608 research outputs found

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Value Network Analysis of Embedded Subscriber Identity Module in Machine to Machine Communication

    Get PDF
    SIM card technology has evolved in size and feature over the years. Now machine to machine communication has paved the way of embedded SIM (eSIM) integration into devices. This evolution of eSIM is still a little far off but might become essential sooner rather than later if the traffic, usage and new services of M2M booms. This thesis discusses the possible future scenarios and value networks of eSIM based M2M communication that will shape the ecosystem in the next 10 years time frame. Necessary background regarding SIM card evolution is discussed before going into the future scenario. The thesis also consists of studies on current cellular network structure, Internet of things and Machine-to-machine communication from various sources to understand both technical and business dynamics of these services. By the virtue of brainstorming sessions and expert interview from industry the basic trends and key uncertainties are refined to use as the basis of scenario planning. Also efforts have been made to identify the business roles and corresponding interested actors to take over these roles through value network configuration method. Four possible future scenarios are constructed according to Schoemaker's scenario planning method which explore possible changes in the M2M industry due to eSIM. The scenarios reflect the diverse interests of the involved stakeholders and their influence over the market. Value network configurations further investigate the different possible evolution paths to introduce scope for new business models. Analysis and results from this thesis can be a good indicator for future M2M and eSIM ecosystem

    The Internet of Things Will Thrive by 2025

    Get PDF
    This report is the latest research report in a sustained effort throughout 2014 by the Pew Research Center Internet Project to mark the 25th anniversary of the creation of the World Wide Web by Sir Tim Berners-LeeThis current report is an analysis of opinions about the likely expansion of the Internet of Things (sometimes called the Cloud of Things), a catchall phrase for the array of devices, appliances, vehicles, wearable material, and sensor-laden parts of the environment that connect to each other and feed data back and forth. It covers the over 1,600 responses that were offered specifically about our question about where the Internet of Things would stand by the year 2025. The report is the next in a series of eight Pew Research and Elon University analyses to be issued this year in which experts will share their expectations about the future of such things as privacy, cybersecurity, and net neutrality. It includes some of the best and most provocative of the predictions survey respondents made when specifically asked to share their views about the evolution of embedded and wearable computing and the Internet of Things

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Law and the Open Internet

    Get PDF

    Law and the Open Internet

    Get PDF
    The FCC has issued a new set of Internet access regulations and policies (namely Preserving the Open Internet Broadband Industry Practices, Report and Order, FCC 10-201, rel. Dec. 23, 2010), which would prohibit broadband service providers like AT&T or Comcast from discriminating against unaffiliated content providers. The FCC\u27s proceedings, and the network neutrality debate, concentrate on two economic questions: (1) whether to broadband service providers can or will steer traffic to affiliated content limiting consumer access, and (2) how to preserve the Internet\u27s capacity for creativity and innovation. Yet despite the prominence of economics in the debate, economic theory cannot answer these questions. The debate also misapplies normative, legal concepts of discrimination and equal treatment onto Internet traffic management engineering. These concepts worked in a circuit switched telephone network in which equality can exist at switch points, but make little sense in the packet-switched Internet in which equality of outcomes of Internet experience is what matters. With its narrow focus, the debate has also missed the fact that actual Internet disputes, such as the BitTorrent-Comcast Order, involve many legal concerns, such as privacy, that have little to do with discrimination as such. We, therefore, argue for a bottom up approach to regulation, analogous to fair use in copyright law, with case specific adjudications creating a common law of acceptable network practice

    Teenustele orienteeritud ja tõendite-teadlik mobiilne pilvearvutus

    Get PDF
    Arvutiteaduses on kaks kõige suuremat jõudu: mobiili- ja pilvearvutus. Kui pilvetehnoloogia pakub kasutajale keerukate ülesannete lahendamiseks salvestus- ning arvutusplatvormi, siis nutitelefon võimaldab lihtsamate ülesannete lahendamist mistahes asukohas ja mistahes ajal. Täpsemalt on mobiilseadmetel võimalik pilve võimalusi ära kasutades energiat säästa ning jagu saada kasvavast jõudluse ja ruumi vajadusest. Sellest tulenevalt on käesoleva töö peamiseks küsimuseks kuidas tuua pilveinfrastruktuur mobiilikasutajale lähemale? Antud töös uurisime kuidas mobiiltelefoni pilveteenust saab mobiilirakendustesse integreerida. Saime teada, et töö delegeerimine pilve eeldab mitmete pilve aspektide kaalumist ja integreerimist, nagu näiteks ressursimahukas töötlemine, asünkroonne suhtlus kliendiga, programmaatiline ressursside varustamine (Web APIs) ja pilvedevaheline kommunikatsioon. Nende puuduste ületamiseks lõime Mobiilse pilve vahevara Mobile Cloud Middleware (Mobile Cloud Middleware - MCM) raamistiku, mis kasutab deklaratiivset teenuste komponeerimist, et delegeerida töid mobiililt mitmetele pilvedele kasutades minimaalset andmeedastust. Teisest küljest on näidatud, et koodi teisaldamine on peamisi strateegiaid seadme energiatarbimise vähendamiseks ning jõudluse suurendamiseks. Sellegipoolest on koodi teisaldamisel miinuseid, mis takistavad selle laialdast kasutuselevõttu. Selles töös uurime lisaks, mis takistab koodi mahalaadimise kasutuselevõttu ja pakume lahendusena välja raamistiku EMCO, mis kogub seadmetelt infot koodi jooksutamise kohta erinevates kontekstides. Neid andmeid analüüsides teeb EMCO kindlaks, mis on sobivad tingimused koodi maha laadimiseks. Võrreldes kogutud andmeid, suudab EMCO järeldada, millal tuleks mahalaadimine teostada. EMCO modelleerib kogutud andmeid jaotuse määra järgi lokaalsete- ning pilvejuhtude korral. Neid jaotusi võrreldes tuletab EMCO täpsed atribuudid, mille korral mobiilirakendus peaks koodi maha laadima. Võrreldes EMCO-t teiste nüüdisaegsete mahalaadimisraamistikega, tõuseb EMCO efektiivsuse poolest esile. Lõpuks uurisime kuidas arvutuste maha laadimist ära kasutada, et täiustada kasutaja kogemust pideval mobiilirakenduse kasutamisel. Meie peamiseks motivatsiooniks, et sellist adaptiivset tööde täitmise kiirendamist pakkuda, on tagada kasutuskvaliteet (QoE), mis muutub vastavalt kasutajale, aidates seeläbi suurendada mobiilirakenduse eluiga.Mobile and cloud computing are two of the biggest forces in computer science. While the cloud provides to the user the ubiquitous computational and storage platform to process any complex tasks, the smartphone grants to the user the mobility features to process simple tasks, anytime and anywhere. Smartphones, driven by their need for processing power, storage space and energy saving are looking towards remote cloud infrastructure in order to solve these problems. As a result, the main research question of this work is how to bring the cloud infrastructure closer to the mobile user? In this thesis, we investigated how mobile cloud services can be integrated within the mobile apps. We found out that outsourcing a task to cloud requires to integrate and consider multiple aspects of the clouds, such as resource-intensive processing, asynchronous communication with the client, programmatically provisioning of resources (Web APIs) and cloud intercommunication. Hence, we proposed a Mobile Cloud Middleware (MCM) framework that uses declarative service composition to outsource tasks from the mobile to multiple clouds with minimal data transfer. On the other hand, it has been demonstrated that computational offloading is a key strategy to extend the battery life of the device and improves the performance of the mobile apps. We also investigated the issues that prevent the adoption of computational offloading, and proposed a framework, namely Evidence-aware Mobile Computational Offloading (EMCO), which uses a community of devices to capture all the possible context of code execution as evidence. By analyzing the evidence, EMCO aims to determine the suitable conditions to offload. EMCO models the evidence in terms of distributions rates for both local and remote cases. By comparing those distributions, EMCO infers the right properties to offload. EMCO shows to be more effective in comparison with other computational offloading frameworks explored in the state of the art. Finally, we investigated how computational offloading can be utilized to enhance the perception that the user has towards an app. Our main motivation behind accelerating the perception at multiple response time levels is to provide adaptive quality-of-experience (QoE), which can be used as mean of engagement strategy that increases the lifetime of a mobile app
    corecore