63 research outputs found

    Beyond Control-Flow: Extending Business Process Configuration to Roles and Objects

    Get PDF
    A configurable process model is an integrated representation of multiple variants of a business process. It is designed to be individualized to meet a particular set of requirements. As such, configurable process models promote systematic reuse of proven or common practices. Existing notations for configurable process modeling focus on capturing tasks and control-flow dependencies, neglecting equally important aspects of business processes such as data flow, material flow and resource management. This paper fills this gap by proposing an integrated meta-model for configurable processes with advanced features for capturing resources involved in the performance of tasks (through task-role associations) as well as flow of data and physical artifacts (through task-object associations). Although embodied as an extension of a popular process modeling notation, namely EPC, the meta-model is defined in an abstract and formal manner to make it applicable to other notations

    Business Process Configuration According to Data Dependency Specification

    Get PDF
    Configuration techniques have been used in several fields, such as the design of business process models. Sometimes these models depend on the data dependencies, being easier to describe what has to be done instead of how. Configuration models enable to use a declarative representation of business processes, deciding the most appropriate work-flow in each case. Unfortunately, data dependencies among the activities and how they can affect the correct execution of the process, has been overlooked in the declarative specifications and configurable systems found in the literature. In order to find the best process configuration for optimizing the execution time of processes according to data dependencies, we propose the use of Constraint Programming paradigm with the aim of obtaining an adaptable imperative model in function of the data dependencies of the activities described declarative.Ministerio de Ciencia y Tecnología TIN2015-63502-C3-2-RFondo Europeo de Desarrollo Regiona

    Guaranteeing Soundness of Configurable Process Variants in Provop

    Get PDF
    Usually, for a particular business process a multitude of variants exists. Each of them constitutes an adjustment of a reference process model to specific requirements building the process context. While some progress has been achieved regarding the configuration of process variants, there exists only little work on how to accomplish this in a sound and efficient manner, especially when considering the large number of process variants that exist in practice as well as the many syntactical and semantical constraints they have to obey. In this paper we discuss advanced concepts for the context- and constraint-based configuration of process variants, and show how they can be utilized to ensure soundness of the configured process variants. Enhancing process-aware information systems with the capability to easily configure sound process models, belonging to the same process family and fitting to the given application context, will enable a new quality in engineering process-aware information systems

    Some Challenges of Feature-based Merging of Class Diagrams

    Get PDF
    In software product line engineering, feature mod-els enable to automate the generation of product-specific models in conjunction with domain “base models ” (e.g. UML models). Two approaches ex-ist: pruning of a large domain model, or merging of model fragments. In this paper, we investigate the impact of the merging approach on base mod-els, and how they are made and used. We adopt an empirical method and test the approach on an ex-ample. The results show several challenges in the way model fragments are written, the need for new modelling language constructs and tool support. 1

    Facing uncertainty in web service compositions

    Full text link
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works[EN] Web service compositions run in complex computing infrastructures where arising events may affect the quality of the system. However, crucial Web service compositions cannot be stopped to apply changes to deal with problematic events. Therefore, the trend is moving towards context-aware Web service compositions, which use context information as a basis for autonomic changes. Under the closed-world assumption, the context and possible adaptations are fully known at design time. Nevertheless, it is difficult to foresee all the possible situations arising in uncertain contexts. In this paper, we leverage models at runtime to guide the dynamic evolution of context-aware Web service compositions to deal with unexpected events in the open world. In order to manage uncertainty, a model that abstracts the Web service composition, self-evolves to preserve requirements. The evolved model guides changes in the underlying WS-BPEL composition schema. A prototype and an evaluation demonstrate the feasibility of our approach.This work has been developed with the support of MICINN under the project everyWare TIN2010-18011 and co-financed with ERDF.Alférez, GH.; Pelechano Ferragud, V. (2013). Facing uncertainty in web service compositions. En Web Services (ICWS), 2013 IEEE 20th International Conference on. IEEE Computer Society. 219-226. https://doi.org/10.1109/ICWS.2013.38S21922

    Towards Context-aware Process Guidance in Cyber-Physical Systems with Augmented Reality

    Get PDF
    Assembly, configuration, maintenance, and repair processes in cyber-physical systems (e.g., a press line in a plant) comprise a multitude of complex tasks, whose execution needs to be controlled, coordinated and monitored. Amongst others, a process-centric guidance of users (e.g. service operators) is required, taking the high variability in the assembly of cyber-physical systems (e.g. press line variability) into account. Moreover, the tasks to be performed along these processes may be related to physical components, sensors and actuators, which need to be properly recognized, integrated and operated. In order to digitize cyber-physical processes as well as to guide users in a process-centric way, therefore, we suggest integrating process management technology, sensor/actuator interfaces, and augmented reality techniques. The paper discusses fundamental requirements for such an integration and presents an approach for process-centric user guidance that combines context and process management with augmented reality enhanced tasks. For evaluation purposes, we analyzed the cyber-physical processes of pharmaceutical packaging machines and implemented selected ones based on the approach. Overall, we are able to demonstrate the usefulness of context-aware process management for the flexible support of cyber-physical processes in the Industrial Internet of Things
    corecore