economic impact of outages. At the same time, the emergence of Software Defined Networking (SDN), is offering new means to monitor and manage the network infrastructure to address this underutilisation. This dissertation aims to show how measurement-based resource management can improve performance and resource utilisation by adaptively tuning the infrastructure to the changing operating conditions. To achieve this dynamicity, the infrastructure must be able to centrally monitor, notify and react based on the current operating state, from per-packet dynamics to longstanding traffic trends and topological changes. However, the management and orchestration abilities of current SDN realisations is too limiting and must evolve for next generation networks. The current focus has been on logically centralising the routing and forwarding decisions. However, in order to achieve the necessary fine-grained insight, the data plane of the individual device must be programmable to collect and disseminate the metrics of interest. The results of this work demonstrates that a logically centralised controller can dynamically collect and measure network operating metrics to subsequently compute and disseminate fine-tuned environment-specific settings. They show how this approach can prevent TCP throughput incast collapse and improve TCP performance by an order of magnitude for partition-aggregate traffic patterns. Futhermore, the paradigm is generalised to show the benefits for other services widely used in DCs such as, e.g, routing, telemetry, and security

    FastLane: Making Short Flows Shorter with Agile Drop Notification

    Get PDF
    The drive towards richer and more interactive web content places increasingly stringent requirements on datacenter network performance. Applications running atop these networks typically partition an incoming query into multiple subqueries, and generate the final result by aggregating the responses for these subqueries. As a result, a large fraction -as high as 80% -of the network flows in such workloads are short and latency-sensitive. The speed with which existing networks respond to packet drops limits their ability to meet high-percentile flow completion time SLOs. Indirect notifications indicating packet drops (e.g., duplicates in an end-to-end acknowledgement sequence) are an important limitation to the agility of response to packet drops. This paper proposes FastLane, an in-network drop notification mechanism. FastLane enhances switches to send high-priority drop notifications to sources, thus informing sources as quickly as possible. Consequently, sources can retransmit packets sooner and throttle transmission rates earlier, thus reducing high-percentile flow completion times. We demonstrate, through simulation and implementation, that FastLane reduces 99.9 th percentile completion times of short flows by up to 81%. These benefits come at minimal cost -safeguards ensure that FastLane consume no more than 1% of bandwidth and 2.5% of buffers
    corecore