10 research outputs found

    Supporting Business Privacy Protection in Wireless Sensor Networks

    Get PDF
    With the pervasive use of wireless sensor networks (WSNs) within commercial environments, business privacy leakage due to the exposure of sensitive information transmitted in a WSN has become a major issue for enterprises. We examine business privacy protection in the application of WSNs. We propose a business privacy-protection system (BPS) that is modeled as a hierarchical profile in order to filter sensitive information with respect to enterprise-specified privacy requirements. The BPS aims at solving a tradeoff between metrics that are defined to estimate the utility of information and the business privacy risk. We design profile, risk assessment, and filtration agents to implement the BPS based on multiagent technology. The effectiveness of our proposed BPS is validated by experiments

    A Secure Privacy-Preserving Data Aggregation Model in Wearable Wireless Sensor Networks

    Get PDF

    Source location privacy in wireless sensor networks under practical scenarios : routing protocols, parameterisations and trade-offs

    Get PDF
    As wireless sensor networks (WSNs) have been applied across a spectrum of application domains, source location privacy (SLP) has emerged as a significant issue, particularly in security-critical situations. In seminal work on SLP, several protocols were proposed as viable approaches to address the issue of SLP. However, most state-of-the-art approaches work under specific network assumptions. For example, phantom routing, one of the most popular routing protocols for SLP, assumes a single source. On the other hand, in practical scenarios for SLP, this assumption is not realistic, as there will be multiple data sources. Other issues of practical interest include network configurations. Thus, thesis addresses the impact of these practical considerations on SLP. The first step is the evaluation of phantom routing under various configurations, e.g., multiple sources and network configurations. The results show that phantom routing does not scale to handle multiple sources while providing high SLP at the expense of low messages yield. Thus, an important issue arises as a result of this observation that the need for a routing protocol that can handle multiple sources. As such, a novel parametric routing protocol is proposed, called phantom walkabouts, for SLP for multi-source WSNs. A large-scale experiments are conducted to evaluate the efficiency of phantom walkabouts. The main observation is that phantom walkabouts can provide high level of SLP at the expense of energy and/or data yield. To deal with these trade-offs, a framework that allows reasoning about trade-offs needs to develop. Thus, a decision theoretic methodology is proposed that allows reasoning about these trade-offs. The results showcase the viability of this methodology via several case studies
    corecore