20 research outputs found

    Symmetry in optics and photonics: a group theory approach

    Full text link
    Group theory (GT) provides a rigorous framework for studying symmetries in various disciplines in physics ranging from quantum field theories and the standard model to fluid mechanics and chaos theory. To date, the application of such a powerful tool in optical physics remains limited. Over the past few years however, several quantum-inspired symmetry principles (such as parity-time invariance and supersymmetry) have been introduced in optics and photonics for the first time. Despite the intense activities in these new research directions, only few works utilized the power of group theory. Motivated by this status quo, here we present a brief overview of the application of GT in optics, deliberately choosing examples that illustrate the power of this tool in both continuous and discrete setups. We hope that this review will stimulate further research that exploits the full potential of GT for investigating various symmetry paradigms in optics, eventually leading to new photonic devices.Comment: 20 page, 5 figure

    Superradiance -- the 2020 Edition

    Full text link
    Superradiance is a radiation enhancement process that involves dissipative systems. With a 60 year-old history, superradiance has played a prominent role in optics, quantum mechanics and especially in relativity and astrophysics. In General Relativity, black-hole superradiance is permitted by the ergoregion, that allows for energy, charge and angular momentum extraction from the vacuum, even at the classical level. Stability of the spacetime is enforced by the event horizon, where negative energy-states are dumped. Black-hole superradiance is intimately connected to the black-hole area theorem, Penrose process, tidal forces, and even Hawking radiation, which can be interpreted as a quantum version of black-hole superradiance. Various mechanisms (as diverse as massive fields, magnetic fields, anti-de Sitter boundaries, nonlinear interactions, etc...) can confine the amplified radiation and give rise to strong instabilities. These "black-hole bombs" have applications in searches of dark matter and of physics beyond the Standard Model, are associated to the threshold of formation of new black hole solutions that evade the no-hair theorems, can be studied in the laboratory by devising analog models of gravity, and might even provide a holographic description of spontaneous symmetry breaking and superfluidity through the gauge-gravity duality. This work is meant to provide a unified picture of this multifaceted subject. We focus on the recent developments in the field, and work out a number of novel examples and applications, ranging from fundamental physics to astrophysics.Comment: 279 pages. Second Edition of the "Lecture Notes in Physics" book by Springer-Verlag. Overall improvement, typos and incorrect statements of Edition 1 are now corrected; new sections were added, reflecting activity in the field. Bounds on ultralight fields are summarized in Table 4, and updated online regularly at https://centra.tecnico.ulisboa.pt/network/grit/ and https://web.uniroma1.it/gmunu

    Confluent Supersymmetric Partners of Quantum Systems Emerging from the Spheroidal Equation

    No full text
    We construct confluent supersymmetric partners of quantum systems that emerge from the spheroidal equation. Properties of the systems and of their transformed counterparts are discussed

    Review of particle physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.Ibi.gov

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including new reviews on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available.The publication of the Review of Particle Physics is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE–AC02–05CH11231; by the European Laboratory for Particle Physics (CERN); by an implementing arrangement between the governments of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology) and the United States (DOE) on cooperative research and development; by the Institute of High Energy Physics, Chinese Academy of Sciences; and by the Italian National Institute of Nuclear Physics (INFN).The authors are grateful to Vincent Vennin for his careful reading of this manuscript and preparing Fig. 23.3 for this review. The work of J.E. was supported in part by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352 and from the UK STFC via the research grant ST/L000326/1. The work of D.W. was supported in part by the UK STFC research grant ST/K00090X/1

    Review of particle physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app
    corecore