12,077 research outputs found

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Operationalizing the circular city model for naples' city-port: A hybrid development strategy

    Get PDF
    The city-port context involves a decisive reality for the economic development of territories and nations, capable of significantly influencing the conditions of well-being and quality of life, and of making the Circular City Model (CCM) operational, preserving and enhancing seas and marine resources in a sustainable way. This can be achieved through the construction of appropriate production and consumption models, with attention to relations with the urban and territorial system. This paper presents an adaptive decision-making process for Naples (Italy) commercial port's development strategies, aimed at re-establishing a sustainable city-port relationship and making Circular Economy (CE) principles operative. The approach has aimed at implementing a CCM by operationalizing European recommendations provided within both the Sustainable Development Goals (SDGs) framework-specifically focusing on goals 9, 11 and 12-and the Maritime Spatial Planning European Directive 2014/89, to face conflicts about the overlapping areas of the city-port through multidimensional evaluations' principles and tools. In this perspective, a four-step methodological framework has been structured applying a place-based approach with mixed evaluation methods, eliciting soft and hard knowledge domains, which have been expressed and assessed by a core set of Sustainability Indicators (SI), linked to SDGs. The contribution outcomes have been centred on the assessment of three design alternatives for the East Naples port and the development of a hybrid regeneration scenario consistent with CE and sustainability principles. The structured decision-making process has allowed us to test how an adaptive approach can expand the knowledge base underpinning policy design and decisions to achieve better outcomes and cultivate a broad civic and technical engagement, that can enhance the legitimacy and transparency of policies

    A review of frameworks, methods and models for the evaluation and engineering of factory life cycles

    Get PDF
    Factories are complex systems, which are characterized by interlinked and overlapping life cycles of the constituent factory elements. Within this context, the heterogeneity of these life cycles results in life cycle complexity and corresponding conflicts and trade-offs that need to be addressed in decision situations during the planning and operation of factory systems. Also with respect to the transformation need towards environmental sustainability, there is a need for methods and tools for life cycle oriented factory planning and operation. This paper systematically reviews existing life cycle concepts of factory systems as well as frameworks, models and methods for the evaluation and engineering of factory life cycles. In order to respond to the above challenges, a general understanding about the factory life cycle, e.g. life cycle stages, related activities and interdependencies, is developed and action areas of life cycle engineering are discussed that could supplement factory planning. Following that, the paper presents an integrated, model-based evaluation and engineering framework of factory life cycles. © 2022 The Author

    Enabling the Twin Transitions: Digital Technologies Support Environmental Sustainability through Lean Principles

    Get PDF
    Manufacturing companies seek innovative approaches to achieve successful Green and Digital transitions, where adopting lean production is one alternative. However, further investigation is required to formulate the approach with empirical inputs and identify what digital technologies could be applied with which lean principles for environmental benefits. Therefore, this study first conducted a case study in three companies to collect empirical data. A complementary literature review was then carried out, investigating the existing frameworks, and complementing practices of digitalized lean implementations and the resulting environmental impact. Consequently, the Internet of Things and related connection-level technologies were identified as the key facilitators in lean implementations, specifically in visualization, communication, and poka-yoke, leading to environmental benefits. Furthermore, a framework of DIgitalization Supports Environmental sustainability through Lean principles (DISEL) was proposed to help manufacturing companies identify the opportunities of digitalizing lean principles for Environmental sustainability, thus enabling the twin transitions and being resilient

    Evaluating The Ecological Sustainability Of Production Networks – A Data-based Approach

    Get PDF
    The design of global production networks influences the ecological sustainability of manufacturing operations, since it determines the environment with which a production process interacts. Historically sustainability has not been a primary goal for the design of production networks and its evaluation remains a challenge. The multiple goals of sustainability and complex structures of production networks constitute to a high modelling effort that can only be managed with databased solutions. To further decrease the modelling expenditures, the data used in such a solution should be already available or easy to obtain. This paper presents a methodology and data framework to evaluate various ecological sustainability goals, which are impacted by the design of global production networks. The approach is validated with a company that produces electrical appliances

    Contextual impacts on industrial processes brought by the digital transformation of manufacturing: a systematic review

    Get PDF
    The digital transformation of manufacturing (a phenomenon also known as "Industry 4.0" or "Smart Manufacturing") is finding a growing interest both at practitioner and academic levels, but is still in its infancy and needs deeper investigation. Even though current and potential advantages of digital manufacturing are remarkable, in terms of improved efficiency, sustainability, customization, and flexibility, only a limited number of companies has already developed ad hoc strategies necessary to achieve a superior performance. Through a systematic review, this study aims at assessing the current state of the art of the academic literature regarding the paradigm shift occurring in the manufacturing settings, in order to provide definitions as well as point out recurring patterns and gaps to be addressed by future research. For the literature search, the most representative keywords, strict criteria, and classification schemes based on authoritative reference studies were used. The final sample of 156 primary publications was analyzed through a systematic coding process to identify theoretical and methodological approaches, together with other significant elements. This analysis allowed a mapping of the literature based on clusters of critical themes to synthesize the developments of different research streams and provide the most representative picture of its current state. Research areas, insights, and gaps resulting from this analysis contributed to create a schematic research agenda, which clearly indicates the space for future evolutions of the state of knowledge in this field

    AREUS \u2013 Innovative Hardware and Software for Sustainable Industrial Robotics

    Get PDF
    Abstract\u2014 Industrial Robotics (IR) may be envisaged as the key technology to keep the manufacturing industry at the leading edge. Unfortunately, at the current state-of-the-art, IR is intrinsically energy intensive, thus compromising factories sustainability in terms of ecological footprint and economic costs. Within this scenario, this paper presents a new framework called AREUS, focusing on eco-design, eco-programming and Life Cycle Assessment (LCA) of robotized factories. The objective is to overcome current IR energetic limitations by providing a set of integrated technologies and engineering platforms. In particular, novel energy-saving hardware is firstly introduced, which aim at exchanging/storing/recovering energy at factory level. In parallel, innovative engineering methods and software tools for energy-focused simulation are developed, as well as energy-optimal scheduling of multi-robot stations. At last, LCA methods are briefly described, which are capable to assess both environmental and economic costs, linked to the flows of Material, Energy and Waste (MEW). A selected list of industrially-driven demonstration case studies is finally presented, along with future directions of improvement

    Treatment and valorization plants in materials recovery supply chain

    Get PDF
    Aim of industrial symbiosis is to create synergies between industries in order to exchange resources (by-products, water and energy) through geographic proximity and collaboration [1]. By optimizing resource flows in a “whole-system approach”, a minimization of dangerous emissions and of supply needs can be achieved. Resources exchanges are established to facilitate recycling and re-use of industrial waste using a commercial vehicle. Several paths can be identified in order to establish an industrial symbiosis network (Figure 1, left), in relation (i) to the life cycle phase (raw material, component, product) and (ii) to the nature (material, water, energy) of the resource flows to be exchanged. Sometimes by-products and/or waste of an industrial process have to be treated and valorized in order to become the raw materials for others. In particular, two main treatment processes can be identified: refurbishment/upgrade for re-use (Figure 1, center) and recycling for material recovery (Figure 1, right). A brief overview of technological and economic aspects is given, together with their relevance to industrial symbiosis
    corecore