1,280 research outputs found

    Inherent Limitations of AI Fairness

    Full text link
    As the real-world impact of Artificial Intelligence (AI) systems has been steadily growing, so too have these systems come under increasing scrutiny. In particular, the study of AI fairness has rapidly developed into a rich field of research with links to computer science, social science, law, and philosophy. Though many technical solutions for measuring and achieving AI fairness have been proposed, their model of AI fairness has been widely criticized in recent years for being misleading and unrealistic. In our paper, we survey these criticisms of AI fairness and identify key limitations that are inherent to the prototypical paradigm of AI fairness. By carefully outlining the extent to which technical solutions can realistically help in achieving AI fairness, we aim to provide readers with the background necessary to form a nuanced opinion on developments in the field of fair AI. This delineation also provides research opportunities for non-AI solutions peripheral to AI systems in supporting fair decision processes

    Explainability in AI Policies: A Critical Review of Communications, Reports, Regulations, and Standards in the EU, US, and UK

    Get PDF
    Public attention towards explainability of artificial intelligence (AI) systems has been rising in recent years to offer methodologies for human oversight. This has translated into the proliferation of research outputs, such as from Explainable AI, to enhance transparency and control for system debugging and monitoring, and intelligibility of system process and output for user services. Yet, such outputs are difficult to adopt on a practical level due to a lack of a common regulatory baseline, and the contextual nature of explanations. Governmental policies are now attempting to tackle such exigence, however it remains unclear to what extent published communications, regulations, and standards adopt an informed perspective to support research, industry, and civil interests. In this study, we perform the first thematic and gap analysis of this plethora of policies and standards on explainability in the EU, US, and UK. Through a rigorous survey of policy documents, we first contribute an overview of governmental regulatory trajectories within AI explainability and its sociotechnical impacts. We find that policies are often informed by coarse notions and requirements for explanations. This might be due to the willingness to conciliate explanations foremost as a risk management tool for AI oversight, but also due to the lack of a consensus on what constitutes a valid algorithmic explanation, and how feasible the implementation and deployment of such explanations are across stakeholders of an organization. Informed by AI explainability research, we then conduct a gap analysis of existing policies, which leads us to formulate a set of recommendations on how to address explainability in regulations for AI systems, especially discussing the definition, feasibility, and usability of explanations, as well as allocating accountability to explanation providers

    Recommender systems fairness evaluation via generalized cross entropy

    Full text link
    Fairness in recommender systems has been considered with respect to sensitive attributes of users (e.g., gender, race) or items (e.g., revenue in a multistakeholder setting). Regardless, the concept has been commonly interpreted as some form of equality – i.e., the degree to which the system is meeting the information needs of all its users in an equal sense. In this paper, we argue that fairness in recommender systems does not necessarily imply equality, but instead it should consider a distribution of resources based on merits and needs.We present a probabilistic framework based ongeneralized cross entropy to evaluate fairness of recommender systems under this perspective, wherewe showthat the proposed framework is flexible and explanatory by allowing to incorporate domain knowledge (through an ideal fair distribution) that can help to understand which item or user aspects a recommendation algorithm is over- or under-representing. Results on two real-world datasets show the merits of the proposed evaluation framework both in terms of user and item fairnessThis work was supported in part by the Center for Intelligent Information Retrieval and in part by project TIN2016-80630-P (MINECO

    A governance framework for algorithmic accountability and transparency

    Get PDF
    Algorithmic systems are increasingly being used as part of decision-making processes in both the public and private sectors, with potentially significant consequences for individuals, organisations and societies as a whole. Algorithmic systems in this context refer to the combination of algorithms, data and the interface process that together determine the outcomes that affect end users. Many types of decisions can be made faster and more efficiently using algorithms. A significant factor in the adoption of algorithmic systems for decision-making is their capacity to process large amounts of varied data sets (i.e. big data), which can be paired with machine learning methods in order to infer statistical models directly from the data. The same properties of scale, complexity and autonomous model inference however are linked to increasing concerns that many of these systems are opaque to the people affected by their use and lack clear explanations for the decisions they make. This lack of transparency risks undermining meaningful scrutiny and accountability, which is a significant concern when these systems are applied as part of decision-making processes that can have a considerable impact on people's human rights (e.g. critical safety decisions in autonomous vehicles; allocation of health and social service resources, etc.). This study develops policy options for the governance of algorithmic transparency and accountability, based on an analysis of the social, technical and regulatory challenges posed by algorithmic systems. Based on a review and analysis of existing proposals for governance of algorithmic systems, a set of four policy options are proposed, each of which addresses a different aspect of algorithmic transparency and accountability: 1. awareness raising: education, watchdogs and whistleblowers; 2. accountability in public-sector use of algorithmic decision-making; 3. regulatory oversight and legal liability; and 4. global coordination for algorithmic governance

    The Multisided Complexity of Fairness in Recommender Systems

    Get PDF
    Recommender systems are poised at the interface between stakeholders: for example, job applicants and employers in the case of recommendations of employment listings, or artists and listeners in the case of music recommendation. In such multisided platforms, recommender systems play a key role in enabling discovery of products and information at large scales. However, as they have become more and more pervasive in society, the equitable distribution of their benefits and harms have been increasingly under scrutiny, as is the case with machine learning generally. While recommender systems can exhibit many of the biases encountered in other machine learning settings, the intersection of personalization and multisidedness makes the question of fairness in recommender systems manifest itself quite differently. In this article, we discuss recent work in the area of multisided fairness in recommendation, starting with a brief introduction to core ideas in algorithmic fairness and multistakeholder recommendation. We describe techniques for measuring fairness and algorithmic approaches for enhancing fairness in recommendation outputs. We also discuss feedback and popularity effects that can lead to unfair recommendation outcomes. Finally, we introduce several promising directions for future research in this area

    Having your Privacy Cake and Eating it Too: Platform-supported Auditing of Social Media Algorithms for Public Interest

    Full text link
    Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse today. The opaque nature of the algorithms these platforms use to curate content raises societal questions. Prior studies have used black-box methods to show that these algorithms can lead to biased or discriminatory outcomes. However, existing auditing methods face fundamental limitations because they function independent of the platforms. Concerns of potential harm have prompted proposal of legislation in both the U.S. and the E.U. to mandate a new form of auditing where vetted external researchers get privileged access to social media platforms. Unfortunately, to date there have been no concrete technical proposals to provide such auditing, because auditing at scale risks disclosure of users' private data and platforms' proprietary algorithms. We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation. Our first contribution is to enumerate the challenges of existing auditing methods to implement these policies at scale. Second, we suggest that limited, privileged access to relevance estimators is the key to enabling generalizable platform-supported auditing by external researchers. Third, we show platform-supported auditing need not risk user privacy nor disclosure of platforms' business interests by proposing an auditing framework that protects against these risks. For a particular fairness metric, we show that ensuring privacy imposes only a small constant factor increase (6.34x as an upper bound, and 4x for typical parameters) in the number of samples required for accurate auditing. Our technical contributions, combined with ongoing legal and policy efforts, can enable public oversight into how social media platforms affect individuals and society by moving past the privacy-vs-transparency hurdle
    • …
    corecore