30 research outputs found

    Socially intelligent robots that understand and respond to human touch

    Get PDF
    Touch is an important nonverbal form of interpersonal interaction which is used to communicate emotions and other social messages. As interactions with social robots are likely to become more common in the near future these robots should also be able to engage in tactile interaction with humans. Therefore, the aim of the research presented in this dissertation is to work towards socially intelligent robots that can understand and respond to human touch. To become a socially intelligent actor a robot must be able to sense, classify and interpret human touch and respond to this in an appropriate manner. To this end we present work that addresses different parts of this interaction cycle. The contributions of this dissertation are the following. We have made a touch gesture dataset available to the research community and have presented benchmark results. Furthermore, we have sparked interest into the new field of social touch recognition by organizing a machine learning challenge and have pinpointed directions for further research. Also, we have exposed potential difficulties for the recognition of social touch in more naturalistic settings. Moreover, the findings presented in this dissertation can help to inform the design of a behavioral model for robot pet companions that can understand and respond to human touch. Additionally, we have focused on the requirements for tactile interaction with robot pets for health care applications

    Social touch gesture recognition using random forest and boosting on distinct feature sets

    Get PDF
    Touch is a primary nonverbal communication channel used to communicate emotions or other social messages. Despite its importance, this channel is still very little explored in the affective computing field, as much more focus has been placed on visual and aural channels. In this paper, we investigate the possibility to automatically discriminate between different social touch types. We propose five distinct feature sets for describing touch behaviours captured by a grid of pressure sensors. These features are then combined together by using the Random Forest and Boosting methods for categorizing the touch gesture type. The proposed methods were evaluated on both the HAART (7 gesture types over different surfaces) and the CoST (14 gesture types over the same surface) datasets made available by the Social Touch Gesture Challenge 2015. Well above chance level performances were achieved with a 67% accuracy for the HAART and 59% for the CoST testing datasets respectively

    Acoustic-based Smart Tactile Sensing in Social Robots

    Get PDF
    Mención Internacional en el título de doctorEl sentido del tacto es un componente crucial de la interacción social humana y es único entre los cinco sentidos. Como único sentido proximal, el tacto requiere un contacto físico cercano o directo para registrar la información. Este hecho convierte al tacto en una modalidad de interacción llena de posibilidades en cuanto a comunicación social. A través del tacto, podemos conocer la intención de la otra persona y comunicar emociones. De esta idea surge el concepto de social touch o tacto social como el acto de tocar a otra persona en un contexto social. Puede servir para diversos fines, como saludar, mostrar afecto, persuadir y regular el bienestar emocional y físico. Recientemente, el número de personas que interactúan con sistemas y agentes artificiales ha aumentado, principalmente debido al auge de los dispositivos tecnológicos, como los smartphones o los altavoces inteligentes. A pesar del auge de estos dispositivos, sus capacidades de interacción son limitadas. Para paliar este problema, los recientes avances en robótica social han mejorado las posibilidades de interacción para que los agentes funcionen de forma más fluida y sean más útiles. En este sentido, los robots sociales están diseñados para facilitar interacciones naturales entre humanos y agentes artificiales. El sentido del tacto en este contexto se revela como un vehículo natural que puede mejorar la Human-Robot Interaction (HRI) debido a su relevancia comunicativa en entornos sociales. Además de esto, para un robot social, la relación entre el tacto social y su aspecto es directa, al disponer de un cuerpo físico para aplicar o recibir toques. Desde un punto de vista técnico, los sistemas de detección táctil han sido objeto recientemente de nuevas investigaciones, sobre todo dedicado a comprender este sentido para crear sistemas inteligentes que puedan mejorar la vida de las personas. En este punto, los robots sociales se han convertido en dispositivos muy populares que incluyen tecnologías para la detección táctil. Esto está motivado por el hecho de que un robot puede esperada o inesperadamente tener contacto físico con una persona, lo que puede mejorar o interferir en la ejecución de sus comportamientos. Por tanto, el sentido del tacto se antoja necesario para el desarrollo de aplicaciones robóticas. Algunos métodos incluyen el reconocimiento de gestos táctiles, aunque a menudo exigen importantes despliegues de hardware que requieren de múltiples sensores. Además, la fiabilidad de estas tecnologías de detección es limitada, ya que la mayoría de ellas siguen teniendo problemas tales como falsos positivos o tasas de reconocimiento bajas. La detección acústica, en este sentido, puede proporcionar un conjunto de características capaces de paliar las deficiencias anteriores. A pesar de que se trata de una tecnología utilizada en diversos campos de investigación, aún no se ha integrado en la interacción táctil entre humanos y robots. Por ello, en este trabajo proponemos el sistema Acoustic Touch Recognition (ATR), un sistema inteligente de detección táctil (smart tactile sensing system) basado en la detección acústica y diseñado para mejorar la interacción social humano-robot. Nuestro sistema está desarrollado para clasificar gestos táctiles y localizar su origen. Además de esto, se ha integrado en plataformas robóticas sociales y se ha probado en aplicaciones reales con éxito. Nuestra propuesta se ha enfocado desde dos puntos de vista: uno técnico y otro relacionado con el tacto social. Por un lado, la propuesta tiene una motivación técnica centrada en conseguir un sistema táctil rentable, modular y portátil. Para ello, en este trabajo se ha explorado el campo de las tecnologías de detección táctil, los sistemas inteligentes de detección táctil y su aplicación en HRI. Por otro lado, parte de la investigación se centra en el impacto afectivo del tacto social durante la interacción humano-robot, lo que ha dado lugar a dos estudios que exploran esta idea.The sense of touch is a crucial component of human social interaction and is unique among the five senses. As the only proximal sense, touch requires close or direct physical contact to register information. This fact makes touch an interaction modality full of possibilities regarding social communication. Through touch, we are able to ascertain the other person’s intention and communicate emotions. From this idea emerges the concept of social touch as the act of touching another person in a social context. It can serve various purposes, such as greeting, showing affection, persuasion, and regulating emotional and physical well-being. Recently, the number of people interacting with artificial systems and agents has increased, mainly due to the rise of technological devices, such as smartphones or smart speakers. Still, these devices are limited in their interaction capabilities. To deal with this issue, recent developments in social robotics have improved the interaction possibilities to make agents more seamless and useful. In this sense, social robots are designed to facilitate natural interactions between humans and artificial agents. In this context, the sense of touch is revealed as a natural interaction vehicle that can improve HRI due to its communicative relevance. Moreover, for a social robot, the relationship between social touch and its embodiment is direct, having a physical body to apply or receive touches. From a technical standpoint, tactile sensing systems have recently been the subject of further research, mostly devoted to comprehending this sense to create intelligent systems that can improve people’s lives. Currently, social robots are popular devices that include technologies for touch sensing. This is motivated by the fact that robots may encounter expected or unexpected physical contact with humans, which can either enhance or interfere with the execution of their behaviours. There is, therefore, a need to detect human touch in robot applications. Some methods even include touch-gesture recognition, although they often require significant hardware deployments primarily that require multiple sensors. Additionally, the dependability of those sensing technologies is constrained because the majority of them still struggle with issues like false positives or poor recognition rates. Acoustic sensing, in this sense, can provide a set of features that can alleviate the aforementioned shortcomings. Even though it is a technology that has been utilised in various research fields, it has yet to be integrated into human-robot touch interaction. Therefore, in thiswork,we propose theATRsystem, a smart tactile sensing system based on acoustic sensing designed to improve human-robot social interaction. Our system is developed to classify touch gestures and locate their source. It is also integrated into real social robotic platforms and tested in real-world applications. Our proposal is approached from two standpoints, one technical and the other related to social touch. Firstly, the technical motivation of thiswork centred on achieving a cost-efficient, modular and portable tactile system. For that, we explore the fields of touch sensing technologies, smart tactile sensing systems and their application in HRI. On the other hand, part of the research is centred around the affective impact of touch during human-robot interaction, resulting in two studies exploring this idea.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Pedro Manuel Urbano de Almeida Lima.- Secretaria: María Dolores Blanco Rojas.- Vocal: Antonio Fernández Caballer

    An architecture for sensate robots : real time social-gesture recognition using a full body array of touch sensors

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references.Touch plays a central role in social expression but, so far, research into social touch behaviors for robots has been almost. non-existent. Embodied machines have the unique capability to sense human body language, which will enable robots to better comprehend, anticipate and respond to their human companions in a natural way.This thesis addresses the novel field of sensate touch by (1) creating the first. robot with full Body sensate touch and with on-screen visualization, (2) establishing a library of salient social gestures through behavioral studies, (3) implementing a first-pass touch gesture recognition system in real-time, an(d (4) running a small pilot study with children to evaluate classifications and test the device's acceptance/utility with humans. Such research is critical path to conceiving and advancing thee use of machine touch to better integrate robots in.to human social environments.All of the above will be incorporated into the huggable robotic teddy bear at the MIT Media Lab's Personal Robotics group and makes use of the Sensitive Skins circuit design created in Dan Stiehl's Masters thesis. This implementation substantially reduces his proposed total sensor numbers and type, modularizes sensors into two uniform shapes, and extends his valuable work on a single body sections to an evaluation of sensors over the entire surface of the robot.Heather-Marie Callanan Knight.M.Eng

    Pinching sweaters on your phone – iShoogle : multi-gesture touchscreen fabric simulator using natural on-fabric gestures to communicate textile qualities

    Get PDF
    The inability to touch fabrics online frustrates consumers, who are used to evaluating physical textiles by engaging in complex, natural gestural interactions. When customers interact with physical fabrics, they combine cross-modal information about the fabric's look, sound and handle to build an impression of its physical qualities. But whenever an interaction with a fabric is limited (i.e. when watching clothes online) there is a perceptual gap between the fabric qualities perceived digitally and the actual fabric qualities that a person would perceive when interacting with the physical fabric. The goal of this thesis was to create a fabric simulator that minimized this perceptual gap, enabling accurate perception of the qualities of fabrics presented digitally. We designed iShoogle, a multi-gesture touch-screen sound-enabled fabric simulator that aimed to create an accurate representation of fabric qualities without the need for touching the physical fabric swatch. iShoogle uses on-screen gestures (inspired by natural on-fabric movements e.g. Crunching) to control pre-recorded videos and audio of fabrics being deformed (e.g. being Crunched). iShoogle creates an illusion of direct video manipulation and also direct manipulation of the displayed fabric. This thesis describes the results of nine studies leading towards the development and evaluation of iShoogle. In the first three studies, we combined expert and non-expert textile-descriptive words and grouped them into eight dimensions labelled with terms Crisp, Hard, Soft, Textured, Flexible, Furry, Rough and Smooth. These terms were used to rate fabric qualities throughout the thesis. We observed natural on-fabric gestures during a fabric handling study (Study 4) and used the results to design iShoogle's on-screen gestures. In Study 5 we examined iShoogle's performance and speed in a fabric handling task and in Study 6 we investigated users' preferences for sound playback interactivity. iShoogle's accuracy was then evaluated in the last three studies by comparing participants’ ratings of textile qualities when using iShoogle with ratings produced when handling physical swatches. We also described the recording and processing techniques for the video and audio content that iShoogle used. Finally, we described the iShoogle iPhone app that was released to the general public. Our evaluation studies showed that iShoogle significantly improved the accuracy of fabric perception in at least some cases. Further research could investigate which fabric qualities and which fabrics are particularly suited to be represented with iShoogle

    Sculptured computational objects with smart and active computing materials

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2001.Includes bibliographical references (leaves 325-328).This thesis presents the creative, technological, and philosophical means and methodology, by which technology artists and researchers can materially and sculpturally transform physical computing technology from hard, remotely-designed, plastic shells, into intimately created, sensual computing objects and artifacts. It asserts that the rigid, square, and prefabricated physical materials of computing technology are a fundamental technological and artistic limitation to anyone who wishes to sensually transform physical computing technology, or develop a rich artistic vocabulary for it. Smart and active sculptural computing materials are presented as a solution to this problem. Practically, smart computing materials reduce the number of separate, rigid, and square prefabricated parts required to create physical computing objects. Artistically, active sculptural computing materials give artists and designers the ability to directly manipulate, shape, experiment with, and therefore aesthetically understand the real, physical materials of computing technology. Such active design materials will also enable creative people to develop a meaningful artistic relationship between physical form and computation. The total contributions of this thesis include a proposal for a future three-dimensional design/technology practice, a portfolio of sensually transformed expressive computational objects (including new physical interfaces, electronic fashions, and embroidered musical instruments), and the smart and active sculptural computing materials and processes (in this case smart textiles), which make that transformation possible. Projects from the design portfolio include: The Triangles, and its applications; Electronic Fashions, including the Firefly Dress and Necklace, New Year's Eve Ball Gown, and Serial Suit; The Musical Jacket; Electronic Tablecloths; and a series of Embroidered Musical Instruments with embroidered pressure sensors. Contributions from the supporting technical area include: the first fabric keypad (a row and column switch matrix), a new conductive yarn capable of tying and electrical/mechanical knot, an advanced process for machine embroidering highly conductive, flexible and visually diverse electrodes, an empirical model of complex impedance sensing, and a definition of and test for the machine sewability and flexibility of yarns. These contributions are presented in three sections: 1) the supporting arguments, and philosophy of materiality and computation behind this work, 2) the design portfolio, and 3) the supporting technical story.by Margaret A. Orth.Ph.D

    Grasp-sensitive surfaces

    Get PDF
    Grasping objects with our hands allows us to skillfully move and manipulate them. Hand-held tools further extend our capabilities by adapting precision, power, and shape of our hands to the task at hand. Some of these tools, such as mobile phones or computer mice, already incorporate information processing capabilities. Many other tools may be augmented with small, energy-efficient digital sensors and processors. This allows for graspable objects to learn about the user grasping them - and supporting the user's goals. For example, the way we grasp a mobile phone might indicate whether we want to take a photo or call a friend with it - and thus serve as a shortcut to that action. A power drill might sense whether the user is grasping it firmly enough and refuse to turn on if this is not the case. And a computer mouse could distinguish between intentional and unintentional movement and ignore the latter. This dissertation gives an overview of grasp sensing for human-computer interaction, focusing on technologies for building grasp-sensitive surfaces and challenges in designing grasp-sensitive user interfaces. It comprises three major contributions: a comprehensive review of existing research on human grasping and grasp sensing, a detailed description of three novel prototyping tools for grasp-sensitive surfaces, and a framework for analyzing and designing grasp interaction: For nearly a century, scientists have analyzed human grasping. My literature review gives an overview of definitions, classifications, and models of human grasping. A small number of studies have investigated grasping in everyday situations. They found a much greater diversity of grasps than described by existing taxonomies. This diversity makes it difficult to directly associate certain grasps with users' goals. In order to structure related work and own research, I formalize a generic workflow for grasp sensing. It comprises *capturing* of sensor values, *identifying* the associated grasp, and *interpreting* the meaning of the grasp. A comprehensive overview of related work shows that implementation of grasp-sensitive surfaces is still hard, researchers often are not aware of related work from other disciplines, and intuitive grasp interaction has not yet received much attention. In order to address the first issue, I developed three novel sensor technologies designed for grasp-sensitive surfaces. These mitigate one or more limitations of traditional sensing techniques: **HandSense** uses four strategically positioned capacitive sensors for detecting and classifying grasp patterns on mobile phones. The use of custom-built high-resolution sensors allows detecting proximity and avoids the need to cover the whole device surface with sensors. User tests showed a recognition rate of 81%, comparable to that of a system with 72 binary sensors. **FlyEye** uses optical fiber bundles connected to a camera for detecting touch and proximity on arbitrarily shaped surfaces. It allows rapid prototyping of touch- and grasp-sensitive objects and requires only very limited electronics knowledge. For FlyEye I developed a *relative calibration* algorithm that allows determining the locations of groups of sensors whose arrangement is not known. **TDRtouch** extends Time Domain Reflectometry (TDR), a technique traditionally used for inspecting cable faults, for touch and grasp sensing. TDRtouch is able to locate touches along a wire, allowing designers to rapidly prototype and implement modular, extremely thin, and flexible grasp-sensitive surfaces. I summarize how these technologies cater to different requirements and significantly expand the design space for grasp-sensitive objects. Furthermore, I discuss challenges for making sense of raw grasp information and categorize interactions. Traditional application scenarios for grasp sensing use only the grasp sensor's data, and only for mode-switching. I argue that data from grasp sensors is part of the general usage context and should be only used in combination with other context information. For analyzing and discussing the possible meanings of grasp types, I created the GRASP model. It describes five categories of influencing factors that determine how we grasp an object: *Goal* -- what we want to do with the object, *Relationship* -- what we know and feel about the object we want to grasp, *Anatomy* -- hand shape and learned movement patterns, *Setting* -- surrounding and environmental conditions, and *Properties* -- texture, shape, weight, and other intrinsics of the object I conclude the dissertation with a discussion of upcoming challenges in grasp sensing and grasp interaction, and provide suggestions for implementing robust and usable grasp interaction.Die Fähigkeit, Gegenstände mit unseren Händen zu greifen, erlaubt uns, diese vielfältig zu manipulieren. Werkzeuge erweitern unsere Fähigkeiten noch, indem sie Genauigkeit, Kraft und Form unserer Hände an die Aufgabe anpassen. Digitale Werkzeuge, beispielsweise Mobiltelefone oder Computermäuse, erlauben uns auch, die Fähigkeiten unseres Gehirns und unserer Sinnesorgane zu erweitern. Diese Geräte verfügen bereits über Sensoren und Recheneinheiten. Aber auch viele andere Werkzeuge und Objekte lassen sich mit winzigen, effizienten Sensoren und Recheneinheiten erweitern. Dies erlaubt greifbaren Objekten, mehr über den Benutzer zu erfahren, der sie greift - und ermöglicht es, ihn bei der Erreichung seines Ziels zu unterstützen. Zum Beispiel könnte die Art und Weise, in der wir ein Mobiltelefon halten, verraten, ob wir ein Foto aufnehmen oder einen Freund anrufen wollen - und damit als Shortcut für diese Aktionen dienen. Eine Bohrmaschine könnte erkennen, ob der Benutzer sie auch wirklich sicher hält und den Dienst verweigern, falls dem nicht so ist. Und eine Computermaus könnte zwischen absichtlichen und unabsichtlichen Mausbewegungen unterscheiden und letztere ignorieren. Diese Dissertation gibt einen Überblick über Grifferkennung (*grasp sensing*) für die Mensch-Maschine-Interaktion, mit einem Fokus auf Technologien zur Implementierung griffempfindlicher Oberflächen und auf Herausforderungen beim Design griffempfindlicher Benutzerschnittstellen. Sie umfasst drei primäre Beiträge zum wissenschaftlichen Forschungsstand: einen umfassenden Überblick über die bisherige Forschung zu menschlichem Greifen und Grifferkennung, eine detaillierte Beschreibung dreier neuer Prototyping-Werkzeuge für griffempfindliche Oberflächen und ein Framework für Analyse und Design von griff-basierter Interaktion (*grasp interaction*). Seit nahezu einem Jahrhundert erforschen Wissenschaftler menschliches Greifen. Mein Überblick über den Forschungsstand beschreibt Definitionen, Klassifikationen und Modelle menschlichen Greifens. In einigen wenigen Studien wurde bisher Greifen in alltäglichen Situationen untersucht. Diese fanden eine deutlich größere Diversität in den Griffmuster als in existierenden Taxonomien beschreibbar. Diese Diversität erschwert es, bestimmten Griffmustern eine Absicht des Benutzers zuzuordnen. Um verwandte Arbeiten und eigene Forschungsergebnisse zu strukturieren, formalisiere ich einen allgemeinen Ablauf der Grifferkennung. Dieser besteht aus dem *Erfassen* von Sensorwerten, der *Identifizierung* der damit verknüpften Griffe und der *Interpretation* der Bedeutung des Griffes. In einem umfassenden Überblick über verwandte Arbeiten zeige ich, dass die Implementierung von griffempfindlichen Oberflächen immer noch ein herausforderndes Problem ist, dass Forscher regelmäßig keine Ahnung von verwandten Arbeiten in benachbarten Forschungsfeldern haben, und dass intuitive Griffinteraktion bislang wenig Aufmerksamkeit erhalten hat. Um das erstgenannte Problem zu lösen, habe ich drei neuartige Sensortechniken für griffempfindliche Oberflächen entwickelt. Diese mindern jeweils eine oder mehrere Schwächen traditioneller Sensortechniken: **HandSense** verwendet vier strategisch positionierte kapazitive Sensoren um Griffmuster zu erkennen. Durch die Verwendung von selbst entwickelten, hochauflösenden Sensoren ist es möglich, schon die Annäherung an das Objekt zu erkennen. Außerdem muss nicht die komplette Oberfläche des Objekts mit Sensoren bedeckt werden. Benutzertests ergaben eine Erkennungsrate, die vergleichbar mit einem System mit 72 binären Sensoren ist. **FlyEye** verwendet Lichtwellenleiterbündel, die an eine Kamera angeschlossen werden, um Annäherung und Berührung auf beliebig geformten Oberflächen zu erkennen. Es ermöglicht auch Designern mit begrenzter Elektronikerfahrung das Rapid Prototyping von berührungs- und griffempfindlichen Objekten. Für FlyEye entwickelte ich einen *relative-calibration*-Algorithmus, der verwendet werden kann um Gruppen von Sensoren, deren Anordnung unbekannt ist, semi-automatisch anzuordnen. **TDRtouch** erweitert Time Domain Reflectometry (TDR), eine Technik die üblicherweise zur Analyse von Kabelbeschädigungen eingesetzt wird. TDRtouch erlaubt es, Berührungen entlang eines Drahtes zu lokalisieren. Dies ermöglicht es, schnell modulare, extrem dünne und flexible griffempfindliche Oberflächen zu entwickeln. Ich beschreibe, wie diese Techniken verschiedene Anforderungen erfüllen und den *design space* für griffempfindliche Objekte deutlich erweitern. Desweiteren bespreche ich die Herausforderungen beim Verstehen von Griffinformationen und stelle eine Einteilung von Interaktionsmöglichkeiten vor. Bisherige Anwendungsbeispiele für die Grifferkennung nutzen nur Daten der Griffsensoren und beschränken sich auf Moduswechsel. Ich argumentiere, dass diese Sensordaten Teil des allgemeinen Benutzungskontexts sind und nur in Kombination mit anderer Kontextinformation verwendet werden sollten. Um die möglichen Bedeutungen von Griffarten analysieren und diskutieren zu können, entwickelte ich das GRASP-Modell. Dieses beschreibt fünf Kategorien von Einflussfaktoren, die bestimmen wie wir ein Objekt greifen: *Goal* -- das Ziel, das wir mit dem Griff erreichen wollen, *Relationship* -- das Verhältnis zum Objekt, *Anatomy* -- Handform und Bewegungsmuster, *Setting* -- Umgebungsfaktoren und *Properties* -- Eigenschaften des Objekts, wie Oberflächenbeschaffenheit, Form oder Gewicht. Ich schließe mit einer Besprechung neuer Herausforderungen bei der Grifferkennung und Griffinteraktion und mache Vorschläge zur Entwicklung von zuverlässiger und benutzbarer Griffinteraktion

    Organic User Interfaces for InteractiveInterior Design

    Get PDF
    PhD ThesisOrganic User Interfaces (OUIs) are flexible, actuated, digital interfaces characterized by being aesthetically pleasing, physically manipulated and ubiquitously embedded within real-world environments. I postulate that OUIs have specific qualities that offer great potential to realize the vision of smart spaces and ubiquitous computing environments. This thesis makes the case for embedding OUI interaction into architectural spaces, interior elements and decorative artefacts using smart materials – a concept I term ‘OUI Interiors’. Through this thesis, I investigate: 1) What interactive materials and making techniques can be used to design and build OUIs? 2) What OUI decorative artefacts and interior elements can we create? and 3) What can we learn for design by situating OUI interiors? These key research questions form the basis of this PhD and guide all stages of inquiry, analysis, and reporting. Grounded by the state-of-the-art of Interactive Interiors in both research and practice, I developed new techniques of seamlessly embedding smart materials into interior finishing materials via research through design exploration (in the form of a Swatchbook). I also prototyped a number of interactive decorative objects that change shape and colour as a form of organicactuation, in response to seamless soft-sensing (presented in a Product Catalogue). These inspirational artefacts include table-runners, wall-art, pattern-changing wall-tiles, furry-throw, vase, cushion and matching painting, rug, objets d’art and tasselled curtain. Moreover, my situated studies of how people interact idiosyncratically with interactive decorative objects provide insights and reflections on the overall material experience. Through multi-disciplinary collaboration, I have also put these materials in the hands of designers to realize the potentials and limitations of such a paradigm and design three interactive spaces. The results of my research are materialized in a tangible outcome (a Manifesto) exploring design opportunities of OUI Interior Design, and critically considering new aesthetic possibilities

    Energy-efficient embedded machine learning algorithms for smart sensing systems

    Get PDF
    Embedded autonomous electronic systems are required in numerous application domains such as Internet of Things (IoT), wearable devices, and biomedical systems. Embedded electronic systems usually host sensors, and each sensor hosts multiple input channels (e.g., tactile, vision), tightly coupled to the electronic computing unit (ECU). The ECU extracts information by often employing sophisticated methods, e.g., Machine Learning. However, embedding Machine Learning algorithms poses essential challenges in terms of hardware resources and energy consumption because of: 1) the high amount of data to be processed; 2) computationally demanding methods. Leveraging on the trade-off between quality requirements versus computational complexity and time latency could reduce the system complexity without affecting the performance. The objectives of the thesis are to develop: 1) energy-efficient arithmetic circuits outperforming state of the art solutions for embedded machine learning algorithms, 2) an energy-efficient embedded electronic system for the \u201celectronic-skin\u201d (e-skin) application. As such, this thesis exploits two main approaches: Approximate Computing: In recent years, the approximate computing paradigm became a significant major field of research since it is able to enhance the energy efficiency and performance of digital systems. \u201cApproximate Computing\u201d(AC) turned out to be a practical approach to trade accuracy for better power, latency, and size . AC targets error-resilient applications and offers promising benefits by conserving some resources. Usually, approximate results are acceptable for many applications, e.g., tactile data processing,image processing , and data mining ; thus, it is highly recommended to take advantage of energy reduction with minimal variation in performance . In our work, we developed two approximate multipliers: 1) the first one is called \u201cMETA\u201d multiplier and is based on the Error Tolerant Adder (ETA), 2) the second one is called \u201cApproximate Baugh-Wooley(BW)\u201d multiplier where the approximations are implemented in the generation of the partial products. We showed that the proposed approximate arithmetic circuits could achieve a relevant reduction in power consumption and time delay around 80.4% and 24%, respectively, with respect to the exact BW multiplier. Next, to prove the feasibility of AC in real world applications, we explored the approximate multipliers on a case study as the e-skin application. The e-skin application is defined as multiple sensing components, including 1) structural materials, 2) signal processing, 3) data acquisition, and 4) data processing. Particularly, processing the originated data from the e-skin into low or high-level information is the main problem to be addressed by the embedded electronic system. Many studies have shown that Machine Learning is a promising approach in processing tactile data when classifying input touch modalities. In our work, we proposed a methodology for evaluating the behavior of the system when introducing approximate arithmetic circuits in the main stages (i.e., signal and data processing stages) of the system. Based on the proposed methodology, we first implemented the approximate multipliers on the low-pass Finite Impulse Response (FIR) filter in the signal processing stage of the application. We noticed that the FIR filter based on (Approx-BW) outperforms state of the art solutions, while respecting the tradeoff between accuracy and power consumption, with an SNR degradation of 1.39dB. Second, we implemented approximate adders and multipliers respectively into the Coordinate Rotational Digital Computer (CORDIC) and the Singular Value Decomposition (SVD) circuits; since CORDIC and SVD take a significant part of the computationally expensive Machine Learning algorithms employed in tactile data processing. We showed benefits of up to 21% and 19% in power reduction at the cost of less than 5% accuracy loss for CORDIC and SVD circuits when scaling the number of approximated bits. 2) Parallel Computing Platforms (PCP): Exploiting parallel architectures for near-threshold computing based on multi-core clusters is a promising approach to improve the performance of smart sensing systems. In our work, we exploited a novel computing platform embedding a Parallel Ultra Low Power processor (PULP), called \u201cMr. Wolf,\u201d for the implementation of Machine Learning (ML) algorithms for touch modalities classification. First, we tested the ML algorithms at the software level; for RGB images as a case study and tactile dataset, we achieved accuracy respectively equal to 97% and 83.5%. After validating the effectiveness of the ML algorithm at the software level, we performed the on-board classification of two touch modalities, demonstrating the promising use of Mr. Wolf for smart sensing systems. Moreover, we proposed a memory management strategy for storing the needed amount of trained tensors (i.e., 50 trained tensors for each class) in the on-chip memory. We evaluated the execution cycles for Mr. Wolf using a single core, 2 cores, and 3 cores, taking advantage of the benefits of the parallelization. We presented a comparison with the popular low power ARM Cortex-M4F microcontroller employed, usually for battery-operated devices. We showed that the ML algorithm on the proposed platform runs 3.7 times faster than ARM Cortex M4F (STM32F40), consuming only 28 mW. The proposed platform achieves 15 7 better energy efficiency than the classification done on the STM32F40, consuming 81mJ per classification and 150 pJ per operation
    corecore