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S U M M A RY

Touch is an important nonverbal form of interpersonal interaction which
is used to communicate emotions and other social messages. As inter-
actions with social robots are likely to become more common in the near
future these robots should also be able to engage in tactile interaction with
humans. Therefore, the aim of the research presented in this dissertation
is to work towards socially intelligent robots that can understand and re-
spond to human touch. To become a socially intelligent actor a robot must
be able to sense, classify and interpret human touch and respond to this in an
appropriate manner. To this end we present work that addresses different
parts of this interaction cycle.

After the introduction in Part I of the dissertation, we have taken a data-
driven approach in Part II. We have focused on the sense and classify steps
of the interaction cycle to automatically recognize social touch gestures
such as pat, stroke and tickle from pressure sensor data.

In Chapter 2 we present CoST: Corpus of Social Touch, a dataset con-
taining 7805 captures of 14 different social touch gestures. All touch ges-
tures were performed in three variants: gentle, normal and rough on a
pressure sensitive mannequin arm. Recognition of these 14 gesture classes
using various classifiers yielded accuracies of up to 60%; moreover, gentle
gestures proved to be harder to classify than normal and rough gestures.
We further investigated how different classifiers, interpersonal differences,
gesture confusions and gesture variants affected the recognition accuracy.

In Chapter 3 we describe the outcome of a machine learning challenge
on touch gesture recognition. This challenge was extended to the research
community working on multimodal interaction with the goal of sparking
interest in the touch modality and to promote exploration of the use of
data processing techniques from other more mature modalities for touch
recognition. Two datasets were made available containing labeled pres-
sure sensor data of social touch gestures: the CoST dataset presented in
Chapter 2 and the Human-Animal Affective Robot Touch (HAART) ges-
ture set. The most important outcomes of the challenges were: (1) transfer-
ring techniques from other modalities, such as image processing, speech,
and human action recognition provided valuable feature sets; (2) gesture
classification confusions were similar despite the various data processing
methods that were used.
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In Part III of the dissertation we present three studies on the use of
social touch in interaction with robot pets. We have mainly focused on the
interpret and respond steps of the interaction cycle to identify which touch
gestures a robot pet should understand, how touch can be interpreted
within a social context and in which ways a robot can respond to human
touch.

In Chapter 4 we present a study of which the aim was to gain more
insight into the factors that are relevant to interpret the meaning of touch
within a social context. We elicited touch behaviors by letting participants
interact with a robot pet companion in different affective scenarios. In a
contextualized lab setting, participants acted as if they were coming home
in different emotional states (i.e., stressed, depressed, relaxed and excited)
without being given specific instructions on the kinds of behaviors that
they should display. Based on video footage of the interactions and in-
terviews we explored the use of touch behaviors, the expressed social
messages and the expected robot pet responses. Results show that emo-
tional state influenced the social messages that were communicated to the
robot pet as well as the expected responses. Furthermore, it was found
that multimodal cues were used to communicate with the robot pet, that
is, participants often talked to the robot pet while touching it and making
eye contact. Additionally, the findings of this study indicate that the cate-
gorization of touch behaviors into discrete touch gesture categories based
on dictionary definitions is not a suitable approach to capture the complex
nature of touch behaviors in less controlled settings.

In Chapter 5 we describe a study in which we evaluated the expres-
sive potential of breathing behaviors for 1-DOF zoomorphic robots. We
investigated the extent to which researcher-designed emotional breathing
behaviors could communicate four different affective states. Additionally,
we were interested in the influence of robot form on the interpretation of
these breathing behaviors. For this reason two distinct robot forms were
compared: a rigid wood-based form resembling a rib cage called ‘RibBit’
and a flexible, plastic-based form resembling a ball of fur called ‘Flexi-
Bit’. In the study, participants rated for each robot how well the different
breathing behaviors reflected each of four affective states: stressed, de-
pressed, relaxed and excited. The results show that both robot forms were
able to express high and low arousal states through breathing behavior,
whereas valence could not be expressed reliably. Low arousal states could
be communicated by low frequency breathing behavior and higher fre-
quency breathing conveyed high arousal. In contrast, context might play
a more important role in the interpretation of different levels of valence.
Unexpectedly, robot form did not influence the perception of the behavior
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that was expressed. These findings can help to inform future design of
affective behavior for robot pet companions.

In Chapter 6 we present a study in which we explored in what ways peo-
ple with dementia could benefit from interaction with a robot pet compan-
ion with more advanced touch recognition capabilities and which touch
gestures would be important in their interaction with such a robot. In addi-
tion, we explored which other target groups might benefit from robot pets
with more advanced interaction capabilities. We administered a question-
naire and conducted interviews with two groups of health care providers
who all worked in a geriatric psychiatry department. One group had expe-
rience with robotic seal Paro while the other group had no experience with
the use of robot pets. The results show that health care providers perceived
Paro as an effective intervention to improve the well-being of people with
dementia. Furthermore, the care providers indicated that people with de-
mentia (would) use mostly positive forms of touch and speech to interact
with Paro. Paro’s auditory responses were criticized because they can over-
stimulate the patients. Additionally, the care providers argued that social
interactions with Paro are currently limited and therefore the robot does
not meet the needs of a broader audience such as healthy elderly people
that still live in their own homes. The development of robot pets with
more advanced social capabilities such as touch and speech recognition
might result in more intelligent interactions which could help to better
adapt to the needs of people with dementia and could make interactions
more interesting for a broader audience. Moreover, the robot’s response
modalities and its appearance should match the needs of to the target
group.

To conclude, the contributions of this dissertation are the following. We
have made a touch gesture dataset available to the research community
and have presented benchmark results. Furthermore, we have sparked
interest into the new field of social touch recognition by organizing a
machine learning challenge and have pinpointed directions for further
research. Also, we have exposed potential difficulties for the recognition
of social touch in more naturalistic settings. Moreover, the findings pre-
sented in this dissertation can help to inform the design of a behavioral
model for robot pet companions that can understand and respond to hu-
man touch. Additionally, we have focused on the requirements for tactile
interaction with robot pets for health care applications.
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S A M E N VAT T I N G

Aanraking is een belangrijke vorm van non-verbale intermenselijke inter-
actie die gebruikt wordt om emoties en andere sociale boodschappen te
communiceren. Omdat interactie met sociale robots in de nabije toekomst
hoogstwaarschijnlijk meer gebruikelijk zal worden moeten deze robots
kunnen omgaan met aanraking tijdens interacties met mensen. Daarom
is het doel van het onderzoek, dat in dit proefschrift wordt gepresen-
teerd, om toe te werken naar sociaal intelligente robots die in staat zijn
om menselijke aanraking te begrijpen en erop te kunnen reageren. Om
op een sociaal intelligente manier te kunnen acteren moet een robot in
staat zijn om menselijk aanraking te kunnen waarnemen, classificeren en
interpreteren en hier op een gepaste manier op kunnen reageren. De ver-
schillende onderdelen van deze interactie cyclus zullen aan bod komen in
dit proefschrift.

Na de introductie in Deel I van het proefschrift, hanteren we een datage-
dreven benadering in Deel II. We hebben daarbij de focus gelegd op de
stappen waarnemen en classificeren uit de interactie cyclus voor het automa-
tisch herkennen van verschillende soorten aanrakingen zoals aaien, kiete-
len en het geven van een klopje op basis van sensor data.

In Hoofdstuk 2 presenteren we een data verzameling van sociale aan-
raking genaamd CoST: ‘Corpus of Social Touch’. Deze data verzameling
bevat 7805 voorbeelden van 14 verschillende soorten sociale aanrakingen.
Alle aanrakingen zijn uitgevoerd op een voor aanraking gevoelige paspop
arm in drie intensiteiten: zacht, gemiddeld en ruig. Deze 14 verschillende
soorten aanrakingen werden onderscheiden van elkaar door middel van
verschillende classificatie methodes wat resulteerde in accuratesses van
maximaal 60%. Daarbij bleken zachte aanrakingen moeilijker te onder-
scheiden dan gemiddelde en ruigere aanrakingen. Verder hebben we de
invloed van verschillende soorten classificatie methodes, interpersoonli-
jke verschillen, verwarringen tussen aanrakingen en de verschillende in-
tensiteiten op de mate waarin de aanrakingen herkend konden worden
onderzocht.

In Hoofdstuk 3 beschrijven we de uitkomst van een machine learning
challenge die we hebben georganiseerd. Hiervoor hebben we onderzoekers
uit het veld van multimodale interactie uitgedaagd om verschillende aan-
rakingen te herkennen door middel van machine learning technieken. Het
doel van deze uitdaging was om meer aandacht te genereren voor onder-
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zoek op het gebied van aanraking en om te exploreren of data verwer-
kingstechnieken die nu gebruikt worden voor het herkennen van andere
modaliteiten ook toe te passen zijn voor het herkennen van aanrakingen.
Twee data verzamelingen met gelabelde druk sensor data van verschil-
lende sociale aanrakingen zijn beschikbaar gesteld aan de deelnemers:
de CoST data verzameling die gepresenteerd is in Hoofdstuk 2 en de
‘Human-Animal Affective Robot Touch’ (HAART) data verzameling. De
belangrijkste uitkomsten waren dat: (1) gebruikelijke technieken voor de
herkenning van beeld, spraak en menselijke activiteiten ook kunnen wor-
den ingezet voor het herkennen van aanraking; (2) verwarringen tussen
aanrakingen vergelijkbaar waren ondanks de verschillende data bewer-
kingstechnieken die waren gebruikt.

In Deel III van het proefschrift presenteren we drie studies op het ge-
bied van aanraking in interactie met robot dieren. De focus ligt hierbij
voornamelijk op de stappen interpreteren en reageren uit de interactie cy-
clus om te onderzoeken welke aanrakingen een robot dier zou moeten
kunnen begrijpen, hoe aanraking geïnterpreteerd kan worden in een so-
ciale context en op welke manieren een robot kan reageren op menselijke
aanraking.

In Hoofdstuk 4 presenteren we een studie waarvan het doel is om meer
inzicht te krijgen in de factoren die relevant zijn voor het interpreteren
van de betekenis van aanraking in een sociale context. We hebben aan-
rakingsgedrag uitgelokt door participanten te laten interacteren met een
robot dier in verschillende emotioneel geladen scenario’s. In een in het lab
nagebouwde woonkamer omgeving hebben participanten gedaan alsof ze
thuis kwamen in verschillende emotionele stemmingen (dat wil zeggen:
gestrest, neerslachtig, ontspannen en enthousiast) zonder specifieke in-
structies over wat voor gedrag ze moeten vertonen. We hebben het gebruik
van aanrakingen, de uitgedrukte sociale boodschappen en de verwachte
reactie van de robot onderzocht op basis van video opnames en inter-
views. De resultaten laten zien dat de emotionele stemming van invloed
was op zowel de sociale boodschap die werd gecommuniceerd naar het
robot dier als op de verwachte reactie. Daarnaast bleek dat participan-
ten gebruik maakte van multimodale signalen om te communiceren met
het robot dier, dat wil zeggen, deelnemers praatten vaak tegen het robot
dier terwijl ze deze aanraakten en oogcontact maakten. Bovendien duiden
de bevindingen van deze studie erop dat het categoriseren van aanra-
kingen in discrete categorieën op basis van woordenboek definities niet
een geschikte benadering lijkt voor het beschrijven van de complexe aard
van aanrakingen in een minder gecontroleerde omgeving.
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In Hoofdstuk 5 beschrijven we een studie waarin we de expressieve mo-
gelijkheden van ademhalingspatronen evalueren voor dierachtige robots
met 1 vrijheidsgraad. We onderzoeken in hoeverre deze robots vier
verschillende emotionele stemmingen kunnen communiceren door mid-
del van door onderzoekers ontwikkelde ademhalingspatronen. Daarnaast
waren we geïnteresseerd in de invloed die de vorm van een robot dier
heeft op de interpretatie van de ademhalingspatronen. Om deze reden
hebben we twee verschillende robot dieren vergeleken: een rigide robot
dier van hout dat op een ribbenkast lijkt genaamd ‘RibBit’ en een flexibel
robot dier van plastic dat op een balletje met vacht lijkt genaamd ‘Flexi-
Bit’. In de studie beoordeelden participanten voor elke robot in hoeverre
de verschillende ademhalingspatronen elke emotionele stemming repre-
senteerde: gestrest, neerslachtig, ontspannen en enthousiast. De resultaten
lieten zien dat beide robots in staat waren om een laag en hoog activatie
niveau over te brengen door middel van ademhaling terwijl valentie niet
betrouwbaar kon worden gecommuniceerd. Een staat van lage activatie
kan worden gecommuniceerd door middel van laag frequente ademha-
ling en hoog frequente ademhaling kan een staat van hoge activatie over-
brengen. Daarentegen speelt context waarschijnlijk een belangrijkere rol in
het interpreteren van verschillende niveaus van valentie. In tegenstelling
tot onze verwachting bleek dat de vorm van de robot geen invloed had
op de perceptie van de ademhalingspatronen. Deze bevindingen kunnen
bijdragen aan het ontwerp van affectieve gedragingen voor toekomstige
robot dieren.

In Hoofdstuk 6 presenteren we een studie waarin we onderzoeken op
welke manier mensen met dementie kunnen profiteren van interactie met
een robot dier met meer geavanceerde mogelijkheden op het gebied van
aanraking en welke aanrakingen belangrijk zijn in hun interactie met een
robot dier. Daarnaast onderzoeken we welke andere doelgroepen nog
meer profijt kunnen hebben van robot dieren met meer geavanceerde inter-
actie mogelijkheden. Voor dit onderzoek hebben we vragenlijsten en inter-
views afgenomen bij twee groepen verzorgers die allen werkzaam waren
op een psychogeriatrische afdeling. Een groep had ervaring met robot
zeehond Paro terwijl de andere groep geen ervaring had met het werken
met robot dieren. De resultaten laten zien dat de verzorgers Paro als een
effectieve interventie zien om het welzijn van mensen met dementie te
bevorderen. Daarnaast geven de verzorgers aan dat mensen met demen-
tie voornamelijk positieve aanrakingen en spraak (zouden) gebruiken in
hun interactie met Paro. Er werd kritiek geuit op de auditieve reacties van
Paro omdat deze tot overstimulatie kunnen leiden bij de patiënten. Boven-
dien beargumenteerden de verzorgers dat de sociale interacties met Paro
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nu beperkt zijn en dat de robot in zijn huidige staat daarom ongeschikt
is voor een breder publiek zoals gezonde ouderen die nog zelfstandig
wonen. De ontwikkeling van robot dieren met meer geavanceerde sociale
mogelijkheden zoals aanraking en spraak herkenning kan resulteren in
intelligentere interacties die beter kunnen aansluiten bij de behoefte van
mensen met dementie en die van een breder publiek. Daarnaast is het be-
langrijk om het uiterlijk en de reactie mogelijkheden van een robot dier af
te stemmen op de doelgroep.

Ter afsluiting, de bijdragen van dit proefschrift zijn de volgende. We
hebben een data verzameling met verschillende aanrakingen beschikbaar
gemaakt voor onderzoek en hebben benchmark resultaten gepresenteerd.
Daarnaast hebben we aandacht gegenereerd voor het nieuwe veld van aan-
raking herkenning door middel van het organiseren van een machine learn-
ing challenge en hebben we richtingen aangegeven voor verder onderzoek.
Ook hebben we potentiële problemen bij het herkennen van sociale aan-
raking in meer natuurgetrouwe omgevingen aan het licht gesteld. Tevens
kunnen de bevindingen die in dit proefschrift zijn gepresenteerd helpen
bij het ontwerp van gedragsmodellen voor robot dieren die menselijk aan-
raking kunnen begrijpen en gepast kunnen reageren. Bovendien hebben
we ons ook gefocust op de benodigdheden voor tactiele interactie met
robot dieren voor toepassingen in de gezondheidszorg.
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A U T O M AT I C U N D E R S TA N D I N G O F H U M A N
T O U C H : I N T R O D U C T I O N A N D M O T I VAT I O N





1
I N T R O D U C T I O N

1.1 touch in social interaction

People express themselves through social signals in the form of verbal
and nonverbal behaviors. Touch is one of the important nonverbal forms
of social interaction as are visual cues such as facial expressions, gaze,
body posture and air gestures [116]. However, compared to vision and
audition (as in vocal cues), interpersonal touch does not generally receive
much research attention yet [40, 50]. Similarly, the touch modality is of-
ten overlooked in human-computer interaction such as remote commu-
nication and in interactions with embodied or virtual agents [112]. As
interactions with social robots are likely to become more common in the
near future these robots are expected to engage in tactile interaction with
humans [112]. Therefore the aim of the research presented in this disserta-
tion is to work towards socially intelligent robots that can understand and
respond to human touch.

Touch behavior is seen in many different forms of social interaction: a
handshake as a greeting, a high-five to celebrate a joint accomplishment, a
tap on the shoulder to gain someone’s attention, a comforting hug from a
friend, or holding hands with a romantic partner. In contrast to functional
touch, which can be used to explore our environment and manipulate
objects such as tools, Haans and IJsselsteijn described social touch as all
instances of interpersonal touch, whether this is accidental (e.g. bumping
into someone on the street) or conscious (e.g. hugging someone who is
upset) [46]. In interpersonal interaction touch is important for establishing
and maintaining social interaction [40]. Touch can be used to generate and
communicate both positive and negative emotions [48, 50] as well as to
express intimacy [3], power and status [40]. Furthermore, there is research
that indicates that a brief touch can result in a more positive evaluation of
the toucher [36] and can increase the willingness to comply with a request
such as filling out a questionnaire [44]. Additionally, the positive effects of
touch on well-being are extensively described in the literature [34, 80]. For

3
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example, a five-day touch intervention was found to significantly reduce
anxiety in intensive care patients compared to standard treatment (i.e., a
rest hour) [47].

On the physiological level the human skin serves an important func-
tion as a sense organ for discriminating different tactile sensations such as
whether a surface is smooth or rough [58]. Apart from the discriminative
function of touch, the human sense of touch also plays an important role
in affective experiences. Caress-like stroking touches have been found to
selectively activate specific receptors called C-Tactile (CT) afferents in the
hairy skin, which respond particularly strongly to stroking at a velocity
of about 3 cm/s [1, 78, 82]. Strokes at this velocity also result in the high-
est subjective pleasantness ratings [77, 78]. Moreover, on the cortical level,
nerves related to discriminative touch mostly activate the somatosensory
cortex, whereas the CT-afferent nerves mainly activate areas that are in-
volved in affective processing (i.e., the posterior insular cortex and the
orbitofrontal cortex) [79, 82]. Interestingly, third person observations of
stroking touches in a social setting have been shown to result in similar
pleasantness ratings and similar brain activation in the posterior insula
as experienced touch [81, 82, 120]. However, these pleasantness ratings of
stroking touches have been found to be sensitive to top-down social cues
such as the gender of the toucher [42]. These findings indicate that there
are specialized pathways for both experienced and observed social touch
interactions [82].

The lack of research on social touch can be in part explained by its pri-
vate nature which makes it more difficult to gather data during natural in-
teractions [50]. In order to study touch behavior, researchers have to rely
on different strategies. Common methods are self-reports (e.g. question-
naires or dairy studies), observations and controlled experiments [110].
Additionally, touch is a complex modality: the sense of touch is the com-
bined effort of input from different receptors which register touch (e.g.
pressure, vibration and skin stretch), pain, temperature and limb propri-
oception [50, 68]. Moreover, there are many types of touch (e.g. stroke,
hit and tickle) and the social context (e.g. concurrent verbal and nonver-
bal behavior, the type of interpersonal relationship and the situation in
which the touch takes place) influences how these different types of touch
should be interpreted [50, 51, 59, 107]. The complexity of interpersonal
touch along with technical difficulties make it challenging to transfer the
touch modality to remote interaction and human-robot interaction [40, 46,
112].
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1.2 social touch in human-computer interaction

When moving from interpersonal touch to social touch in human-
computer interaction one of the challenges is for a computer to under-
stand and respond to human touch [112]. Additionally, social actors such
as robots and virtual agents should be able to simulate social touches [17,
54, 112]. The development of social agents that can engage in social touch
interaction is part of the larger research area aimed at automatic under-
standing of social behavior that is Social Signal Processing (SSP) [115] and
development of artificial social intelligence that is the field of affective com-
puting [88]. In these fields social behavior is currently mostly studied in
the form of vocal behavior using speech/ audio analysis and nonverbal
behaviors including facial expressions, body postures and air gestures the
detection of which can be automated with the help of computer vision
[109, 115]. Sensors such as microphones and cameras have been found to
be able to capture social signals that can be interpreted through machine
learning techniques and statistical analysis [115]. As touch is also impor-
tant in social interaction we will focus specifically on the touch modality to
enable robots to automatically understand and respond to human touch.

Human

Robot

Sense Classify

Respond Interpret

Figure 1: Steps in the interaction cycle for a socially intelligent robot that can un-
derstand and respond to human touch.

Extending social touch interaction to include interaction with social
agents can result in more natural interaction, providing opportunities for
various applications. For example, the addition of tactile interaction can
benefit robot therapy in which robots are used to comfort people in stress-
ful environments, for instance, children in hospitals [56] and elderly peo-
ple in nursing homes [117]. Furthermore, the addition of haptic technol-
ogy to a training scenario involving a virtual patient could help medical
students to learn how to use social touch appropriately in a health-care
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setting [74, 75]. However, just equipping a robot or interface with touch
sensors to mimic the human somatosensory system is not enough. To be-
come a socially intelligent actor a robot should be able to sense, classify
and interpret human touch and respond to this in a socially appropriate
manner (see Figure 1). The model in Figure 1 is based on the traditional
Sense-Think-Act cycle for intelligent agent behavior from the field of artifi-
cial intelligence ([94], p. 51). In this dissertation we have broken down the
‘think’ step of the traditional model into two steps, namely ‘classify’ and
‘interpret’. Similar models have been used in the touch literature before, all
with a slightly different focus [103, 124]. The model proposed by Yohanan
and MacLean [124] focuses on the recognition and expression steps of
the interaction cycle on both the robot and the human side whereas the
model used by Silvera-Tawil et al. [103] focuses mostly on the recogni-
tion and interpretation of social touch by a robot. The work presented in
this dissertation will contribute to all the steps in the interaction cycle as
illustrated in Figure 1.

1.3 main contributions

The main contributions of the research reflected in this dissertation are the
following:

A publicly available dataset of social touch gestures (Chapter 2)
To the best of our knowledge there were no publicly available datasets
on social touch which are necessary for research and benchmarking. First,
we give a systematic overview of the characteristics of available studies
on the sensing and recognition of social touch up to August 2015. Sec-
ond, we present a corpus of social touch gestures which is called Corpus
of Social Touch (CoST). Third, we compare the performance of different
classifiers to provide a baseline for touch gesture recognition within CoST
and evaluate the factors that influence the recognition accuracy.

Moving forward the new field of social touch recognition (Chapter 3)
As the recognition of touch behavior has received far less research atten-
tion than recognition of behaviors in the visual and auditory modalities,
we aimed to spark interest into this relatively new field by organizing a
machine learning challenge. Researchers with expertise in other sensory
modalities were able to try out their processing techniques on two touch
datasets which included CoST. In this dissertation we present the outcome
of this undertaking and pinpoint further research directions.
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A first step towards the automatic understanding of social touch for nat-
uralistic human-robot interaction (Chapter 4)
Current studies in the domain of social touch for human-robot interac-
tion focused mainly on highly controlled settings in which users were re-
quested to perform different touch behaviors, one at a time, according to
predefined labels. However, as context is important for the interpretation
of touch behavior we explore the use of touch during interactions with a
robot pet in a scenario in which participants acted as it they were coming
home in different emotional states. No specific instructions were given to
the participants on the kinds of behaviors that they should display. In this
dissertation we reflect on the challenges of segmentation and labeling of
touch behaviors in a less controlled setting.

Informing the design of a behavioral model for robot pet companions
that can understand and respond to human touch (Chapters 4 and 5)
In a contextualized lab setting, participants acted as if they were coming
home in different emotional states (i.e., stressed, depressed, relaxed and
excited) without being given specific instructions on the kinds of behav-
iors that they should display. We explore the use of touch and other social
behaviors, the expressed social messages and the expected robot pet re-
sponses.

In addition, we explore a haptic response in the form of a simulated
breathing mechanism for one degree of freedom (1-DOF) robot pets which
are collectively called the ‘CuddleBits’ [21]. Contrary to previous stud-
ies we focus specifically on breathing behavior and explore the expres-
sive space of various breathing patterns. In this dissertation we evaluate
whether 1-DOF robot movements can communicate different valence and
arousal states. Furthermore, we investigate the influence of robot materi-
ality on the interpretation of the affective robot behaviors.

Requirements for tactile interaction with robot pets for health care ap-
plications (Chapter 6)
Robot pet companions such as robotic seal Paro are increasingly used in
care for the elderly due to the positive effects that interaction with these
robots can have on the well-being of patients with dementia. As touch
is one of the most important interaction modalities for patients with de-
mentia this can be a natural way to interact with these robots. However,
currently commercially available companion robots do not focus specifi-
cally on touch interaction, which seems like a missed opportunity. In this
dissertation we explore in what ways people with dementia could benefit
from interaction with a robot pet companion with more advanced touch
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recognition capabilities and which touch gestures would be important in
their interaction with such a robot. In addition, we explore which other
target groups might benefit from robot pets with more advanced interac-
tion capabilities.

1.4 outline of this dissertation

This dissertation consist of 4 parts. We have introduced the field of social
touch and motivated the need to enable social agents to understand and
respond to human touch in Part I. In Part II we will take a data-driven
approach. We will focus on the sense and classify steps of Figure 1 to au-
tomatically recognize social touch gestures such as pat, stroke and tickle
from pressure sensor data. In Chapter 2 we will present the Corpus of So-
cial Touch (CoST) and discuss the performance results of several classifiers
for the recognition of the touch gestures in CoST. Then, we will describe
the outcome of a machine learning challenge on touch gesture recogni-
tion which was hosted in conjunction with the 2015 ACM International
Conference on Multimodal Interaction (ICMI) in Chapter 3. In Part III we
will study social touch within the context of human-robot interaction. We
will mainly focus on the interpret and respond steps of Figure 1 to iden-
tify which touch gestures a robot pet should understand, how touch can
be understood within a social context and ways in which a robot can re-
spond to human touch. We will present work towards the interpretation
of social touch in a more naturalistic setting in Chapter 4. Next, in Chap-
ter 5 we will describe a study on the design of affective behavior for robot
pets. Then, we will present a study in which we explore the benefits of
robot pet companion with more advanced touch interaction capabilities
for health care applications in Chapter 6. Finally, we will reflect on the
work presented in this dissertation in Part IV. In Chapter 7 conclusions
will be drawn based on the findings presented in this dissertation and we
will provide directions for further research.



Part II

S E N S I N G A N D R E C O G N I Z I N G S O C I A L
T O U C H G E S T U R E S

The focus of this section will be on the use of sensors to register
human touch and the use of machine learning techniques to au-
tomatically recognize different touch gestures from the sensor
data. Firstly, we will present the Corpus of Social Touch (CoST)
and the touch gesture recognition results for this dataset. Sec-
ondly, we will present the protocol and the findings from a
machine learning challenge to recognize social touch gestures.





2
A U T O M AT I C R E C O G N I T I O N O F T O U C H G E S T U R E S I N
T H E C O R P U S O F S O C I A L T O U C H

The following chapter1 covers research which was carried out by Merel
Jung under the supervision of Mannes Poel, Ronald Poppe and Dirk
Heylen. The content of this chapter is identical to that of the published
paper with some minor textual adaptations to embed the content into this
dissertation. The future work described in the paper has been moved to
Chapter 7 of the dissertation.

To understand human touch a robot needs sensors to register these
touches. Next, machine learning algorithms can be trained to automati-
cally distinguish between different types of touch. The focus of this chap-
ter and Chapter 3 will be on the recognition of touch gestures with social
meaning that are performed by hand on a pressure-sensitive surface; we
call these ‘social touch gestures’. In this chapter we will present the Cor-
pus of Social Touch (CoST) and the performance results of several classi-
fiers for the recognition of the touch gestures in this dataset.

2.1 introduction

Touch gestures can be used in social interaction to communicate and ex-
press different emotions [50, 48]. For example, love can be communicated
by hugging and stroking while anger can be expressed by pushing and
shaking [48]. Socially intelligent robots should be able to automatically
detect and recognize touch gestures in order to respond appropriately.

Equipping a robot with touch sensors is the first step towards touch
interaction based on human touch input. Once the sensor registers the
touch, we need to recognize the type of touch and interpret its meaning.

1 Based on Jung, M. M., Poel, M., Poppe, R., and Heylen, D. K. J., Automatic recognition of
touch gestures in the corpus of social touch, Journal on Multimodal User Interfaces, vol. 11,
no. 1, pp. 81–96, 2016.

11
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Moreover, a robust touch recognition system should be perceived as work-
ing in real time and should be participant independent to avoid training
sessions for new users. Some promising attempts have been made to rec-
ognize different sets of touch gestures (e.g. stroke, poke, and hit) recorded
on various interfaces. However, as recognition rates vary depending on the
degree of similarity between the touch gestures it is difficult to judge the
relative strengths of one approach over the other.

To work towards reliable touch gesture recognition we recorded a cor-
pus of social touch hand gestures to characterize various touch gestures.
We will focus on the recognition of a list of relevant social touch gestures.
The interpretation of the social meaning of these touch gestures is beyond
the scope of this chapter. To the best of our knowledge there are no pub-
licly available datasets on social touch for research and benchmarking. The
contribution of this chapter is three-fold: first, we will give a systematic
overview of the characteristics of available studies on the recognition of
social touch; second, we will present the Corpus of Social Touch (CoST);
third, we will compare the performance of different classifiers to provide
a baseline for touch gesture recognition within CoST and evaluate the
factors that influence the recognition accuracy.

The remainder of the chapter is organized as follows: in the next sec-
tion we will discuss related work on the recognition of social touch, in
Section 2.3 we will describe the CoST dataset. Next, touch gesture recogni-
tion results will be presented and discussed in Section 2.4 and Section 2.5,
respectively. The chapter will conclude in Section 2.6.

2.2 related work on social touch recognition

There have been a number of studies on social touch recognition. We will
briefly discuss the different characteristics of these studies. A summary
of previous studies is presented in Table 1. Please note that we have only
considered the studies that reported details on classification and studies
published up to August 2015.

2.2.1 Touch surface and sensors

In these studies, touch was performed on various surfaces such as robots
(e.g. [71]), sensor sheets (e.g. [85]) or human body parts such as arms [102].
Physical appearances of interfaces for touch interaction included robotic
animals (e.g. [124]), full body humanoid robots (e.g. [71]), partial embod-
iments such as a mannequin arm (e.g. [103]) and a balloon interface [83].
Several techniques were used for the sensing of touch, each having its own
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Table 1: Results of literature on social touch recognition
Paper Touch surface Sensor(s) Touch recognition of... n Classifier Design Accuracy

Altun and MacLean [2] Haptic Creature force sensing resistors, accelerometer 26 gestures 31 random forest between-subjects 33%

Altun and MacLean [2] Haptic Creature force sensing resistors, accelerometer 9 emotions 31 random forest between-subjects 36%

Altun and MacLean [2] Haptic Creature force sensing resistors, accelerometer 9 emotions 31 random forest within-subjects 48%

Altun and MacLean [2] Haptic Creature force sensing resistors, accelerometer 9 emotions 31 random forest between-subjects 36%

using gesture recog.

Bailenson et al. [6] force-feedback joystick 2d accelerometer 7 emotions 16 classification by human 1 subject rates 1 other 33%

Bailenson et al. [6] force-feedback joystick 2d accelerometer 7 emotions 16 SVMa RBFb kernel between-subjects 36%

Bailenson et al. [6] other subject’s hand / 7 emotions 16 classification by human 1 subject rates 1 other 51%

Chang et al. [25] Haptic Creature force sensing resistors 4 gestures 1 custom recognition software real-time up to 77%

Cooney et al. [26] Sponge (humanoid) robot accelerometer, gyro sensor 13 full-body gestures 21 SVMa RBFb kernel between-subjects 77%

Cooney et al. [27] humanoid robot ‘mock-up’ photo-interrupters 20 full-body gestures 17 k-NNc between-subjects 63%

Cooney et al. [27] humanoid robot ‘mock-up’ photo-interrupters 20 full-body gestures 17 SVMa RBFb kernel between-subjects 72%

Cooney et al. [27] humanoid robot ‘mock-up’ Microsoft Kinect 20 full-body gestures 17 k-NNc between-subjects 67%

Cooney et al. [27] humanoid robot ‘mock-up’ Microsoft Kinect 20 full-body gestures 17 SVMa RBFb kernel between-subjects 78%

Cooney et al. [27] humanoid robot ‘mock-up’ photo-interrupters, Microsoft Kinect 20 full-body gestures 17 k-NNc between-subjects 82%

Cooney et al. [27] humanoid robot ‘mock-up’ photo-interrupters, Microsoft Kinect 20 full-body gestures 17 SVMa RBFb kernel between-subjects 91%

Flagg et al. [37] furry lap pet conductive fur sensor, 9 gestures 16 neural network between-subjects 75%

piezoresistive fabric pressure sensors

Flagg et al. [37] furry lap pet conductive fur sensor, 9 gestures 16 logistic regression between-subjects 72%

piezoresistive fabric pressure sensors

Flagg et al. [37] furry lap pet conductive fur sensor, 9 gestures 16 Bayes network between-subjects 68%

piezoresistive fabric pressure sensors

Flagg et al. [37] furry lap pet conductive fur sensor, 9 gestures 16 random forest between-subjects 86%

piezoresistive fabric pressure sensors

Flagg et al. [37] furry lap pet conductive fur sensor, 9 gestures 16 random forest within-subjects 94%

piezoresistive fabric pressure sensors

Flagg et al. [38] fur sensor conductive fur sensor 3 gestures 7 linear regression between-subjects 82%

Ji et al. [57] KASPAR (hand section) capacitive pressure sensors 4 gestures 1 SVMa intersection kernel within-subject up to 96%

Ji et al. [57] KASPAR (hand section) capacitive pressure sensors 4 gestures 1 SVMa RBFb kernel within-subject up to 93%



1
4

a
u

t
o

m
a

t
i
c

r
e

c
o

g
n

i
t

i
o

n
o

f
t

o
u

c
h

g
e

s
t

u
r

e
s

Results of literature on social touch recognition (cont.)

Paper Touch surface Sensor(s) Touch recognition of... n Classifier Design Accuracy

Jung [60] mannequin arm piezoresistive fabric pressure sensors 14 gestures 31 Bayesian classifier subject-independent 53%

Jung [60] mannequin arm piezoresistive fabric pressure sensors 14 gestures 31 SVMa linear kernel subject-independent 46%

Jung et al. [65] mannequin arm piezoresistive fabric pressure sensors 14 rough gestures 31 Bayesian classifier subject-independent 54%

Jung et al. [65] mannequin arm piezoresistive fabric pressure sensors 14 rough gestures 31 SVMa linear kernel subject-independent 53%

Kim et al. [71] KaMERo charge-transfer touch sensors, accelerometer 4 gestures 12 temporal decision tree real-time 83%

Knight et al. [73] sensate bear electric field sensor, capacitive sensors 4 gestures 11 Bayesian networks + k-NNc real-time 20-100%

Nakajima et al. [83] Emoballoon barometric pressure sensor, microphone 6 gestures + ‘no touch’ 9 SVMa RBFb kernel between-subjects 75%

Nakajima et al. [83] Emoballoon barometric pressure sensor, microphone 6 gestures + ‘no touch’ 9 SVMa RBFb kernel within-subjects 84%

Naya et al. [85] sensor sheet pressure-sensitive conductive ink 5 gestures 11 k-NNc + between-subjects 87%

Fisher’s linear discriminant

Silvera-Tawil et al. [101] sensor sheet pressure sensing based on EITd
6 gestures 1 logitboost algorithm within-subject 91%

Silvera-Tawil et al. [101] sensor sheet pressure sensing based on EITd
6 gestures 35 logitboost algorithm between-subjects 74%

Silvera-Tawil et al. [101] experimenter’s back / 6 gestures 35 classification by human between-subjects 86%

Silvera-Tawil et al. [102] mannequin arm pressure sensing based on EITd, 8 gestures + ‘no touch’ 2 logitboost algorithm within-subjects 88%

force sensor

Silvera-Tawil et al. [102] experimenter’s arm / 8 gestures 2 classification by human within-subjects 75%

Silvera-Tawil et al. [102] mannequin arm pressure sensing based on EITd, 8 gestures + ‘no touch’ 40 logitboost algorithm subject-independent 71%

force sensor

Silvera-Tawil et al. [102] other subject’s arm / 8 gestures 40 classification by human 1 subject rates 1 other 90%

Silvera-Tawil et al. [103] mannequin arm pressure sensing based on EITd, 6 emotions + 2 logitboost algorithm within-subjects 88%

force sensor ‘no touch’

Silvera-Tawil et al. [103] mannequin arm pressure sensing based on EITd, 6 social messages + 2 logitboost algorithm within-subjects 84%

force sensor ‘no touch’

Silvera-Tawil et al. [103] mannequin arm pressure sensing based on EITd, 6 emotions + 2 logitboost algorithm between-subjects 32%

force sensor ‘no touch’

Silvera-Tawil et al. [103] mannequin arm pressure sensing based on EITd, 6 social messages + 2 logitboost algorithm between-subjects 51%

force sensor ‘no touch’

Silvera-Tawil et al. [103] mannequin arm pressure sensing based on EITd, 6 emotions + 42 logitboost algorithm subject-independent 47%

force sensor ‘no touch’

Silvera-Tawil et al. [103] other subject’s arm / 6 emotions 42 classification by human 1 subject rates 1 other 52%
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Results of literature on social touch recognition (cont.)

Paper Touch surface Sensor(s) Touch recognition of... n Classifier Design Accuracy

Silvera-Tawil et al. [103] mannequin arm pressure sensing based on EITd, 6 social messages + 42 logitboost algorithm subject-independent 50%

force sensor ‘no touch’

Silvera-Tawil et al. [103] other subject’s arm / 6 social messages 42 classification by human 1 subject rates 1 other 62%

Stiehl et al. [106] The Huggable electric field sensor, force sensors, 8 gestures 1 neural network within-subject 79%

(arm section) thermistors (disregarding ‘slap’)

van Wingerden et al. [113] mannequin arm piezoresistive fabric pressure sensors 14 rough gestures 31 neural network between-subjects 64%
aSVM = Support Vector Machine, bRBF = Radial Basis Function, ck-NN = k-Nearest Neighbor, dEIT = Electrical Impedance Tomography
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advantages and drawbacks for example, low cost vs. large hysteresis in
force sensing resistors [29]. These sensing techniques were implemented
in the form of artificial robot skins (e.g. [102]) or by following a modular
approach using sensor tiles (e.g. [57]) or individual sensors to cover the
robot’s body (e.g. [25]). Designing an artificial skin entails extra require-
ments such as flexibility and stretchability to cover curved surfaces and
moving joints [101, 104] but has the advantage of providing equal sensor
density for detection across the entire surface which can be hard to achieve
using individual sensors [25]. The approach of using computer vision to
register touch is noteworthy [27].

2.2.2 Touch recognition

Previous research on the recognition of touch has included hand gestures
(e.g. stroke [65]), full body gestures (e.g. hug [26]), emotions (e.g. happi-
ness [103]), and social messages (e.g. affection [103]). Data was gathered
from a single subject to test a proof of concept (e.g. [25]) or from multi-
ple subjects to allow for the training of a subject independent model (e.g.
[103]). Classification results show that it is harder to recognize emotions or
social messages than the touch itself. This can be explained by the nontriv-
ial nature of mapping touch to an emotional state or an intention for exam-
ple, a single touch gesture can be used to communicate various emotions
[48, 124]. Also, as expected, results of a within-subjects design were bet-
ter than classification between-subjects (e.g. [2]) meaning that there was a
larger inter-person variance than intra-person variance. Human classifica-
tion of touch out-performed automatic classification (e.g. [101]). However,
when touch was mediated by technology, human performance decreased.
Bailenson et al. [6] found that emotions were better recognized by partici-
pants when performing a real handshake with another person compared
to when the handshake with the other person was mediated through a
force-feedback joystick. Classification was mostly off-line however, some
promising attempts have been made with real-time classification, which is
a prerequisite for real-time touch interaction (e.g. [71]). Real-time systems
come with extra requirements such as gesture segmentation and ensur-
ing adequate processing speed. Combining computer vision with touch
sensing yielded better touch recognition results than relying on a single
modality [27].

Direct comparison of touch recognition between studies based on re-
ported accuracies is difficult because of differences in the number and
nature of touch classes, sensors, and classification protocols. Furthermore,
some reported accuracies were the result of a best-case scenario intending
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to be a proof of concept (e.g. [25]). Some studies focused on the location of
the touch rather than the touch gesture, such as distinguishing between
‘head-pat’ and ‘foot-rub’ [73]. While information on body location can
enhance touch recognition, Silvera-Tawil et al. showed that comparable
accuracies can be achieved by limiting the touch location to a single arm
[102].

2.3 cost : corpus of social touch

To address the need for social touch datasets, we recorded a corpus of
social touch gestures (CoST) which was introduced in [65]. This dataset is
publicly available [63].

Figure 2: Participant performing the instructed touch gesture on the pressure sen-
sor (the black fabric) wrapped around the mannequin arm

2.3.1 Touch gestures

CoST consists of the pressure sensor data of 14 different touch gestures
performed on a sensor grid wrapped around a mannequin arm (see Fig-
ure 2). The touch gestures (see Table 2) included in the data collection were
chosen from a touch dictionary composed by [124] based on the literature
on touch interaction between humans and between humans and animals.
The list of gestures was adapted to suit interaction with a mannequin arm.
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Touch gestures involving physical movement of the arm itself, such as lift,
push and swing, were omitted because the movement of the mannequin
arm could not be sensed by the pressure sensors. All touch gestures were
performed in three variants: gentle, normal and rough to increase the va-
riety of ways a gesture could be performed by each individual.

Table 2: Touch dictionary, adapted from Yohanan and MacLean [124]

Gesture label Gesture definition

Grab Grasp or seize the arm suddenly and roughly.

Hit Deliver a forcible blow to the arm with either a closed fist
or the side or back of your hand.

Massage Rub or knead the arm with your hands.

Pat Gently and quickly touch the arm with the flat of your
hand.

Pinch Tightly and sharply grip the arm between your fingers and
thumb.

Poke Jab or prod the arm with your finger.

Press Exert a steady force on the arm with your flattened fingers
or hand.

Rub Move your hand repeatedly back and forth on the arm with
firm pressure.

Scratch Rub the arm with your fingernails.

Slap Quickly and sharply strike the arm with your open hand.

Squeeze Firmly press the arm between your fingers or both hands.

Stroke Move your hand with gentle pressure over arm, often re-
peatedly.

Tap Strike the arm with a quick light blow or blows using one
or more fingers.

Tickle Touch the arm with light finger movements.

2.3.2 Pressure sensor grid

For the sensing of the gestures, an 8×8 pressure sensor grid (PW088-
8x8/HIGHDYN from plug-and-wear2, see Figure 3) was connected to a
Teensy 3.0 USB Development Board (by PJRC3). The sensor was made of
textile consisting of five layers. The two outer layers were protective lay-

2 www.plugandwear.com
3 www.pjrc.com
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Figure 3: 8×8 pressure sensor grid

ers made of felt. Each outer layer was attached to a layer containing eight
strips of conductive fabric separated by non-conductive strips. Between
the two conductive layers was the middle layer which comprised a sheet
of piezoresistive material. The conductive layers were positioned orthogo-
nally so that they formed an 8 by 8 matrix. The sensor area was 160×160

mm with a thickness of 4 mm and a spatial resolution of 20 mm.
One of the conductive layers was attached to the power supply while

the other was attached to the A/D converter of the Teensy board. After
A/D conversion, the sensor values of the 64 channels ranged from 0 to
1,023 (i.e., 10 bits). Figure 4 displays the relationship between the sensor
values and the pressure in kg/cm2 for both the whole range (0-1,023) and
the range used in the data collection (0-990). Pressure used during human
touch interaction typically ranges from 30 g/cm2 to 1,000 g/cm2 [104],
which corresponds to sensor values between 25 and 800. From the plots it
can be seen that the sensor’s resolution is accurate within this range but
decreases at higher pressure levels. Sensor data was sampled at 135 Hz.

Our sensor meets the requirements set by Silvera-Tawil et al. [104] for
optimal touch sensing in social human-robot interaction as the spatial reso-
lution falls within the recommend range of 10-40 mm and the sample rate
exceeds the required minimum (20 Hz). However, the human somatosen-
sory system is more complex than this sensor as receptors in the skin
register not only pressure but also pain and temperature and receptors in
the muscles, joints and tendons register body motion [40, 104]. The sen-
sor grid produces artifacts in the signal such as crosstalk, wear out and
hysteresis (i.e., the influence of the previous and current input, which is
discussed in Section 2.3.4). For demonstration purposes, we illustrated the
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Figure 4: Plot of the relationship between the sensor output after A/D conversion
and pressure in kg/cm2 for both the whole range (top) and the range
used (bottom)

sensor’s crosstalk by pushing down with the end of a pencil perpendic-
ular to the sensor grid to create a concentrated load (see Figure 5). The
sensor was wrapped around the mannequin arm to create a setup similar
to the one used for the data collection. We did not compensate for the
artifacts in the data.

2.3.3 Data acquisition

2.3.3.1 Setup

The sensor was attached to the forearm of a full size rigid mannequin arm
consisting of the left hand and the arm up to the shoulder (see Figure 2).
The arm was chosen as the contact surface because this is one of the body
locations that is often used to communicate emotions [48]. Also, the arm is
one of the least invasive body areas on which to be touched [51] and pre-
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Figure 5: Crosstalk visualization showing the sensor data of a single frame, a pen-
cil was pressed down on the sensor grid (light pressure point) effecting
the pressure level of adjacent channels

sumably a neutral body location to touch others. The mannequin arm was
fastened to the right side of the table to prevent it from slipping. Instruc-
tions for which gesture to perform had been scripted using PsychoPy4 and
were displayed to the participants on a computer monitor. Video record-
ings were made during the data collection as verification of the sensor
data and the instructions given.

2.3.3.2 Procedure

Upon entering the experiment room, the participant was welcomed and
was asked to read and sign an informed consent form. After filling in
demographic information, the participant was provided with a written
explanation of the data collection procedure. Participants were instructed
to use their right hand to perform the touch gestures and use their left
hand on the keyboard. Then an instruction video was shown of a person
performing all 14 gestures on the mannequin arm based on the definitions
from Table 2. Participants were instructed to repeat every gesture from
the video to practice. No video examples were shown during the actual
data collection. Next, example instructions were given to perform a stroke
gesture in all three variants (i.e., gentle, normal and rough). After each

4 A module written for Python, see www.psychopy.org
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gesture the participant could press the spacebar to continue to the next
gesture or backspace to retry the current gesture. Once everything was clear
to the participant the data collection started.

During the data collection each participant was prompted with 14 differ-
ent touch gestures 6 times in 3 variants resulting in 252 gesture captures.
In the instructions of the gesture to perform, the participants were shown
only the gesture variant combined with the name of the gesture (e.g. ‘gen-
tle grab’), not the definition from Table 2. The order of instructions was
pseudo-randomized into three blocks. Each instruction was given two
times per block but the same instruction was not given twice in consecu-
tive order. A single fixed list of instructions was constructed using these
criteria. This list and the reversed order of the list were used as instruc-
tions in a counterbalanced design. After each block, there was a break
and the participant was asked to report any difficulty in performing the
instructions. Finally, participants were asked to describe the gestures and
manners in their own words. The entire procedure took approximately 40

minutes for each participant.

2.3.3.3 Participants

A total of 32 people volunteered to participate in the data collection. Data
of one participant was omitted due to technical difficulties. The remain-
ing participants, 24 male and 7 female, all studied or worked at the
University of Twente in the Netherlands. Most (26) had the Dutch na-
tionality (1 British/Dutch), others were Ecuadorean, Egyptian, German
(2x) and Italian. The age of the participants ranged from 21 to 62 years
(M = 34,SD = 12) and 29 were right-handed.

2.3.4 Data preprocessing

The raw data was segmented into gesture captures based on the
keystrokes of the participants marking the end of a gesture. Segmentation
between keystrokes still contained many additional frames from before
and after the gesture was performed. Removing these additional frames
is especially important to reduce noise in the calculation of features that
contain a time component, such as features that average over frames in
time. See Figure 6 for an example of a gesture capture of ‘normal tap’
as segmented between keystrokes. Further segmentation is indicated by
dashed lines. This plot also illustrates that the sensor values remain non-
zero (the absolute minimum) when the sensor is not touched and that
hysteresis occurs. In this case the sensor values are higher after the touch
gesture is performed compared to before.
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Figure 6: Gesture capture of ‘normal tap’ as segmented between keystrokes, fur-
ther segmentation based on pressure difference is indicated by the
dashed lines

Further segmentation of the gesture captures was based on the change
in the gesture’s intensity (i.e., the summed pressure over all 64 channels)
over time using a sliding window approach. The first window starts at
the beginning of the gesture capture and includes the number of frames
corresponding to the window size parameter. The next window remains
the same size but is shifted a number of frames corresponding to the step
size parameter. The pressure intensity of each window is compared to
that of the previous window. This procedure continues till the end of the
gesture capture. Parameters (i.e., threshold of minimal pressure difference,
step size, window size and offset) were optimized by visual inspection to
ensure that all gestures were captured within the segmented part. The
optimized parameters were fixed for all recordings.

After visual inspection it turned out that six gesture captures could
not be automatically segmented because differences in pressure were too
small (i.e., below the threshold parameter). The video recordings revealed
that the gestures were either skipped or were performed too fast to be
distinguishable from the sensor’s noise. One other gesture capture was
of notably longer duration (over a minute) than all other instances be-
cause the instructions were unclear at first. These seven gesture captures
were instances of the variants ‘gentle massage’, ‘gentle pat’, ‘gentle stroke’,
‘normal squeeze’, ‘normal tickle’, ‘rough rub’, and ‘rough stroke’. The in-
stances of these gesture variants were removed from the dataset. The re-
maining dataset consists of 7,805 touch gesture captures in total: 2,601

gentle, 2,602 normal and 2,602 rough gesture captures.
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Table 3: Mean and standard deviation (in parentheses) of the duration, mean and
maximum pressure and contact area per touch variant and for all data

Variant Gentle Normal Rough All

Mean pressure (g/cm2) 115 (61) 136 (82) 189 (157) 147 (112)

Max pressure (g/cm2) 894 (511) 1,260 (629) 1,983 (813) 1,379 (802)

Contact area (% of sensor) .21 (.16) .22 (.18) .26 (.21) .23 (.19)

Duration (ms) 1,385 (1,303) 1,377 (1,257) 1,500 (1,351) 1,421 (1,305)

2.3.5 Descriptive statistics

To get an idea of the differences between touch gestures and the variants,
descriptive statistics were calculated on three important characteristics of
touch: intensity (g/cm2), contact area (% of sensor area) and gesture du-
ration (ms). Pressure intensity was calculated as the mean pressure of all
channels averaged over time and the maximum channel value of the ges-
ture over all channels. Contact area was calculated for the frame with the
highest summed pressure over all channels (corresponds to feature 21).
Means and standard deviations of the touch data after segmentation are
displayed for each variant and in total in Table 3 and per gesture in Table 4.
It is notable that the mean and maximum pressure used per variant follow
the expected pattern: gentle variants < normal variant < rough variants,
indicating that participants used pressure to distinguish between the dif-
ferent variants. Figure 7 illustrates that there was a lot of overlap in du-
ration between the different gestures (e.g. between hit and slap) and a lot
of variance within each gesture, especially within massage and tickle. The
tables and figure illustrate that the challenge of touch gesture recognition
is complex and that it is not possible to distinguish between these differ-
ent touch gestures using only these descriptive statistics. Table 5 shows
the touch characteristics for males and females separately. Based on these
characteristics there seems to be no significant differences between male
and female touch gestures.

2.3.6 Self reports

In the self reports the most common difficulties (mentioned by at least 5

out of 31 participants) of distinguishing between gestures (disregarding
the variants) were reported on pat vs. tap (12), grab vs. squeeze (10), rub
vs. stroke (7), hit vs. slap (5) and pinch vs. squeeze (5). Furthermore, some
combinations of gestures with variants were perceived as less logical. The
most commonly mentioned gesture variants were: rough tickle (4), gentle
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Table 4: Mean and standard deviation (in parentheses) of the duration (ms), mean and maximum pressure (g/cm2) the contact area
(% of sensor area) per touch gesture

Gesture Grab Hit Massage Pat Pinch Poke Press

Mean pressure 349 (191) 101 (32) 172 (77) 100 (33) 126 (45) 95 (27) 188 (99)

Max pressure 1,774 (919) 1,643 (854) 1,621 (800) 1,057 (568) 1,701 (892) 1,258 (793) 1,660 (802)

Contact area .59 (.17) .15 (.05) .36 (.20) .15 (.07) .12 (.08) .08 (.08) .23 (.16)

Duration 1,373 (715) 337 (403) 3,538 (1,898) 709 (753) 1,132 (597) 650 (502) 1,181 (608)

Gesture Rub Scratch Slap Squeeze Stroke Tap Tickle

Mean pressure 131 (45) 106 (28) 95 (30) 286 (180) 116 (35) 92 (30) 96 (26)

Max pressure 1,282 (671) 1,064 (524) 1,165 (557) 1,980 (946) 1,135 (623) 1,055 (610) 911 (497)

Contact area .21 (.10) .17 (.08) .15 (.06) .47 (.24) .20 (.08) .12 (.07) .18 (.09)

Duration 2,170 (1142) 2,205 (1,268) 321 (462) 1,502 (813) 1,722 (829) 564 (486) 2491 (1,446)
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Figure 7: Boxplot of the duration (ms) for all 7,805 captures per touch gesture
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hit (3) and gentle slap (3). Also, three participants raised concerns about
breaking the setup when performing gestures too roughly.

At the end of the experiment participants were asked to provide their
own descriptions. The most common keywords used to describe the gen-
tle gesture variants were: soft (mentioned by 8 participants), slow (6), less
force (6), less pressure (5), and light (3) while the rough variants were de-
fined as: more force (12), hard (7), more pressure (4), and fast (3), energetic
(3). ‘Normal’ was described as: the default/ regular (7), without thinking
(4) and neutral (3).

Table 5: Mean and standard deviation (in parentheses) of the duration, mean and
maximum pressure and contact area per touch variant and for all data for
male and female subjects

Variant Gentle Normal Rough All

Male

Mean pressure (g/cm2) 117 (63) 137 (85) 193 (163) 149 (117)

Max pressure (g/cm2) 885 (518) 1,245 (629) 1,981 (828) 1,370 (811)

Contact area (% of sensor) .21 (.16) .22 (.18) .27 (.22) .23 (.19)

Duration (ms) 1,358 (1,296) 1,349 (1,249) 1,491 (1,357) 1,399 (1,303)

Female

Mean pressure (g/cm2) 112 (50) 130 (72) 175 (133) 139 (96)

Max pressure (g/cm2) 925 (485) 1,310 (624) 1,990 (763) 1,409 (772)

Contact area (% of sensor) .20 (.15) .21 (.17) .24 (.20) .21 (.17)

Duration (ms) 1,477 (1,325) 1,476 (1,281) 1,528 (1,330) 1,494 (1,312)

2.4 recognition of social touch gestures

In this section we will present the performance results of several classifiers
for the recognition of touch gestures in CoST. To establish the benchmark
performance for CoST we compared the performance of four different
commonly used classifiers. Two simple classifiers were chosen: a statisti-
cal model (Bayesian classifier) and a decision tree which allows for more
insight into the classification process (e.g. which features are most impor-
tant). Furthermore, we chose two more complex classifiers: a Support Vec-
tor Machine (SVM) which uses a single decision boundary and a neural
network which allows for more complex decision boundaries.
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2.4.1 Feature extraction

The dataset from the pressure sensor consists of a pressure value (i.e., the
intensity) per channel (i.e., the location) at 135 fps. From the recorded
sensor dataset, features were extracted for every gesture capture. The ma-
jority of features were based on the literature. The first features (1-28)
were taken from previous work on this dataset [60, 65] which were based
on social touch recognition literature, differences are indicated between
parentheses. Features used for video classification can be applied to this
dataset because the dataset of CoST is a grid of pressure values that are
updated at a fixed rate which is similar to a low-resolution gray scale
video. Features 29-43 were slight adaptations of the features used in [113]
which were based on video classification literature. Feature numbers are
indicated in parentheses.

• Mean pressure is the mean over channels and time (1).

• Maximum pressure is the maximum value over channels and time (2).

• Pressure variability is the mean over time of the sum over channels of
the absolute value of difference between two consecutive frames (3).

• Mean pressure per row is the mean over columns and time resulting
in one feature per row which are in the direction of the mannequin
arm’s length (from top to bottom, 4-11).

• Mean pressure per column is the mean over rows and time resulting in
one feature per column which are in the direction of the mannequin
arm’s width (from left to right, 12-19).

• Contact area per frame is the fraction of channels with a value above
50% of the maximum value. Mean contact area is the mean over
time of contact area (20) and the maximum pressure contact area is
the contact area of the frame with the highest mean pressure over
channels (21). The size of the contact area indicated whether the
whole hand was used for a touch gesture, as would be expected for
grab, or for example only one finger, as would be expected for a
poke.

• Temporal peak count indicated how many times there was a significant
increase in pressure level. That is, whether a touch gesture consisted
of continuous touch contact as would be expected for grab or alter-
nating pressure levels which would be expected for a tickle. One
feature counts the number of frames for which the average pressure
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of a frame was larger than that of its neighboring frames (22). (This
feature replaced the previous version of feature 22 from [60, 65]). The
other feature was calculated as the number of positive crossings of
the threshold. The threshold was the mean over time of the pressure
summed over all channels (23).

• Traveled distance (previously called ‘displacement’ in [60, 65]) indi-
cated the amount of movement of the hand across the contact area.
For example, for a squeeze less movement across the sensor grid
would be expected than for a stroke. Center of mass (i.e., the average
channel weighted by pressure) was used to calculate the movement
on the contact surface in both the row and column directions. Two
features were calculated in the row direction: the mean traveled dis-
tance of the center of mass over time (24) and the summed absolute
difference of the center of mass over time (25). The same features
were calculated for the column direction (26-27).

• Duration of the gesture measured in frames (28).

• Pressure distribution (previously called ‘histogram-based features’ in
[113]) is the normalized histogram over all channels and time of the
pressure values. The histogram contains eight bins equally spaced
between 0 and 1,023 (29-36).

• Spatial peaks (previously called ‘motion-based features’ in [113]). – A
spatial peak in a frame is a local maximum with a value higher than
0.75 of the maximum pressure (see feature 2). The following features
were derived from the local peaks; the mean (37) and variance (38)
over time of the number of spatial peaks per frame. Also, the mean
over all spatial peaks and time of the distance of the spatial peak
to the center of mass is a feature (39). The last feature based on
spatial peaks is the mean over time and spatial peaks of the change
in distance of each peak w.r.t. the center of mass (40).

• Derivatives were calculated as the mean absolute pressure differences
within the rows and columns between frames. Features were derived
from the mean over time and rows or columns of the above values
(41-42). The mean absolute pressure difference for all channels was
also calculated. The last feature was based on the mean over time
and channels (43).

• Variance over channels and time (44).

• Direction of movement indicated the angle in which the center of mass
was moving between frames. These angle values were divided into
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quadrants of 90° each. For example, if the hand moves from the
middle of the sensor grid to the upper right corner of the sensor
grid, the center of mass moves at a 45° angle which falls within the
upper right quadrant (i.e., the first quadrant). To deal with vectors
that were close to the edge of two quadrants two points around the
vector were evaluated, each weighting 0.5. A histogram represented
the percentage of frames that fell into each quadrant (45-48).

• Magnitude of movement indicated the amount of movement of the
center of mass. Statistics on the magnitude were calculated per ges-
ture consisting of the mean, standard deviation, sum, and the range
(49-52).

• Periodicity was the frequency with the highest amplitude in the fre-
quency spectrum of the movement of the center of mass in the row
and column direction, respectively (53-54).

2.4.2 Classification experiments

The extracted features were used for classification in MATLAB® (release
2013a). We performed two classification experiments: (1) classification of
the touch gestures from the total dataset based on the gestures’ class,
thereby disregarding the variant (e.g. ‘gentle grab’ and ‘normal grab’ both
belong to the same class: ‘grab’); (2) classification of the touch gestures
within each variant, splitting the dataset into 3 subsets: normal, gentle
and rough. Due to their more pronounced nature, rough gesture variants
were expected to have a more favorable signal-to-noise ratio compared to
the softer variants.

For both classification experiments the dataset was split into a train/
validation set and test set using leave-one-subject-out cross-validation (31

folds) to train a user-independent model (i.e., dataset from each subject
was only part of either the train set or the test set). Hyperparameters were
optimized on the train/ validation set using leave-one-subject-out cross-
validation (30 folds). Classification results were evaluated using the best
performing hyperparameters found from the 30 folds (i.e., training/vali-
dation set only) to classify the test set. This procedure was repeated for
all 31 folds. Note that each fold can have different optimized parameter
values. The baseline of classifying a sample into the correct class based
on random guessing is 1/14 ≈ 7% for both experiments. We will discuss
details of each of the classifiers individually.
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2.4.2.1 Bayesian classifier

The Gaussian Bayesian classifier has no hyperparameters to optimize. The
mean and covariance for the features per class were calculated from the
training dataset. These parameters for the multivariate normal distribu-
tion were used to calculate the posterior probability of a test sample be-
longing to the given class. Samples were assigned to the class with the
maximum posterior probability.

2.4.2.2 Decision tree

Decision trees were trained using the CART learning algorithm with
Gini’s diversity index as splitting method. First a full tree was grown after
which the tree was pruned. A parameter search for the optimal pruning
level, using cross-validation as described above, was performed using a
range of 5 to 30 in increments of 5.

2.4.2.3 Support Vector Machine

SVMs were trained using the LIBSVM software library [24], both with
a linear kernel (hyperparameter C) and with a Radial Basis Function
(RBF) kernel (hyperparameters C and γ). We chose to test two ker-
nels due to their different approaches, the linear kernel separates the
classes globally while the RBF kernel allows for a local division of two
classes. The hyperparameters were optimized, using cross-validation as
described above. A (grid) search was conducted for optimal parame-
ters by growing the sequences of the parameter values exponentially
(C = 2−5, 2−3, ..., 215;γ = 2−15, 2−13, ..., 23) as proposed by [52]. Before
training, features were rescaled to the range of [0,1] by subtracting the
minimum feature value from all feature values and dividing the result
by the range of the feature values. Scaling prevents features with greater
numeric ranges from dominating those with smaller numeric ranges [52].

2.4.2.4 Neural Network

A feedforward neural network was trained using Levenberg-Marquardt
optimization. Stopping criteria were set to a maximum of 1,000 training
iterations or 6 subsequent increases of the error on the validation set.
The neural network toolbox in MATLAB automatically maps the range
of the original input features to the range of [-1,1]. Because of memory
constraints the architecture was set to two layers of 54 and 27 neurons,
respectively to get results in a timely fashion. Leave-one-subject-out cross-
validation was used, and, the dataset from the remaining 30 subjects was
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split into a train set (70%) and a validation set (30%). The best performing
network on the validation set of five runs was used to evaluate the test set
(i.e., the samples of the left-out subject).

2.4.3 Results

Table 6 provides an overview of the overall accuracies for the whole
dataset and per variant for different classifiers. Classification of 14 gesture
classes independent of variants resulted in an overall accuracy of up to
60% using SVMs with the RBF kernel, which is more than 8 times higher
than classification by random guessing (≈ 7%). SVMs with the RBF kernel
performed slightly better than the Bayesian classifiers, the SVMs with the
linear kernel and the neural networks. Decision trees performed worse
than the other classifiers.

Classification within each gesture variant showed that the accuracies for
the rough variants (up to 62%) were higher than for the normal variants
(up to 60%), which were higher than those for the gentle variants (up to
54%). The exception was the Bayesian classifier. In this case the normal
variants performed slightly better than the rough variants. The SVM clas-
sifiers (both kernels) performed slightly better than the Bayesian classifier
and neural network. Again, decision trees performed worse than the other
classifiers.

Table 6: Overall accuracies of leave-one-subject-out cross-validation for the vari-
ants per classifier, standard deviations in parentheses

Variant All Normal Gentle Rough

Bayesian .57(.11) .59(.13) .52(.14) .58(.12)

Decision tree .48(.10) .49(.13) .43(.10) .52(.10)

SVM linear .59(.11) .60(.11) .54(.13) .62(.13)

SVM RBF .60(.11) .60(.11) .54(.13) .62(.12)

Neural network .59(.12) .58(.13) .52(.13) .59(.13)

2.5 discussion

In this section we will discuss the touch gesture recognition results in
depth, looking into accuracy differences between subjects and between
different classifiers, the interaction between gestures and the different vari-
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ants and confusions between touch gestures. Also, we will reflect critically
on the collection of the touch gesture data.

2.5.1 Classification results and touch gesture confusion

From the classification results in Table 6 it can be seen that the more com-
plex classifiers (i.e., SVM and neural network) performed better than the
simpler decision tree. However, the performance of the simpler Bayesian
classifier was only slightly lower than those of the SVM and neural net-
work. This indicates that recognition rates are reasonably robust across
different classification methods. Moreover, the accuracy reported in this
work (i.e., 60% for SVMs with the RBF kernel) was higher than the ac-
curacy of 53% that was previously reported for the CoST dataset using
Bayesian classifiers [60]. This indicates that the additional features and
the use of more complex classification methods with hyperparameter op-
timization have improved the accuracy.

The subject independent model generalized well for some subjects but
not for others as shown by the large individual differences in accuracy
for the total dataset in Table 7. Differences in accuracy between subjects
ranged from 44% for the Bayesian classifiers and the decision trees to 50%
for the linear SVMs and neural networks. These individual differences
make it harder to build a reliable subject independent model for touch
gesture recognition. Depending on the application a trade-off can be made
to build subject-dependent models which could increase accuracy at the
expense of the need for training sessions. Between classifiers, results per
subject differed on average 13%. These differences were largely due to the
overall lower decision tree results, per subject the accuracies for the other
four classifiers differed on average 6%. As expected, gentle gestures were
considerably harder to classify which can be due to the lower pressure
levels used for this gesture variant (see Table 3), resulting in a lower signal-
to-noise ratio.

To gain insight into the interaction between gestures and their variants,
we classified the gesture variants (i.e., 3 classes) and the combination of
gestures and their variants (i.e., 42 classes) using the Bayesian classifier
as a baseline due to its simplicity. Classification of the gesture variants us-
ing leave-one-subject-out cross-validation yielded accuracies ranging from
39% to 64% (M = 50%,SD = 6%). Over participants the correct rate for
the classification of all gestures dependent on variant ranged from 15% to
47% (M = 32%,SD = 9%). Misclassification was most common between
the gestures’ variants which is in line with the low accuracy for the classi-
fication of the gesture variants. Confusions between gestures were similar



3
4

a
u

t
o

m
a

t
i
c

r
e

c
o

g
n

i
t

i
o

n
o

f
t

o
u

c
h

g
e

s
t

u
r

e
s

Table 7: Accuracy per participant for all data for the different classifiers. Legend – accuracy: > 50% , > 70%

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bayesian .42 .58 .78 .70 .71 .45 .58 .66 .56 .75 .66 .54 .60 .37 .47 .41

Decision tree .39 .48 .65 .63 .58 .43
.52 .55 .52 .67 .54 .47 .48 .30 .39 .29

SVM linear .52 .58 .83 .73 .76 .52 .60 .65 .58 .78 .71 .63 .59 .41 .48 .44

SVM RBF .51 .58 .82 .72 .76 .50 .61 .68 .56 .80 .72 .63 .62 .42 .42 .47

Neural network .48
.59 .79 .74 .73 .47 .63 .66 .59 .82 .71 .61 .62 .44 .40 .47

Participant 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bayesian .65 .58 .50 .51 .56 .58 .34 .66 .41 .69 .60 .54 .55 .58 .58

Decision tree .62 .48 .45 .41
.50 .52 .23 .56 .36

.54 .48 .42
.55 .50 .51

SVM linear .58 .65 .57 .52 .56 .67 .33 .65 .44
.70 .62 .44

.55 .63 .63

SVM RBF .65 .65 .60 .52 .56 .66 .37 .65 .44
.72 .65 .46 .58 .65 .65

Neural network .61 .63 .57 .49 .56 .65 .32 .67 .46
.74 .64 .49

.54 .63 .62



2.5 discussion 35

to those found for classification independent of gesture variant. For exam-
ple: ‘gentle grab’ was correctly classified in 36% of the samples and was
most often misclassified as ‘normal grab’ (24%), ‘gentle squeeze’ (16%),
‘normal squeeze’ (8%) and ‘rough grab’ (5%).

Misclassification was mostly due to confusions between similar touch
gestures. Table 8 shows the confusion matrix for the SVM with the RFB
kernel of the whole dataset as this classifier yielded the best results. The
five most frequently confused gesture pairs were: grab and squeeze (sum
of 294 confused samples); pat and tap (280); rub and stroke (223); scratch
and tickle (219); hit and slap (154). Within gesture variants the rankings of
most confused pairs were similar to those of the combined variants. Also,
confusions between touch gestures depicted in Table 8 largely matched the
touch gesture pairs that were reported to be difficult for the participants
in Section 2.3.6. However, some small differences were observed: although
‘pinch vs. squeeze’ was in the top 5 most often reported difficulties in the
confusion matrix this was not one of the most frequently confused gesture
pairs (sum of 104 confused samples). Conversely, ‘scratch vs. tickle’ was
one of the five most confused gesture pairs but was not among the most
often mentioned difficulties (mentioned by 3 participants).

Recognizing a large set of different touch gestures can reduce the classi-
fication accuracy, especially when gestures show many overlapping char-
acteristics. Therefore, it is important to find the right balance for each
application. To illustrate this trade-off we composed a subset of gestures
by starting with the original 14 gestures and removing one of the gestures
for each of the five most commonly confused gesture pairs, the subset
consisted of nine gestures: grab, massage, pinch, poke, press, slap, stroke,
tap and tickle. Classification of this gesture subset independent of vari-
ant using a Bayesian classifier with leave-one-subject-out cross-validation
yielded accuracies ranging from 45% to 94% (M = 75%,SD = 12%). The
average performance increased by 18% for the recognition of nine touch
gestures compared to the results with fourteen touch gestures using the
same classifier. However, at the cost of the ability to distinguish between
more classes.

To get an indication of the most important features, the top 5 features for
each optimized decision tree using leave-one-subject-out cross-validation
were listed (i.e., the first five splits). Table 9 shows the top features ranked
on frequency. While it is possible for features to appear multiple times in
the top 5 with different cut-off values this was not the case for the fea-
tures displayed here. Therefore, the maximum frequency for the features
listed is equal to the number of cross-validation folds (=31). These five
highest frequency features were among the most important features for
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Table 8: Confusion matrix of leave-one-subject-out cross-validation using SVMs with RBF kernel for all data [Overall accuracy =

60%].
Legend – classification of touch gesture captures into a class: > 10% , > 50%

Actual class

Grab Hit Massage Pat Pinch Poke Press Rub Scratch Slap Squeeze Stroke Tap Tickle

Pr
ed

ic
te

d
cl

as
s

Grab 397
0 17 1 11 1 31 4 4 0

177
2 0 0

Hit 1
317

0 45 1 15 1 0 0
77

3 1 45 0

Massage 4 0 386 2 1 1 0 63 26 1 14 11 1 26

Pat 8 58 1 268 1 2 4 1 22
59

0 12
149

18

Pinch 3 4 6 1 398 27 25 8 8 0 66 1 6 3

Poke 1 27 0 11 68 438 50 0 2 4 3 1 40 5

Press 19 4 0 7 30 25
374

17 1 7 23 6 8 2

Rub 0 0 78 2 1 0 8
239 56 0 2 98 0 40

Scratch 6 0 7 5 0 0 2 50
274

0 0 12 0
92

Slap 0
77

0
70

2 0 0 2 1 358 0 14 44 1

Squeeze 117
0 15 0 38 0 50 1 2 0 268 1 0 0

Stroke 0 1 28 8 1 0 2
125

34 3 0 383 4 15

Tap 0 68 0
131

6 46 11 2 1 48 0 2 248 16

Tickle 2 2 19 6 0 3 0 45
127

1 1 12 13
339

Sum 558 558 557 557 558 558 558 557 558 558 557 556 558 557
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Table 9: Features that were most frequently ranked within the top 5 for decision
tree classification using 31-fold cross-validation

Feature (no.) Frequency

Mean pressure of the 7th sensor row (10) 31

Absolute distance traveled in the column direction (27) 30

Average spatial peak distance to the center off mass (39) 30

Overall mean absolute pressure difference between frames (43) 30

Size of the contact area of the frame with the highest mean pressure (21) 27

most trained decision trees indicating that these features are reasonably
robust. Mean pressure of the 7th sensor row was found to be an important
feature for all trees. The 7th sensor row was positioned on the side of the
mannequin arm facing away from the participant. When the participant’s
hand was (partially) folded around the arm it is supposed that the fingers
pressed down on this sensor area. A possible explanation for the impor-
tance of this feature is that the level of pressure in this sensor area can
indicate whether the hand is folded around the arm as would be expected
for gestures such as grab and squeeze.

No gender differences were observed based on basic touch gesture char-
acteristics (see Table 5). To look for more subtle differences we classified
the touch gestures based on gender using a Bayesian classifier and 10-fold
cross-validation. Accuracies ranged from 75% to 78% (M = 76%,SD =

0.01%), which is similar to the baseline accuracy when classifying every
sample as ‘male’ (24/31 ≈ 77%). Based on our findings we have no reason
to assume that gender differences play a significant role in touch gesture
classification. However, it should be noted that our sample size does not
allow us to rule out possible differences.

2.5.2 Considerations regarding the data collection

The instructions during the data collection were given in English to in-
clude non-native Dutch speakers. However, this could have resulted in
translation discrepancies between the English language and the partici-
pants’ native language. Silvera-Tawil et al. [102] gave the example of the
back-translation of the word ‘pat’ from Spanish to English which can be
either translated to ‘pat’ or ‘tap’. Based on observations in a pilot test we
opted to include visual examples of the different touch gestures rather
than providing participants with the definitions in Table 2 to reduce the
language barrier. The use of visual examples instead of giving text-based



38 automatic recognition of touch gestures

definitions could however have reduced the interpersonal differences as
participants might have tried to mimic the examples.

To minimize the influence on the participants’ natural touch behavior
we opted for not restricting the time taken for each touch gesture. Also,
there were no constraints on the number of instances of a touch gesture
that could be part of a single capture. A consequence of this decision is
that a single tap and three taps are both treated as a single touch gesture.
This raises the question whether a single tap has a different meaning than
three consecutive taps. Furthermore, as features were calculated from the
segmented data, segmentation has an influence on features that cover ges-
ture duration (e.g. gesture duration in frames).

The sensor data was labeled according to the instructions (i.e., if the
participant was instructed to perform a ‘gentle grab’, the corresponding
sensor data was labeled as such). During segmentation some touch ges-
ture captures were filtered out based on minimal change in gesture inten-
sity, successfully removing skipped touch gestures. However, this proce-
dure does not control for all possible mistakes, which makes it probable
that the dataset contains incorrect labels. Manual annotation of the video
recordings or outlier detection could help filter out mistakes such as cases
where a touch gesture was performed that was different from the one that
was instructed.

The inclusion of touch gesture variants seemed to have increased the
diversity of the ways in which the touch gestures were performed. De-
scriptive statistics confirmed that participants used pressure to distinguish
between the gesture variants, using less than normal pressure for the gen-
tle variants and more than normal pressure for the rough variants. The
definitions of the gentle variant and the rough variant given by the par-
ticipants also indicated that the amount of pressure is an important way
to distinguish between the two for example by the use of the keywords
‘soft’ and ‘hard’. Although speed is also used to differentiate between gen-
tle and rough as indicated by the use of the keywords ‘slow’ and ‘fast’,
respectively. The downside is that the reliance on pressure to distinguish
between both the gestures and the different variants of the same gestures
has probably increased the difficulty of the touch gesture recognition. No-
tably, in the definitions from Table 2 the use of words such as ‘forcible’,
‘gently’ and ‘firmly’ again point to the importance of force/ pressure and
also temporal components are mentioned (e.g. ‘quickly’, ‘repeatedly’). As
these characteristics seem to be inherent to some of the touch gestures,
one may argue that a roughly performed pat, which should generally be
‘gentle and quick’, would resemble more of a slap, which should gener-
ally be ‘quick and sharp’. The proposition that some gestures do not lend
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themselves as easily for variants is further supported by the self reports
of the participants.

2.6 conclusion

To study automatic touch recognition we collected CoST, a dataset con-
taining 7,805 gesture captures of 14 different touch gestures. All touch
gestures were performed in three variants: gentle, normal and rough on
a pressure sensor grid wrapped around a mannequin arm. We compared
the performance of different classifiers: a Bayesian classifier, a decision
tree, SVMs (with linear and RBF kernel) and a neural network to establish
a baseline for touch gesture recognition within CoST.

The touch data showed similarities between gestures and large differ-
ences in the way these gestures were performed which was increased by
the inclusion of the different gesture variants. From the different classifiers
that were compared, the best results were obtained using SVMs with the
RBF kernel while the decision tree yielded the worst performance. Clas-
sification of the 14 touch gestures independent of the gesture’s variant
yielded an average accuracy of up to 60%. The subject independent model
generalized well for some individuals but not for others. Moreover, gen-
tle gesture variants proved to be harder to classify than the normal and
rough variants which can be due to the less favorable signal-to-noise ratio
of these softer gestures. Additionally, misclassifications were found to be
most common between touch gestures with similar characteristics such as
grab and squeeze.
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T O U C H C H A L L E N G E ‘ 1 5 : R E C O G N I Z I N G S O C I A L
T O U C H G E S T U R E S

The organization of the challenge described in this chapter was a col-
laboration between Merel Jung and Mannes Poel from the University of
Twente and Laura Cang and Karon MacLean from the University of British
Columbia. Merel Jung and Laura Cang took the lead in the organization
of the challenge and in the writing of the publication1 of the challenge out-
comes on which this chapter is based. The content of this chapter is iden-
tical to that of the published paper with some minor textual adaptations
to embed the content into this dissertation. The future work described in
the original paper has been moved to Chapter 7 of the dissertation.

Research into the automatic recognition of social touch has not received
much attention yet. To spark interest into this relatively new field we orga-
nized a machine learning challenge on the recognition of social touch ges-
tures. For this challenge two touch datasets were publicized: the Corpus
of Social Touch (CoST; see Chapter 2) and the Human-Animal Affective
Robot Touch gesture set (HAART) [23]. In this chapter we will describe
the challenge protocol and summarize the results of the challenge which
was hosted in conjunction with the 2015 ACM International Conference
on Multimodal Interaction (ICMI).

3.1 introduction

Advances in the field of touch recognition could open up applications
for touch-based interaction in areas such as human-robot interaction [4,
112]. Unfortunately, the recognition of touch behavior has received far less
research attention than recognition of behaviors in the visual and auditory

1 Jung, M. M., Cang, X. L., Poel, M., and MacLean, K. E., Touch challenge ‘15: Recognizing
social touch gestures, in Proceedings of the International Conference on Multimodal Interac-
tion (ICMI), (Seattle, WA), 2015, pp. 387–390.

41
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Table 10: The attributes of the two datasets which were provided for the challenge.

Attribute CoST HAART

# of touch gestures 14 7

Sensor grid size 8×8 8×8
a

Sensor sample rate 135 Hz 54 Hz

Sensor values 0–1023 0–1023

Gesture duration variable 8sb

Touch surface mannequin arm dependent on condition

Conditions gentle and normal variations substrates and covers

# of subjects 31 10

Train/test split 21/10 subjects 7/3 subjects

# of gesture captures 5,203 829

atrimmed from collected 10×10 grid, btrimmed from collected 10s capture

modalities (e.g. see [126]). For this reason we aimed to spark interest in
this relatively new field by organizing a touch challenge.

In previous work, touch data has been collected from subjects perform-
ing different sets of touch gestures on different surfaces/ embodiments
(e.g. [27, 37, 102, 106], see also Table 1). Although the authors have pub-
lished their classification results, the data itself has not been shared with
the research community. In contrast, we opted to publish two distinct
touch datasets for this machine learning challenge to allow researchers
with expertise in other sensory modalities to try out their processing tech-
niques on our touch data. Appropriating methods developed in more ma-
ture fields such as speech recognition and video analysis could be benefi-
cial for moving touch recognition forward.

The remainder of the chapter is organized as follows. In Section 3.2
we will describe the two touch datasets provided. Next, the challenge
protocol will be highlighted in Section 3.3. In Section 3.4 we will provide
an overview of the results and discussions of the test set label submissions.
Lastly, we will conclude with high-level findings in Section 3.5.

3.2 touch datasets

For the challenge, two datasets were made available containing labeled
pressure sensor data of social touch gestures. Table 10 summarizes the
datasets’ attributes.
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3.2.1 CoST: Corpus of Social Touch

CoST [60, 62, 65, 113] (see also Chapter 2) contains 14 touch gestures: grab,
hit, massage, pat, pinch, poke, press, rub, scratch, slap, squeeze, stroke,
tap, and tickle. These gestures were registered on an 8×8 pressure sensor
grid which was wrapped around a mannequin arm. This corpus consists
of the data from 31 subjects performing the 14 touch gestures in 3 vari-
ations: gentle, normal, and rough. Subjects were restricted neither in the
amount of time taken for performing each gesture nor the number of ges-
ture repetitions performed in each capture. The data provided for this
challenge consisted of the gentle gesture variation (2,601 captures) and
the normal gesture variation (2,602 captures). This dataset was provided
in both CSV and MATLAB file formats and included segmented gesture
captures of varying length, sampled at 135 Hz, and containing pressure
values of the 64 channels ranging from 0 to 1023 (i.e., 10 bits). Labels con-
sisted of touch gesture type, gesture variation, and subject number.

3.2.2 HAART: Human-Animal Affective Robot Touch

HAART [23] contains 7 touch gestures: pat, constant contact without
movement (press), rub, scratch, stroke, tickle, and ‘no touch’. These ges-
tures were found to be the most often used of those in Yohanan et al’s
Touch Dictionary [124], gathered to communicate emotion in human-
animal interaction. For the HAART dataset (collected from 10 subjects),
each touch action was performed on a 10×10 pressure sensor [37] for 10

seconds. To assess feature robustness under realistic operating conditions
when installed on a robotic animal, each subject contributed gestures with
the sensor mounted on all permutations of 3 substrate conditions (firm
and flat; foam and flat; foam and curve) and 4 fabric cover conditions
(none; short minkee2; long minkee; synthetic fur). The resulting dataset
includes 829 gesture captures (12 conditions × 7 gestures × 10 subjects
minus 11 erroneous capture instances). Each capture is 10 seconds of a
continuously repeated gesture, sampled at 54 Hz and trimmed to the mid-
dle 8s (432 frames); there are generally 10–15 gesture instances per capture.
This dataset was provided as a CSV file and included the center 8×8 frame
(trimmed for consistency with CoST) with pressure values ranging from 0

to 1023. Labels consisted of touch gesture type, condition set, and subject
number.

2 Minkee (or minky) is a chenille-like fabric commonly used for baby blankets and stuffed
toys.
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Table 11: Results for the CoST dataset.

Paper Classifier Accuracy

Ta et al. [108] random foresta 61.3%

Ta et al. [108] random forestb 60.8%

Ta et al. [108] SVMb
60.5%

Ta et al. [108] SVMa
59.9%

Gaus et al. [41] random forest 58.7%

Gaus et al. [41] multiboost 58.2%

Hughes et al. [53] logistic regression 47.2%

Balli Altugl et al. [7] random forest 26.0%
atrained on filtered data, btrain on all data

3.3 challenge protocol

The aim of this challenge was to develop relevant features and apply clas-
sification methods for recognizing social touch gestures. Gesture classifi-
cation was independent of the condition (i.e., gesture variant, substrate
and cover) for example, ‘gentle stroke’ and ‘normal stroke’ were consid-
ered to be part of the same class. Participants had the choice of working
on one of the datasets or on both. For the train/test sets, subjects were
randomly split into 21 train, 10 test subjects for CoST and 7 train, 3 test
subjects for HAART. This split ensured that for each of the two datasets,
any one subject’s touch data belonged to either the training set or the test
set.

The training data for both the CoST and HAART datasets was made
available to the registrants of the challenge. We provided the test datasets
without class labels a month after initial publication. Participants were
given 2 weeks to process the test data. Any number of test label submis-
sions could be made up to a deadline (see Tables 11 and 12); once this
date had passed, we released the true test labels as well as a summary of
their results to the challenge participants.

3.4 challenge results and discussion

Results of the test label submissions were reported in the form of a confu-
sion matrix and accuracy was used to measure overall performance (see
Tables 11 and 12).
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Table 12: Results for the HAART dataset.

Paper Classifier Accuracy

Ta et al. [108] random forest 70.9%

Ta et al. [108] SVM 68.5%

Hughes et al. [53] logistic regression 67.7%

Gaus et al. [41] random forest 66.5%

Gaus et al. [41] multiboost 64.5%

Balli Altugl et al. [7] random forest 61.0%

3.4.1 Data pre-processing

There is not much standardization in the extraction of feature sets for
touch data processing. This section discusses the data pre-processing steps
that were taken by the challenge participants consisting of data filtering,
feature extraction, and feature selection.

The data that was provided for the challenge was previously filtered for
erroneous entries and segmented into gesture captures. However, gesture
captures of the CoST dataset are of variable duration and can contain a sin-
gle gesture instance or multiple repetitions. This increased the difficulty
of automatic segmentation based on pressure differences over time. Ta et
al. explored additional techniques for automatic segmentation to further
reduce the number of excess frames [108]. However, these methods for au-
tomatic segmentation did not improve classification. The gesture captures
from the training set were then manually segmented based on the shape
and duration which offered little to negative improvement (see Table 11)
suggesting that classifiers are fairly robust to imprecise segmentation.

For the challenge, many interesting features were extracted but we de-
scribe only a couple of notable approaches here. In previous literature
(e.g. [2, 37, 62, 106]) as well as for this challenge [7, 41, 53, 108] statistics
were calculated from the pressure sensor data such as the mean pressure
over time. Also, feature extraction methods were borrowed from other
domains: speech applications, human action recognition, and image anal-
ysis. Ta et al., for example, applied the Sobel operator, an image processing
technique used for edge detection [108]. By sharpening the contrast, a sec-
ond set of data frames was constructed, garnering new values using the
same feature extraction procedures. Most features were extracted by fea-
ture engineering however, Hughes et al. also included deep autoencoders
for automatic feature extraction using dimension reduction, these features
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were then used to train Hidden Markov Models (HMMs) [53]. The CoST
dataset was used to determine HMM likelihoods for class membership;
these values were included in the feature sets for both CoST and HAART
data to examine the viability of applying learned features from one dataset
to the other.

Feature selection was performed by evaluating the performance of dif-
ferent features or feature sets as a whole on the training set. Relevant
features selected using random forest [108] or sequential floating forward
search [7] were found to improve the accuracy on the test set. Others com-
pared the accuracies of different feature sets as a whole. Using this ap-
proach, the combination of all feature sets yielded the best results [41, 53].
Identifying a small number of highly discriminating features can benefit
applications in which computational power is costly, such as onboard real-
time touch recognition. Balli Altuglu and Altun [7] showed that a small
feature set (number of features < 10) could perform well on the HAART
dataset.

3.4.2 Social Touch Classification

Random forest was found to be the most popular classification method [7,
41, 108] and has been used in previous work on touch gesture recognition
[2, 37]. Other classification methods that were explored were Support Vec-
tor Machines (SVMs) [108], also used by [27, 62], multiboost [41] (a differ-
ent boosting algorithm was used by [102]), and simple logistic regression
[53].

Accuracies reported for the challenge ranged from 26.0%–61.3% for the
CoST dataset and from 61.0%–70.9% for the HAART dataset (see Tables 11

and 12). Previously reported accuracies for the whole CoST dataset, inde-
pendent and without knowledge of the gesture variant, yielded accuracies
up to 60% using leave-one-subject-out cross-validation [62] (see also Chap-
ter 2). Additionally, accuracies of up to 64.6% were reported for only the
rough gesture variants when using 10-fold cross-validation [113]. For the
HAART dataset, accuracies up to 90.3% were reported using 20-fold cross-
validation when subject and condition labels were included as features
[23]. However, direct comparisons between the accuracies reported for the
challenge and those reported by the authors of the datasets are not mean-
ingful because of the differences in data division, use of different subsets
of the CoST dataset and use of condition and/or subject information as
labels.

As accuracy rates alone provide little information we looked at the con-
fusion matrices for notable patterns. Frequent confusions between touch
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gestures for the CoST dataset reported by the challenge participants were:
‘grab-squeeze’, ‘hit-pat-slap-tap’, ‘rub-stroke’, and ‘scratch-tickle’ [7, 41, 53,
108]. The touch gestures were difficult to distinguish across approaches
for data pre-processing and classification algorithms. Previous work on
the CoST dataset, although using different parts and splits of the dataset,
found similar confusions [60, 65, 62, 113] (see also Chapter 2). For the
HAART data, rub and tickle were the hardest to correctly classify across
challenge participant approaches [7, 41, 53, 108]. Often misclassified was
rub as scratch or stroke and tickle as scratch, while the reverse (e.g. mis-
classification of scratch as rub) was less common. Cang et al. also found
that rub and tickle were hardest to classify correctly when using the data
from the untrimmed 10× 10 sensor grid [23]. Compared to the challenge
results, their confusion matrices showed more symmetry, indicating there
were frequent confusions between certain gesture pairs. Rub was also one
of the most difficult to correctly classify for the CoST dataset [7, 41, 53, 60,
65, 62, 108, 113] (see also Chapter 2).

Based on observations from the recording of the HAART dataset, simi-
larities were observed in how subjects performed the touch gestures which
may help to explain certain confusions. Scratch and tickle both followed
a similar motion trajectory and tended to have fluttery finger movements.
Rub and stroke again have analogous motions where the flat of the hand
exerts pressure along a roughly linear path. Confusions between touch
gestures on the CoST dataset could also be explained by gestures show-
ing similarities on characteristics such as duration, contact area, repetition
probability, and frequency of direction changes [65, 62] (see also Chap-
ter 2).

3.5 conclusion

We extended this machine learning challenge to the research community
working on multimodal interaction with the goal of sparking interest in
the touch modality and to promote exploration of the use of data process-
ing techniques from other more mature modalities for touch recognition.
Two datasets were made available containing labeled pressure sensor data
of social touch gestures that were performed by touching a touch-sensitive
surface with the hand.

The outcomes of the challenge are encouraging, participants’ various ap-
proaches open up further avenues for exploring data processing of social
touch. The findings of the challenge have provided insights into how tech-
niques for feature extraction that are prominent for other modalities may
be applied to touch data. Interestingly enough, many of these techniques
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were reasonably transferable to touch gesture data without much modifi-
cation. Furthermore, despite the use of different data pre-processing tech-
niques and classification algorithms, we observed consistent classification
confusions between specific gesture pairs. It is yet unclear whether these
classification difficulties can be resolved by finer-grained feature extrac-
tion or if the problem is actually our discretization of touch gestures. For
instance, scratch and tickle could be regarded as the same gesture class.
To conclude, this challenge has allowed for the field of social touch recog-
nition to ‘pick up a few tips and tricks’ from data processing techniques
used for more mature modalities, presenting an opportunity for customiz-
ing these methods to meet the particular needs of touch sensor data.



Part III

P U T T I N G T O U C H I N S O C I A L C O N T E X T:
S O C I A L T O U C H I N H U M A N - R O B O T

I N T E R A C T I O N

In this section we will present three studies on the use of so-
cial touch in interaction with robot pets. The first study will
be about the context specific interpretation of social touch in
interaction with a robot pet companion. Next, a study will be
presented on the ways in which robot pets can express them-
selves in social interactions using affective breathing behaviors.
Lastly, a study on the potential benefits of a robot pet com-
panion with more advanced touch interaction capabilities for
health care applications will be presented.





4
U N D E R S TA N D I N G S O C I A L T O U C H W I T H I N C O N T E X T
F O R N AT U R A L I S T I C H U M A N - R O B O T I N T E R A C T I O N

The following chapter1 covers research which was carried out by Merel
Jung under the supervision of Mannes Poel and Dirk Heylen and with
the help of Dennis Reidsma. The content of this chapter is identical to that
of the published paper with some minor textual adaptations to embed the
content into this dissertation. The future work described in the paper has
been moved to Chapter 7 of the dissertation.

In Part II we focused on the sensing and recognition of different social
touch gestures. However, to respond in an appropriate manner, a social
robot should also be able to interpret these touch gestures within con-
text. In the previous chapters we studied touch gestures that were col-
lected in a controlled lab setting in which participants were given specific
instructions on which gestures they should perform. This controlled ap-
proach lacks social context which could help to recognize touch gestures
and their inferred meaning. In contrast, in this chapter we will present a
study towards the interpretation of social touch in a contextualized lab
setting in which participants acted as if they were coming home in differ-
ent emotional states. Human interaction with a robot pet companion will
be observed by looking at touch behavior as well as other social behaviors
such as speech. Moreover, to further close the interaction loop we will also
investigate appropriate robot responses.

4.1 introduction

To behave socially intelligently a robot should not only be able to sense
and recognize touch gestures but should also be able to interpret those

1 Based on Jung, M. M., Poel, M., Reidsma, D., and Heylen, D. K. J., A first step towards the
automatic understanding of social touch for naturalistic human-robot interaction, Frontiers
in ICT, vol. 4, no. 3, 2017.

51



52 understanding social touch within context

touch gestures in order to respond in a socially appropriate manner as
illustrate in Figure 1. Perhaps robot seal Paro is the most famous exam-
ple of a social robot that responds to touch [117]. Paro is equipped with
touch sensors with which it distinguishes between soft touches (which are
always interpreted to be positive) and rough touches (which are always
interpreted to be negative) [117]. This interpretation of touch is oversim-
plified as the complexity of the human tactile system allows for touch
behaviors to vary not only depending on the intensity but also based on
movement, velocity, abruptness, temperature, location and duration [48].
Moreover, the meaning of touch can often not be inferred from the type
of touch alone but is also dependent on other factors such as concurrent
verbal and nonverbal behavior, the type of interpersonal relationship [51,
107] and the situation in which the touch takes place [59]. Although pre-
vious research [48, 49, 51] indicated that there is no one-to-one mapping
of touch gestures to a specific meaning of touch, touch can have a clear
meaning in a specific context [59].

The focus of this part of the dissertation is on (touch) interaction with
a robot pet companion. According to Veevers, a pet companion can fulfill
different roles in the life of humans. A pet can facilitate interpersonal
interaction or can even serve as a surrogate for interpersonal interaction
and expensive and/or exotic pets can be owned as a status symbol [114].
Furthermore, interaction with a pet is associated with health benefits and
more recent studies indicate that these effects also extend to interaction
with robot pets [8, 32] (see also Chapter 6). Although touch is a natural
way to interact with real pets, currently commercially available robot pets
such as Paro [117], Hasbro’s companion pets2 and JustoCat3 are equipped
with only a few touch sensors and do not interpret different types of touch
within context.

We argue that the recognition and interpretation of touch consists of
three levels: 1) low-level touch parameters such as intensity, duration and
contact area; 2) mid-level touch gestures such as pat, stroke and tickle; 3)
high-level social messages such as affection, greeting and play. To auto-
matically understand social touch, research focuses on investigating the
connection between these levels such as which touch gestures are used
to communicate different emotions (e.g. [124]). Current studies in the do-
main of social touch for human-robot interaction have been mainly fo-
cused on highly controlled settings in which users were requested to per-
form different touch behaviors, one at a time, according to predefined
labels (e.g. [23, 27, 61, 102, 103, 124], see also Chapter 2). In this study we

2 http://joyforall.hasbro.com
3 http://justocat.com
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will focus on the latter two levels (i.e., touch gestures and social messages)
as we are interested in the meaning of touch behaviors. To gain more in-
sight into the factors that are relevant to interpret touch behaviors within
social context we opted to elicit touch behaviors by letting participants act
out four affective scenarios in which they interacted with a robot pet com-
panion. Moreover, in contrast to most previous studies, participants could
freely act out the given scenarios with the robot pet within the confined
space of a living room setting.

In this chapter we present contributions in two areas. Firstly, we explore
the use of touch behaviors as well as the expressed social messages and
expected robot pet responses in different affective scenarios. Secondly, we
reflect upon the challenges of the segmentation and labeling of touch be-
haviors in a less controlled setting in which no specific instructions are
given on the kinds of (touch) behaviors that should be displayed. We ad-
dress the first contribution with the following three research questions.
RQ1) What kinds of touch gestures are used to communicate with a robot
pet in the different affective scenarios? RQ2) Which social messages are
communicated and what is the expected response in the different affective
scenarios? RQ3) Which other social signals can aid the interpretation of
touch behaviors? Furthermore, we reflect upon our effort to segment and
label touch behaviors in a less controlled setting with the forth research
question. RQ4) How well do annotation schemes work in a contextualized
lab situation?

The remainder of the chapter is structured as follows. Related work
on the meaning of social touch in both interpersonal and human-robot
interaction will be discussed in Section 4.2 followed by the description of
the material and methods for the study presented in Section 4.3. Then,
the results will be provided and discussed in Section 4.4 and Section 4.5,
respectively. Conclusions will be drawn in Section 4.6.

4.2 related work

Previous studies have looked into the meaning of touch in both inter-
personal interaction and human-robot interaction. In the latter case re-
searchers have looked at the automatic recognition of emotions and other
social messages based on human touch.

In a diary study on the use of interpersonal touch, different meanings
of touch were categorized based on the participants’ verbal translations of
the touch interactions [59]. Seven main categories were distinguished: pos-
itive affect touches (e.g. support), playful touches (e.g. playful affection),
control touches (e.g. attention-getting), ritualistic touches (e.g. greeting),
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hybrid touches (e.g. greeting/ affection), task-related touches (instrumen-
tal intrinsic) and accidental touches. Interestingly, there was a lack of re-
ports on negative interpersonal touch interaction. Within these categories,
common contextual factors were identified such as the type of touch, any
accompanying verbal statement and the situation in which the touch took
place. It was found that depending on the context, a specific form of touch
can have multiple meanings and that different forms of touch can have a
similar meaning. Furthermore, touch was found to be often preceded, ac-
companied or followed by a verbal statement.

In a study on human-robot interaction, participants were asked to indi-
cate which touch gestures they were likely to use to communicate emo-
tional states to a cat-sized robot animal [124]. Gestures that were judged
to be likely to be used were performed sequentially on the robot. Partici-
pants expected that the robot’s emotional response would be either similar
or sympathetic to the emotional state that was communicated. The nature
of the touch behavior was found to be friendly as no aggressive gestures
(e.g. slap or hit) were used even when negative emotions were commu-
nicated. Five categories of intent were distinguished based on touch ges-
ture characteristics which could be mapped to emotional states: affection-
ate, comforting, playful, protective and restful. Also, video segments of
the touch gestures were annotated to characterize the gestures based on
the point of contact, intensity and duration revealing differences between
touch gestures and their use in different emotional states. In follow-up
research the touch sensor data recorded in this study (i.e., [124]) was used
to classify 26 touch gestures and 9 emotional states using random forests
[2]. Between-subjects emotion recognition of 9 emotional states yielded
an accuracy of 36% while within-subjects the accuracy was 48%. Between-
subjects touch gesture recognition of 26 gestures yielded an accuracy of
33%. Furthermore, the authors’ results indicated that accurate touch ges-
ture recognition could improve affect recognition.

In other work, Kim et al. instructed participants to use four different
touch gestures to give positive or negative feedback to a humanoid robot
while playing a game [71]. A model was trained to infer whether a touch
gesture was meant as a positive or a negative reward for the robot. It
was found that participants used ‘pat’ and ‘rub’ to give positive feedback
and ‘hit’ to give negative feedback while ‘push’ could be used for both
although the touch gesture was mostly used for negative feedback. Knight
et al. argued for the importance of body location as contextual factor to
infer the meaning of touch [73]. The authors made the distinction between
what they called symbolic gestures which have social significance based on
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the involved body location(s) (e.g. footrub and hug) and body location
independent touch subgestures (e.g. pat and poke).

Although previous studies indicate that there is a link between touch
gestures and the higher level social meaning of touch, Silvera-Tawil et
al. argued that the meaning of touch (i.e., level 3 as described in Sec-
tion 4.1) could also be recognized directly based on characteristics from
touch sensor data (i.e., level 1) and other factors such as the context and
the touch location [103]. In their effort to automatically recognize emo-
tions and social messages directly from sensor data without first recogniz-
ing the used touch gestures, participants were asked to perform six basic
emotions: anger, disgust, fear, happiness, sadness, and surprise on both
a mannequin arm with an artificial skin and a human arm. In addition,
six social messages were communicated: acceptance, affection, animosity,
attention-getting, greeting and rejection. Recognition rates for the emo-
tions were 47% for the algorithm and 52% for human classification. The
recognition rates for the social messages were found to be slightly higher,
yielding accuracies of 50% and 62% for the algorithm and human classifi-
cation, respectively. These results show that humans currently outperform
the automatic recognition of these forms of social touch.

Some attempts have been made to study touch interaction in a less con-
trolled setting, for example Noda et al. elicited touch during the interac-
tion with a humanoid robot by designing a scenario in which participants
used different touch gestures to communicate a particular social message
such as greeting the robot by shaking hands, playing together by tickling
the robot and hugging the robot to say goodbye at the end of the inter-
action [87]. Results showed an accuracy of over 60% for the recognition
of the different touch behaviors that were performed within the scenario.
In another study on the use of touch in multimodal human-robot inter-
action, participants were given various reasons to interact with a small
humanoid robot such as giving reassurance, getting attention and giving
approval [28]. The robot was capable of recognizing touch, speech and
visual cues and participants were free to use different modalities. Also,
participants rated videos in which a confederate interacted with the robot
using different modalities. Results showed that touch was often used to
communicate with the robot and that touch was especially important for
expressing affection. Furthermore, playing with the robot and expressing
loneliness were deemed more suitable than displaying negative emotions.

To summarize, previous studies illustrate that touch can be used to ex-
press and communicate different kinds of affective and social messages
[28, 59, 103, 124]. Moreover, touch gestures that were used to communicate
were often positive in nature and their meaning was dependent on the con-
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text such as one’s emotional state [28, 59, 124]. These findings confirm that
currently available robot pet companions such as Paro, which only distin-
guishes between positive and negative touch, are not sufficiently capable
of understanding and responding to people in a socially appropriate way.
Furthermore, there are indications that other modalities might be helpful
in interpreting the social messages as touch behavior generally does not
occur in isolation [28, 59]. For the reasons outlined above we opted to
study humans interacting with a robot pet companion, in different emo-
tional states, and, in a contextualized lab situation.

4.3 material and methods

In this study we elicited interactions between a human and a robot pet
companion in a lab-built living room setting. We were specifically in-
terested in the use of touch behaviors as well as the expressed social
messages and expected robot pet responses in different affective scenar-
ios. Participants of the study were instructed to act as if they had come
home in different emotional states (i.e., stressed, depressed, relaxed and
excited). These four emotional states were chosen as they span opposite
ends of the valence and arousal scale (see Figure 8): stressed (negative
valence, high arousal), depressed (negative valence, low arousal), relaxed
(positive valence, low arousal) and excited (positive valence, high arousal)
[93]. Furthermore, similar emotional states have been used in a more con-
trolled research setting before and the results from this study indicate that
emotional state influences touch behavior as well as the expected robot
response [124]. To gain more insight into the factors that are relevant to
interpret touch within a social context we annotated touch behaviors from
video footage of the interactions. Also, a questionnaire was administered
and interviews were conducted to interpret the high-level meaning be-
hind the interactions and to gain insight into the responses that would be
expected from the robot pet.

4.3.1 Participants

In total 31 participants (20 male, 11 female) volunteered to take part in the
study. The age of the participants ranged from 22 to 64 years (M = 34.3; SD
= 12.8) and 28 were right-handed, 2 left-handed and 1 ambidextrous. All
studied or worked at the University of Twente in the Netherlands. Most
(21) had the Dutch nationality, others were Belgian, Ecuadorean, English,
German (2x), Greek, Indian, Iranian, Italian and South Korean. This study
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Figure 8: Mapping of emotional stated based on associated valence and arousal
levels, model adapted from [93].

was approved by the ethics committee of the Faculty of Electrical Engi-
neering, Mathematics and Computer Science of the University of Twente.

4.3.2 Apparatus/ Materials

4.3.2.1 Living room setting

The living room setting consisted of a space of approximately 23 m2 con-
taining a small couch, a coffee table and two plants (see Figure 9, top). Two
camcorders were positioned facing the couch at an approximately 45 de-
gree angle to record the interactions (50 fps, 1080p). To allow participants
to interact freely with the robot pet (i.e., no wires) and have a controlled
interaction (i.e., no unpredictable robot behavior) a stuffed toy dog was
used as a proxy for a robot pet (see Figure 9). The robot pet (35 cm; in a
laying position) was positioned on the couch at the far end from the door
facing the table.

4.3.2.2 Questionnaire

The questionnaire was divided into two parts. Part one was completed
before the interview was conducted and part two after the interview. Part
one consisted of demographics: gender, age, nationality, occupation and
handedness followed by six questions about the reenactment of the sce-
narios rated on a 4-point Likert scale ranging from 1 (strongly disagree)
to 4 (strongly agree). Four questions were about the participants’ ability
to imagine themselves in the scenarios: ‘I was able to imagine myself com-
ing home feeling stressed/ depressed/ relaxed/ excited’. The other two
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Figure 9: The living room setting with the robot pet on the couch (top) and the pet
up-close (bottom).
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questions were about the robot pet: ‘I was able to imagine that the pet was
a functional robot’ and ‘I based my interaction with the robot pet on how
I interact with a real animal’.

The second part consisted of a questionnaire about the expectations of
living with a robot pet which was based on the 11-item Comfort from
Companion Animals Scale (CCAS) [125]. Participants were asked to imag-
ine that they would get a robot pet like the one in the study as a gift.
This robot pet can react to touch and verbal commands. Participants were
asked to answer the questions about the role they expected the robot pet
would play in their life. The questions from the CCAS were adjusted to fit
the purpose of the study, for example the item ‘my pet provides me with
companionship’ was changed to ‘I expect my robot pet to provide me with
companionship’. Items were rated on a 4-point Likert scale ranging from
1 (strongly disagree) to 4 (strongly agree), as all items were phrased pos-
itively a higher score indicates greater expected comfort from the robot
pet.

4.3.2.3 Interview

A semi-structured interview was conducted between the first and the sec-
ond part of the questionnaire. The video footage of their reenactment of
the scenarios was shown to the participants and they were asked to answer
the following questions after watching each of the four scenario fragments:
1) ‘what message did you want to communicate to the robot?’, 2) ‘what
response would you expect from the robot?’ and 3) ‘how could the robot
express this?’. The participant, the interviewer and the computer screen
were recorded during the interview using a camcorder.

4.3.3 Procedure

Upon entering the room in which the study took place, the participant was
welcomed and was asked to read the instructions and sign an informed
consent form. Then, participants were taken into the hallway where they
received the instructions for the example scenario in which they were
asked to act out coming home in a neutral mood. If the instructions were
clear to the participants, they were asked to interact with a robot pet by
acting out four different scenarios, one by one, in which they would come
home in a particular emotional state, feeling either: stressed, depressed,
relaxed or excited. The study had a within-subject design, instructions for
each of the scenarios were given to each of the participants in random
order. In each scenario the participant was instructed to enter the ‘living
room’, sit down on the couch and act out the scenario as he/ she saw
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fit. Participants were instructed to focus on the initial interaction as the
robot pet would not respond (≈ 30 seconds were given as a guideline),
however the duration of the interaction was up to the participant who
was instructed to return to the hallway when he or she had finished an
interaction. When the participant had returned to the hallway at the end
of an interaction the next scenario was provided.

After the last scenario the participant was asked to fill out a question-
naire asking for demographic information and about acting out the sce-
narios. Then the video footage of their reenactment of the scenarios was
shown to the participant and an interview was conducted on these inter-
actions. After the interview the participants completed the second part of
the questionnaire about their expectations if they were to own a functional
robot pet. The entire procedure took approximately 20 minutes for each
participant. At the end of the study participants were offered a candy bar
to thank them for participating.

4.3.4 Data analysis

4.3.4.1 Questionnaire

The questionnaire data was analyzed using IBM SPSS Statistics version
22. The median values and the 25th and 75th percentiles (i.e., Q1 and Q3,
respectively) were calculated for the questions about the reenactment of
the scenarios. The ratings on the items of the expected comfort from the
robot pet scale were summed before calculating these descriptive statistics.
Additionally, a Friedman test was conducted to check whether there was
a statistical difference between the perceived ability of the participants to
imagine themselves in the different scenarios. The significance threshold
was set at .05 and the exact p-value is reported for a two-tailed test.

4.3.4.2 Annotation of scenario videos

The video footage from the two cameras were synced and put together in
a split screen video before annotation. Videos were coded by two annota-
tors4, which included one of the members of the researcher team hence-
forth ‘the first coder’, using the ELAN5 annotation software.

For the segmentation of touch behaviors we followed a method that is
commonly used to segment signs and co-speech gestures into movement
units which in the simplest form consist of three phases: a preparation

4 We would like to acknowledge Josca Snippe for participating in the annotation process.
5 Max Planck Institute for Psycholinguistics, The Language Archive, Nijmegen, The Nether-

lands; http://tla.mpi.nl/tools/tla-tools/elan
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Figure 10: Screenshot of the annotation process showing the tier in which the touch gestures and the body location on the robot pet
are annotated.
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phase, an expressive phase, and a retraction phase [69, 72]. The onset
of a movement unit is defined at the first indication of the initiation of
a movement which is usually preceded by the departure of the hand’s
resting position. The end of a movement unit is defined as the moment
when the hand makes first contact with a resting surface such as the lap
or an arm rest. Similarly, the touch actions were segmented by the first
coder from the moment that the participant reached out to the robot pet
to make physical contact until the contact with the pet was ended and the
hands of the participants returned to the resting position. Per touch action
segment the following information was coded by the two annotators in a
single annotation tier: the performed sequence of touch gestures and the
robot pet’s body part(s) on which each touch gesture was performed (see
Figure 10). The touch gesture categories consisted of the 30 touch gestures
plus their definitions from the touch dictionary of Yohanan and MacLean
[124] which is a list of plausible touch gestures for interaction with a robot
pet. Furthermore, based on observations we added an additional category
for puppeteering which was defined as ‘participant puppeteers the robot
pet to pretend that it is moving on its own’ and to reduce forced-choice
we added other which was defined as ‘the touch gesture performed cannot
be described by any of the previous categories’. The robot pet’s body parts
were divided into six categories: head (i.e., back, top and sides of the head
and ears), face (i.e., forehead, eyes, nose, mouth, cheeks and chin), body
(i.e., neck, back and sides), belly, legs and tail.

Coding the touch behaviors that were performed during each touch seg-
ment proved to be difficult. Both annotators were often unsure when to
define the start of a new touch gesture as gestures were often followed-up
in quick succession. Furthermore, hybrid forms of several touch gestures
were often observed resulting in difficulties to categorize the touch behav-
ior into one of the categories. In Table 13 some of the touch gestures are
listed that were frequently observed but that were also difficult to distin-
guish based on their dictionary definitions. These touch gestures are all
of relatively long duration compared to quick gestures such as pat and
slap and all include movement across the contact area. The distinguish-
ing features are based on the gesture’s intensity, human contact point (e.g.
whole hand vs. fingernails) and the movement pattern (e.g. back and forth
or seemingly random). An example of commonly encountered confusion
was in cases where the hand was moved repeatedly back and forth on the
fur of the robot pet which indicated the use of a rub gesture while the use
of gentle pressure seemed to indicate a stroke-like gesture. Furthermore,
the use of video footage to code touch gestures made it difficult to de-
termine the exact part of the hand that was used to perform the gesture
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which is the only differentiating feature to distinguish between a rub and
a scratch gesture based on these definitions.

Table 13: Example touch gesture categories with definitions, adapted from
Yohanan and MacLean [124].

Gesture label Gesture definition

Massage Rub or knead the robot pet with your hands.

Rub Move your hand repeatedly back and forth on the fur of the
robot pet with firm pressure.

Scratch Rub the robot pet with your fingernails.

Stroke Move your hand with gentle pressure over the robot pet’s fur,
often repeatedly.

Tickle Touch the robot pet with light finger movements.

Even after several iterations of revisiting the codebook in order to clar-
ify what the distinguishing features of several touch gestures are it was
still not possible to reach an acceptable level of agreement. Difficulties
were caused by a mixture of touch events that were hard to observe on
video and differences in interpretation by the annotators, which included
both the segmentation of individual touch gestures (i.e., within the larger
predefined segments) and the assignment of labels, despite the commonly
developed annotation scheme. Furthermore, as one touch segment could
consist of a sequence of touch gestures it was difficult to calculate the
inter-rater reliability (i.e., Cohen’s kappa) as the number of touch gestures
could differ per coder. The location of the touch gestures on the robot
pet’s body was related to the coding of the touch gestures themselves and
therefore it was also not possible to reach an acceptable agreement on this
part.

Due to the difficulties described above we decided instead to coarsely
describe the interactions in the results section based on the modalities
that the participants used to communicate to the robot pet. Also, a Fried-
man test was conducted to check whether there was a statistical difference
between the duration of the interactions in the different scenarios. The sig-
nificance threshold was set at .05 and the exact p-value is reported for a
two-tailed test. The implications of the findings from the annotation pro-
cess will be explicated in the discussion section.

4.3.4.3 Interview

The interview answers were grouped per scenario based on common
themes. The data was split into two parts. 1) Information on the social



64 understanding social touch within context

messages (and possible behaviors to express those) that were communi-
cated by the participant to the robot pet. 2) Information on the expected
messages and behaviors that were expected to be communicated by the
robot pet. Themes were labeled and the number of participants that men-
tioned the specific topic was counted for each scenario. Furthermore, the
communicated social messages for each scenario were mapped to the ex-
pected responses from the robot pet to look for frequently occurring pat-
terns.

4.4 results

4.4.1 Questionnaire

Participants’ rating of their ability to imagine themselves in the four
different scenarios on a scale ranging from 1 (strongly disagree) to 4

(strongly agree)) were the following: stressed (Mdn(Q1,Q3) = 3(3, 3)),
depressed (Mdn(Q1,Q3) = 3(2, 3)), relaxed (Mdn(Q1,Q3) = 3(3, 3)), ex-
cited (Mdn(Q1,Q3) = 3(2, 4)). There was no statistically significant differ-
ence between the ratings of the scenarios (χ2(3) = 3.297, p = .352). Me-
dian (Q1,Q3) perceived ability to imagine the pet as a functional robot
was 2(2, 2) and the statement ‘I based my interaction with the robot
pet on how I interact with a real animal’ was rated at 3(2, 4). The total
scores for the expected comfort from the robot pet ranged from 18 to 37
(Mdn(Q1,Q3) = 30(26, 35)), possible total scores ranged from 11 to 44
where a higher score indicated greater expected comfort.

Table 14: Number of participants that engaged in different levels of interaction
with the robot pet per scenario.

Emotional state

Interaction type Stressed Depressed Relaxed Excited

No interaction 3 3 0 0

Speech only 2 0 0 0

Touch only 8 12 13 7

Touch + speech 18 16 18 24

Sum 31 31 31 31
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4.4.2 Observations from the scenario videos

Between the different scenarios there were some differences in the level of
interaction with the robot pet (see Table 14). Participants often used both
touch and speech to communicate with the robot pet. Almost all partic-
ipants used at least the touch modality to communicate, few exceptions
occurred in the negative valence scenarios (i.e., stressed and depressed).
Examples of touch behaviors that were observed were participants sitting
next to the robot pet on the couch while touching it using stroking-like
gestures, hugging the pet and having the robot pet sit on their laps while
resting a hand on top of it. Speech was most prevalent in the excited sce-
nario while it was least prevalent in the depressed scenario. Observed
behaviors included participants using speech to greet the robot pet when
entering, to talk about their day, to express their emotional state and to
show interest in the pet. Some instances of pet-directed speech were ob-
served as well. Another notable observation was that participants oriented
the robot pet to face them indicating that they wanted to make eye con-
tact. Furthermore, some participants incorporated the use of their mobile
phone in the scenarios for example to indicate that they would be preoc-
cupied with their own activities (e.g. sending text messages to friends), to
take a picture of the robot pet or to watch online videos together. Others
engaged in fake activities with imaginary objects such as playing catch or
watching TV together.

The duration of an interaction was measured as the time in seconds be-
tween the start of the interaction (i.e., opening the door to enter the living
room) and the end (i.e., closing the door after leaving the room). Overall,
the duration of the interactions ranged between 17 and 112 seconds. There
was a statistically significant difference in the duration of interaction be-
tween the four scenarios (χ2(3) = 16.347, p = .001). A post hoc analysis
with Wilcoxon signed-rank tests was conducted with a Bonferroni cor-
rection applied, resulting in a significance level set at p < .008. The me-
dian (Q1,Q3) duration in seconds for each of the scenarios was: stressed
41(29, 55), depressed 42(32, 55), relaxed 42(32, 53) and excited 35(28, 45).
The duration of interaction in the excited was significantly shorter com-
pared to the other scenarios: stressed (Z = −2.968, p = .002), depressed
(Z = −3.875, p < .001) and relaxed (Z = 3.316, p = .001). The other scenar-
ios did not differ significantly (all p’s > .008).
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4.4.3 Interview

In general, most participants watched the whole scenario before answer-
ing the questions while others commented on their behavior right away.
Also, some participants mentioned at the beginning that they felt a bit
awkward watching themselves on video. The social messages that were
communicated by the participant to the robot pet and messages that were
expected to be communicated by the robot pet are listed for each scenario
in Table 15. Table 16 shows the mapping between the two most frequently
communicated social messages for each scenario and the most common
expected responses from the robot pet to these messages. We will discuss
the interview results further based on these mappings.

4.4.3.1 Stressed

In the stressed scenario most participants wanted to communicate that
they were stressed by indicating to the robot pet that they had lots of
things to do or that they were preoccupied with something (n = 17).
Notably, some of these participants involved the robot pet as a way to
regulate their emotions by touching the pet as a means of distraction. In
response some of these participants wanted company from the robot pet
by staying close and through physical interaction (n = 6). Importantly, the
pet’s behavior should be calm and the robot should not be too demand-
ing. Other participants wanted support from the robot pet by calming
them down and providing comfort (n = 6).

In contrast, some participants did not want to interact with the robot
pet at all as they preferred to be alone in this situation or did not wanted
to be distracted by the pet (n = 6). In response most participants wanted
that the robot pet showed its understanding of the situation by keeping
its distance (n = 3). Others mentioned that the robot pet should have its
own personality and should behave accordingly, which might result in the
robot pet asking for attention even if this behavior is undesirable in this
situation or that the pet would mind its own business (n = 2).

4.4.3.2 Depressed

In the depressed scenario participants often communicated to the robot
pet that they were looking for comfort in order to feel less depressed
(n = 11). In response these participants often wanted comfort from the
robot pet (n = 6). They wanted the pet to do this by sitting on their lap
or right next to them and making sounds. Also, participants specified
that the robot pet should not approach them too enthusiastically. Others
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Table 15: Social messages that were communicated to the robot pet and its expected responses for each scenario. The number of
participants is in parentheses.

Emotional state

Stressed Depressed Relaxed Excited

Social messages that were communicated to the robot pet

Express emotional state (17) Seek emotional support (11) Enjoy company (14) Express emotional state (15)

Do not want to interact (6) Express emotional state (8) Express emotional state (8) Actively seek interaction (11)

Acknowledge (3) Do not want to interact (6) Acknowledge (7) Enjoy company (4)

Seek emotional support (3) Want to interact (3) No expectations (2) Do not want to interact (1)

Actively seek interaction (2) Acknowledge (1)

Enjoy company (1)

No expectations (1)

Social messages that the robot pet is expected to communicate

Keep company (8) Keep company (12) Keep company (12) Pick up the mood (24)

Provide emotional support (7) Provide emotional support (11) Pick up the mood (7) Engage in interaction (6)

Focus on own needs (6) Engage in interaction (4) Engage in interaction (5) Show appreciation (1)

Understand the situation (5) Focus on own needs (2) Focus on own needs (5)

Engage in interaction (3) Ask for attention (1) No interaction (1)

Do not understand (2) Show appreciation (1) Do not understand (1)
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indicated that the robot pet should keep them company (n = 3) by staying
close and showing its understanding of the situation.

Other participants just wanted to express how they felt (n = 8), for
example by telling the pet why they were feeling depressed. In response
most of these participants also expected that the robot pet would either
provide emotional support (n = 4) or would keep them company (n = 3).

Table 16: Breakdown of the most frequently communicated messages to the robot
pet and the expected responses for each scenario. The number of partici-
pants is in parentheses.

Emotional state Communicated message Expected robot pet response

Stressed Express emotional state (17) → Keep company (6)

Provide emotional support (6)

Do not want to interact (6) → Understand the situation (3)

Focus on own needs (2)

Depressed Seek emotional support (11) → Provide emotional support (6)

Keep company (3)

Express emotional state (8) → Provide emotional support (4)

Keep company (3)

Relaxed Enjoy company (14) → Keep company (10)

Express emotional state (8) → Pick up the mood (5)

Excited Express emotional state (15) → Pick up the mood (15)

Actively seek interaction (11) → Pick up the mood (6)

Engage in interaction (5)

4.4.3.3 Relaxed

In the relaxed scenario participants often wanted to communicate that
they enjoyed the pet’s company (n = 14), for example by having the pet
sit on their lap or right next to them, touching the robot and talking to it.
In response these participants often wanted company from the robot pet
(n = 10), for example by staying close, listening and engaging in physical
interaction. Furthermore, the pet’s behavior should be calm and should
reflect that it enjoys being together with the human (e.g. wagging tail or
purring).

Other participants mentioned that they wanted to express that they
were feeling relaxed (n = 8) such as by telling the pet about their day and
that everything was alright. In response most of these participants wanted
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the robot pet to pick up on their mood by displaying relaxed behavior as
well such as by lying down (n = 5).

4.4.3.4 Excited

In the excited scenario participants often wanted to communicate their
excitement to the robot pet (n = 15), for example by touching and talking
to the robot. In response all these participants wanted the robot pet to
pick up on their mood by becoming excited as well (n = 15). The robot
pet could show its excitement by actively moving around, wagging its tail
and making positive sounds.

Other participants wanted to actively interact with the robot pet (n = 11)
by playing with it or going out for a walk together. In response most of
these participants wanted the robot pet to pick up on their mood as well
(n = 24) or preferred that the robot pet would actively engage them in
play behavior (n = 6).

4.5 discussion

4.5.1 Categorization of touch behaviors

In this study we observed participants that interacted freely with a robot
pet companion. As a consequence we observed an interesting but complex
mix of touch behaviors such as the use of multiple touch gestures that
were alternated, hybrid forms of prototypical touch gestures and combi-
nations of simultaneously performed touch gestures (e.g. stroking while
hugging). A previous attempt to annotate touch behaviors by Yohanan
and MacLean [124] was limited to the coding of characteristics of touch
gestures that were performed sequentially which completely eliminated
difficulties regarding segmentation and labeling that were encountered in
this study. Segmentation and labeling of individual touch gestures based
on a method borrowed from previous work on air gestures proved not
to be straightforward. Although air gestures and touch gestures both
rely on the same modality (i.e., movements of the hand(s)) their com-
municative functions are different. Air gestures, especially sign language,
are a more explicit form of communication compared to communication
through touch in which there is no one-to-one mapping between touch
gestures and their meaning. Furthermore, in less controlled interactions
it proved to be difficult to categorize touch behaviors into discrete touch
gesture categories based on dictionary definitions, such as the gestures
defined in Table 13. These results indicate that this approach might not be
suitable to capture the nature of touch behavior in less controlled settings.
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In accordance with previous findings from Yohanan and MacLean [124]
we frequently observed the use of massage, rub, scratch, stroke and tickle-
like gestures to communicate to the robot pet. As a result valuable infor-
mation would be lost if these gestures were to be collapsed into a single
category to bypass the difficulties to clearly distinguish between these ges-
tures. Some of the difficulties were due to the use of video footage to ob-
serve touch behavior. For example, the intensity level can only be roughly
estimated from video (see also [124]) and some details such as the precise
point of contact were lost because of occlusion. However, confusions in
identifying touch gestures with similar characteristics were also observed
in studies where touch behaviors were captured by pressure sensors and
algorithms were trained to automatically recognize different gestures (e.g.
[61, 62, 102], see also Chapters 2 and 3). Moreover, segmentation and cat-
egorization of touch behavior based on touch sensor data would still re-
main challenging.

As the segmentation and categorization of touch behaviors into touch
gestures might not be that straightforward in less controlled settings it
might be more sensible to recognize and interpret social messages directly
from touch sensor data as was previously suggested by Silvera-Tawil et al.
[103]. Moreover, feature extraction methods from other modalities such
as image processing (e.g. edge detection [108]), speech (e.g. dynamic time
warping [108]) and action recognition (e.g. motion history histogram [41])
proved to be transferable to touch gesture recognition [61] (see also Chap-
ter 3. Therefore, the existing body of literature on the transition towards
automatic behavior analysis of these modalities in naturalistic settings
might provide valuable insights for the understanding of touch behavior
as well (e.g. see [45, 66, 86]).

4.5.2 Observed multimodal behaviors

The following coarse descriptions of interactions with the robot pet from
two different participants illustrate the use of multimodal cues in the de-
pressed and excited scenario, respectively.

“Participant walks into the living room and sits down on the
couch next to the robot pet. Immediately she picks up the pet
and holds it against her body using a hug-like gesture. While
holding the pet she tells the pet that she had a bad day while
she makes eye contact from time to time. Then she sits quietly
while still holding the pet and making eye contact. Finally, she
puts the pet back on the couch and gets up to leave the room.”
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“Participant runs into the living room and slides in front of the
couch. He picks up the robot pet from the couch and then sits
down on the couch with the pet resting on his leg. Then he
talks to the pet using pet-directed speech: ‘How are you? How
are you? Yes! You’re a good dog! Good doggy!’. Meanwhile he
touches the pet using stroke-like gestures and looks at it. He
then puts the robot pet back on the couch again while he still
touches the pet using stroke-like gestures. Finally, he gets up
from the couch and leaves the room.”

As illustrated in the descriptions above, participants often talked to the
robot pet while touching it (see also Table 14) indicating that the combina-
tion of speech (emotion) recognition and touch recognition might aid the
understanding of touch behavior. Although we observed forms of speech
that had characteristics of pet-directed speech (e.g. short sentences, rep-
etition and higher pitched voice) it should be noted that no analysis of
the prosodic features of the speech was performed. However, the use of
pet-directed speech has been observed previously, for example, Batliner
et al. found that children used pet-directed speech when interacting with
Sony’s pet robot dog AIBO [11]. A limitation of the current setup is that
it did not allow for a detailed analysis on the added value of other social
cues such as facial expression, posture and gaze behavior for the interpre-
tation of touch behavior.

By allowing the participants to interact freely with the robot pet within
the confined space of a living room setting we were able to observe be-
havior that might otherwise not be observed. Social interaction involving
objects such as taking pictures of the robot with a mobile phone were
also observed by Cooney et al. who argued that these factors should be
investigated to enable rich social interaction with robots [28]. However, it
is important to keep in mind that although participants in this study were
able to interact freely within the given context, the results are confined
to the given interaction scenarios. Furthermore, as the study relied on
acted behaviors participants might have displayed prototypical behaviors
to clearly differentiate between the scenarios. However, although partici-
pants indicated in the questionnaire and during the interview that they
had some difficulties acting out the scenarios with a stuffed animal, so-
cial behaviors such as making eye contact while talking were observed
(see also the descriptions above) indicating that at least most participants
treated the pet as a social agent. Additionally, it should be noted that
touch was not only used to communicate to the robot pet but was also
often used to move/ puppeteer the robot pet as it was unable to move on
its own.
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Surprisingly, interactions in the excited scenario were shorter despite
the fact that all participants engaged in some form of interaction with the
robot pet (see Table 14). A possible explanation is that participants often
only quickly wanted to convey their excitement compared to other scenar-
ios where they were seeking comfort or quietly sat down together with
the robot pet to enjoy each other’s company (see Table 15). Furthermore,
previous studies indicate that some emotions are more straightforward
than others, for example, anger was found to be easier to express through
touch than sadness [48]. Similarly, excitement might have been easier to
convey than the other emotional states in this study.

4.5.3 Communicated social messages and expected robot pet responses

The interview results showed that the communicated messages and ex-
pected robot pet responses differed depending on the affective scenario
and individual preference (see Table 15). Moreover, Table 16 shows that
there is no one-to-one relation between communicated messages and ex-
pected responses. For example, variation in expectations from the robot
pet in the stressed scenario ranged from actively providing support to
staying out of the way meaning that in order to respond in a socially ap-
propriate manner, a robot pet should be able to judge whether the user
wants to be left alone and when to engage in interaction. From the inter-
views it became clear that this is not always clear-cut, in the depressed
and stressed scenarios some participants indicated that they did not want
to initiate interaction but that they might be open to the robot pet ap-
proaching them (sometimes after a while). Participants often wanted to
communicate their emotional state to the robot pet, especially in the high
arousal scenarios (see Table 15) However, it should be noted that the fo-
cus on emotional states in the scenarios provided in the study might have
biased participants towards expressing this emotional state.

Whether a robot pet should completely adapt its behavior to the user
is dependent on the role of the pet. In this study the nature of the bond
between the participant and his/ her robot pet was not specified. Some
participants argued that a robot pet should mimic a real pet with its own
personality and needs which might conflict with the current needs of the
user. In contrast, other participants proposed that the robot pet could take
the role of therapist/ coach which would focus on the user’s needs. Ac-
cording to these participants, such a robot pet should be able to cheer you
up, provide comfort, talk about feelings and communicate motivational
messages. In the role of a friend the robot pet should also take the user’s
needs into account, albeit to a lesser extent.
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In this study we observed how various people, in this case males and
females from the working-age population, interacted with a robot pet
companion. However, it should be noted that individual factors such as
previous experience with animals, personality, gender, age and national-
ity might play an important role in these interactions. Interestingly, even
though the robot pet’s embodiment clearly resembled a dog some partici-
pants treated the robot pet as a cat. Whether participants treated the robot
pet as a dog or a cat seemed to depend on their preference and history
with real pets. Additionally, it should be noted that the participants stud-
ied or worked in the computer science department and that all were at
least to some extent familiar with social robots. As a result some partici-
pants took the current state of technology into account when suggesting
possible robot behaviors, for example one participant mentioned that it is
nontrivial to build a robot dog that would be able to jump on the couch.
The use of a stuffed animal dog as a proxy for a functioning robot pet
allowed for a more controlled setup. However, the lack of response from
the robot pet resulted in less realistic interactions as the participant had
to puppeteer the pet or imagine its response. Furthermore, it is important
to note that participants were asked to act as if they were coming home
in a particular emotional state. Although this is a common approach in
studies on touch behavior (e.g. see [48, 49, 103, 124]) it is unclear whether
the same results would have been found if the emotional states were in-
duced in the participants. Despite the above mentioned considerations we
observed an interesting range of interactions and were able to find pat-
terns in the social messages that were communicated and the responses
that were expected from the robot pet.

4.6 conclusion

To gain more insight into the factors that are relevant to interpret touch
within a social context we studied interactions between humans and a
robot pet companion in different affective scenarios. The study took place
in a contextualized lab setting in which participants acted as if they were
coming home in different emotional states (i.e., stressed, depressed, re-
laxed and excited) without being given specific instructions on the kinds
of behaviors that they should display.

Results showed that depending on the emotional state of the user, dif-
ferent social messages were communicated to the robot pet such as ex-
pressing one’s emotional state, seeking emotional support or enjoying the
pet’s company. The expected response from the robot pet to these social
messages also varied based on the emotional state. Examples of expected



74 understanding social touch within context

responses were keeping the user company, providing emotional support
or picking up on the user’s mood. Additionally, the expected response
from the robot pet was dependent on the different roles that were envi-
sioned such as a robot that mimics a real pet with its own personality or a
robot companion that serves as a therapist/ coach offering emotional sup-
port. These findings can help to inform the design of a behavioral model
for robot pet companions

Findings from the video observations showed the use of multimodal
cues to communicate with the robot pet. Participants often talked to the
robot pet while touching it and making eye contact confirming previous
findings on the importance of studying touch in multimodal interaction.
Furthermore, in contrast to controlled studies in which touch gestures
are performed sequentially guided by specific instructions we observed
the simultaneous use of multiple touch gestures, touch gestures that were
quickly alternated and hybrid forms of prototypical touch gestures. Due
to the complexity of the observed interactions, segmentation and labeling
of touch gestures proved to be difficult. This finding indicates that the
categorization of touch behaviors into discrete touch gesture categories
based on dictionary definitions is not a suitable approach to capture the
nature of touch behavior in less controlled settings.
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A F F E C T I V E B R E AT H I N G B E H AV I O R F O R R O B O T P E T S

The following chapter covers collaborative work carried out at the Sen-
sory Perception & Interaction Research Group at the University of British
Columbia1 under the supervision of Prof. Dr. Karon MacLean. The Cud-
dleBit project was led by Paul Bucci and Laura Cang who took the lead
in the publication2 on which this chapter is based. Paul Bucci is the lead
designer of the CuddleBit robots. Laura Cang and Merel Jung took the
lead in the design and execution of the user study described in this chap-
ter. Jussi Rantala and Merel Jung took the lead in the data analysis of the
user study. This chapter covers study 1 as described in Bucci et al. [21].
The content of this part of the paper is restructured to focus on the user
evaluation and textual adaptations have been made to embed the study
into this dissertation.

A social robot should be able to respond to human touch. The findings of
Chapter 4 show that a robot pet might express itself through sounds (e.g.
barking or purring), body movements (e.g. tail wagging), certain actions
(e.g. laying down to express a relaxed state) or even by talking. In this
chapter we will focus on robot pets that express themselves through body
movement in the form of different breathing patterns. We will investigate
human recognition of different emotional states that are communicated
via breathing behavior. In addition, we will explore the influence of robot
materiality on the interpretation of these breathing patterns by displaying
these behaviors on two distinct robot forms.

1 http://cs.ubc.ca/labs/spin
2 Bucci, P, Cang, X. L., Valair, A, Marino, D, Tseng, L, Jung, M. M., Rantala, J, Schneider, O.

S., and MacLean, K. E., Sketching CuddleBits: Coupled prototyping of body and behaviour
for an affective robot pet, in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI), (Denver, CO), 2017, pp. 3681–3692.
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5.1 introduction

Robot pets can use different social cues to express themselves. For ex-
ample, elephant-like robot Probo uses facial expressions to communicate
different emotions and robotic seal Paro expresses itself using body move-
ments and sounds [95, 100]. In contrast, in this chapter we will focus on
the expressive capabilities of less complex 1-DOF robot pets using breath-
ing behavior. As tactile interactions such as holding and stroking are a
common way to interact with pets these breathing patterns can be expe-
rienced both visually and haptically3. In this work we will explore the
use of breathing patterns to express different emotional states. Previous
research shows that emotions influence a person’s respiration pattern [18,
90]. Parameters involved are the depth and rate of breathing and the mor-
phology of the breathing curve such as its regularity [18]. In this study we
used these parameters to design breathing behaviors that reflect different
emotional states.

In this chapter we will evaluate the expressive potential of one degree
of freedom (1-DOF) zoomorphic robot pets collectively called the ‘Cud-
dleBits’. We will explore the design and recognition of rendered affective
breathing-like behaviors representing four emotional states: stressed, de-
pressed, relaxed and excited. Furthermore, two distinct robot forms will
be compared: a rigid wood-based form resembling a rib cage called ‘Rib-
Bit’ and a flexible, plastic-based form resembling a ball of fur called ‘Flexi-
Bit’. The CuddleBits were designed using a rapid prototyping approach
that allowed quick design and iteration on these robots and their behav-
iors [21].

To evaluate the emotional expression capabilities of two distinct Cud-
dleBit forms we address the following research questions.

• RQ1: Can 1-DOF robot movements be perceived as communicating
different emotional states? Hypothesis: Different levels of arousal will
be interpreted more accurately than different levels of valence.

• RQ2: How is interpretation of emotional content influenced by robot
materiality such as a soft furry texture? Hypothesis: FlexiBit’s behav-
ior will be perceived as conveying more positive valence than Rib-
Bit’s.

The remainder of the chapter is structured as follows. Related work on
affective robot pets and the emotional expression of breathing behavior
will be discussed in Section 5.2 followed by the methods for the presented

3 The behavior might also be experienced auditorily depending on the technical implementa-
tion of the simulated breathing mechanism
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study in Section 5.3. Then, the results will be provided and discussed in
Section 5.4 and Section 5.5, respectively. Conclusions will be drawn in
Section 5.6.

5.2 related work

The expression of emotions through breathing have previously been stud-
ied in visual (and haptic) displays. A study on the expression of affect
through respiration in virtual humans has shown that the addition of
breathing behavior can increase the expressive capabilities of a virtual
agent [31]. Emotions such as excitement, fear and anger could be better
expressed when using simulated breathing in addition to facial expres-
sions and body posture compared to when only the latter two social cues
were used. In other work, Dawson et al. explored lifelike behaviors for a
mobile phone by using breathing, ear movements and vibration to express
different levels of valence and arousal [30]. Results showed that three lev-
els of arousal could be expressed using different breathing speeds and
ear movements for the higher arousal states. In contrast, valence proved
to be harder to communicate. The combination of ear wiggling with fast
symmetrical breathing could successfully convey an excited state. How-
ever, the level of valence could not be communicated reliably for the other
emotional states (i.e., angry, neutral, depressed and relaxed).

Moreover, there have been some first attempts to explore the ability of
robot pets to express themselves using simulated breathing, examples in-
clude the Haptic Creature [97, 123] and the CuddleBot [23]. In a study on
the affective display for the Haptic Creature robot, parameters for three
levels of arousal and valence were defined to express nine emotional states
using simulated breathing, stiffening of the ears and purring [123]. Results
showed that arousal could be communicated through breathing rate and
ear stiffness whereas valence could not be communicated reliably. Inter-
views suggested that symmetry and depth of breathing might help to con-
vey different levels of valence. In this study we will focus specifically on
breathing behavior by further exploring the expressive space of breathing
patterns for a 1-DOF robot pet.

In a controlled follow-up study on the potential calming effect of
the Haptic Creature’s simulated breathing mechanism, participants were
asked to stroke the robot with two hands while it rested on their lap
with the robot’s breathing either turned on or turned off [97]. Participants’
heart and respiration rates were found to decrease significantly as a re-
sult of stroking the breathing robot compared to when the robot was not
breathing and self reports indicated that participants also felt calmer and
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Figure 11: The two CuddleBit forms: FlexiBit (top) and RibBit (bottom) explore
distinct form factors.

happier. These findings point to the potential health benefits of equipping
robot pets with a breathing mechanism, especially in health-care settings
(see also Chapter 6).

5.3 methods

We evaluated the expressive capabilities of two distinct CuddleBit forms
in a study with a within-subject design. For each robot, participants were
asked to rate how well the different breathing behaviors reflected each of
four affective states: stressed, depressed, relaxed and excited. As in Chap-
ter 4, these emotional states were chosen because they span opposite ends
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of the valence and arousal scale: stressed (negative valence, high arousal),
depressed (negative valence, low arousal), relaxed (positive valence, low
arousal) and excited (positive valence, high arousal) [93].

5.3.1 Participants

In total 20 participants (11 male, 8 female, 1 identified otherwise) took part
in the study. The age of the participants ranged from 22 to 36 (M = 25.4; SD
= 3.6) and their cultural backgrounds were from North America, Europe,
Southeast Asia, Middle East and Africa. All participants had completed
at least an undergraduate degree and were compensated 5 CAD for their
time. The study was conducted under UBC Ethics H15-02611.

5.3.2 Apparatus/ Materials

5.3.2.1 CuddleBit robots

In this study the emotional expression capabilities of two distinct Cud-
dleBit forms were compared (see Figure 11). The FlexiBit is made out of
plastic slices fixed to a base at the bottom and joined together at the top
with machine screws. Plastic flexibility, volume and curvature provide pas-
sive compliance and the robot is actuated by a servomotor controlled by
an Arduino Uno microcontroller board4. The shape of the robot can be
adjusted by varying the sizes of the slices and/or the base. The outside
is covered with faux fur and the robot is often compared to a Tribble (a
fuzzy alien species from the Star Trek universe).

The RibBit is a wooden rib cage on a stand and its parts are assembled
using glue and BBQ skewers as pins and rods. Internal springs provide
compliance to the rigid actuation by an Arduino-controlled servomotor.
The shape of the robot can be adjusted by modifying and laser cutting
digital patterns. Contrary to FlexiBit, RibBit is rigid due to its wooden
construction and its mechanics are fully exposed. For more details on the
design of the CuddleBits the reader is referred to Bucci et al. [21] and
Cang et al. [22].

5.3.2.2 Design and selection of breathing behaviors

Breathing behaviors were designed by extending a keyframe-based edi-
tor for vibrotactile sensations (i.e., Macaron [96]) to robot position control,
the result was named ‘MacaronBit’. To design different breathing patterns
a user starts with a pure sine wave and can adjust its parameters (i.e.,

4 http://arduino.cc/en/Main/ArduinoBoardUno
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frequency, amplitude, bias and amplitude/frequency variability). The ed-
itor supports immediate playback, key-framing (parameter interpolation
between key points), waveform generation and click-and-drag editing.

Using MacaronBit, three members of the research team individually cre-
ated a total of 18 behaviors for the FlexiBit robot to express the four dif-
ferent emotional states. These behaviors were then matched to one of the
emotional states by five team members. The two most agreed-upon be-
haviors for each of the emotional states were selected resulting in a final
selection of eight waveforms (see Figure 12). The same eight behaviors
were implemented for the RibBit robot with amplitude scaled by range of
motion.

5.3.3 Procedure

After giving informed consent participants were seated and invited to in-
spect the inanimate robots. Then participants filled out their demographic
information. In the main part of the study participants were given the task
of rating each behavior on a 5-point semantic differential scale ranging
from ‘−2 Mismatch’ to ‘+2 Match’ for two different robots displaying four
emotions: stressed, depressed, relaxed and excited. For instance, for ‘Flexi-
Bit feels stressed’, a participant would play each behavior and rate how
well it matched the robot portraying stress. During playback and rating,
participants kept one hand on the robot, and moused with the other. As
a result motion was experienced largely haptically. Noise-canceling head-
phones played pink noise to mask mechanical noises. Instructions were
communicated by microphone. Ratings for each robot were performed
separately. Robot block order was counterbalanced, with a 2 minutes
break in between. For each block, all four emotions were presented on
the same screen so participants could compare globally. Behaviors (15 s
clips) could be played at will during the block. Order of behaviors and
emotion was randomized between participants. To reduce cognitive load,
participants saw the same behavior/emotion order for the second block.
In total, each participant performed 64 ratings (8 behaviors × 4 emotions
× 2 robots). In addition to the behavior ratings, we also recorded the time
it took to complete the ratings in each of the emotional states which was
estimated by duration of mouse focus within each emotion rating sub
task. Afterwards, a semi-structured interview was conducted about pos-
sible roles that a CuddleBit could play in the life of the participants and
how their behaviors were perceived. Each session took approximately 30

minutes.
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Figure 13: Mean behavior ratings for FlexiBit per scenario.
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5.4 results

Visual inspection of the mean behavior ratings across all participants
showed that the behaviors matched relatively well with the scenarios that
they were designed for (see Figure 13 and 14). Interestingly, the behaviors
also matched the scenario in which the robot’s emotional state reflected
the same level of arousal but a different level of valence (i.e., stressed-
excited and depressed-relaxed).

We compared the ratings of each pair of behaviors designed for the
same emotional state for both CuddleBits (i.e., 4 behavior pairs × 2 robots)
using a pairwise Wilcoxon signed-rank tests with Bonferroni correction
(α = .05/8 = .006). Ratings for the two designed behaviors for the same
emotion state were not significantly different (all p’s > .059) Therefore, we
averaged the ratings of each pair (e.g. b1 and b2 in Figure 12) for further
analysis.

Next, we explored the effect of the scenario that was given to partic-
ipants (e.g. ‘RibBit feels excited’) on the ratings of the designed behav-
iors. Friedman’s test on behavior ratings showed significant differences
between the behavior ratings per scenario for each robot (all p’s < .001).
Post hoc analyses using Wilcoxon signed-rank tests with a Bonferroni cor-
rection (α = .05/6 = .008) were conducted to further analyze the effect of
scenario on researcher-designed behaviors (see Table 17). In the stressed,
excited and relaxed scenarios significant differences were found between
high and low arousal behaviors for both robots (i.e., stressed-depressed,
stressed-relaxed, excited-depressed and excited-relaxed, all p’s 6 .002).
No significant differences were found between behaviors with the same
arousal level but different valence content (all p’s > .017). The results
for the depressed scenario show similar patterns with some exceptions.
No significant differences were found with either robot when comparing
ratings of relaxed-stressed (p’s > .014). In addition, with RibBit, no sig-
nificant differences were found for the ratings of depressed-stressed (p
= .012). However, comparison of excited-stressed revealed a significant
difference (p = .007).

Furthermore, the behavior ratings for FlexiBit were compared to those
for RibBit for each scenario (i.e., 4 behavior ratings × 4 scenarios) using
a Wilcoxon signed-rank tests with Bonferroni correction. No statistically
significant differences were found between ratings of emotions displayed
on the two distinct robot forms (α = .05/16 = .003; all p’s > .026).

Additionally, we approximated task difficulty using the time spent to
evaluate the behaviors. Spending more time would suggest challenge in
aligning robot behaviors with emotion. A two-way (2 robots × 4 scenarios)
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repeated measures ANOVA showed no significant main and interaction
effects for the time spent on rating behaviors (α = .05; all p’s > .198).

Table 17: Pairwise comparison p-values (Wilcoxon) of behavior ratings (rows) for
different scenarios (columns) per robot. Significant differences (i.e., p 6
.008) are marked gray.

Scenario: robot feels...
stressed excited depressed relaxed

FlexiBit
S-E .391 .142 .159 .076

S-D .001 .000 .004 .000

S-R .001 .000 .014 .001

E-D .000 .000 .000 .000

E-R .000 .000 .000 .000

D-R 1.000 .713 .668 .501

RibBit
S-E .759 .037 .007 .017

S-D .000 .000 .012 .000

S-R .001 .002 .032 .001

E-D .000 .000 .000 .000

E-R .000 .000 .000 .000

D-R .582 .270 .713 .668

5.5 discussion

5.5.1 Recognition of the robot’s emotional state

Generally, participants were able to perceive differences in behaviors de-
signed to convey high or low arousal. Speed or frequency was mostly men-
tioned as having communicated arousal variation: low arousal from low
frequency and high arousal from high frequency. In contrast, the interpre-
tation of the robot’s expressed level of valence was less straightforward.
Possible reasons are that breathing might not naturally convey valence
variations and/or additional DOFs are needed to disambiguate them. It
is less likely that materiality played a role because of the consistency in
the findings between the two distinct prototypes. These results confirm
that these 1-DOF robots were able to reproduce earlier findings regard-
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ing both affective dimensions [30, 123]. Moreover, these findings support
our hypothesis that different levels of arousal are easier to interpret than
different levels of valence.

Unexpectedly, the behavior ratings for the depressed scenario diverged
significantly from those in the other scenarios. Interviews suggest two
reasons. Depressed was being confused with stressed that is, participants
reported experiencing both emotions in concert or as a result of the other.
Furthermore, breathing (by RibBit in particular) did not have the ability
to express depression for some participants. Suggestions to improve the
believability and differentiability for expressing a stressed state included
sighing and avoidance actions like retreating or turning away. It should be
noted that the breathing behaviors were designed based on the perception
and imagination of three computer science researchers which may not
broadly generalize as an effective emotional display.

The results from this study are consistent with previous studies on the
recognition of human emotions based on other social cues such as facial
expressions. As an example, a soccer player yells after a goal: without
knowing which side the soccer player is on, it is difficult to visually distin-
guish between a yell of anguish or victory [10]. Similarly, for low arousal
states, it might be difficult to tell the difference between someone who is
relaxed or depressed. Observers may always need to rely on context to in-
terpret the level of valence, either through extended interaction or through
external environmental and situational cues. The design of behavior to
express the level of arousal might then be more important, especially if
interaction and contextual cues are stronger than any inherent behavior
features. Moreover, a robot pet with multiple degrees of freedom might
be more capable to express valence through other forms of actuation. For
example, a robot pet could raise its head or wag its tail to express positive
valence.

5.5.2 Effect of robot form

There was no difference in how participants perceived the behaviors on
the two distinct robot forms. In post-study interviews participants re-
ported that the movement expressed by the two robot forms were sen-
sorially different: FlexiBit’s fur felt nicer to touch but RibBit’s motion
was perceived to be more precise. Notably, RibBit’s movements were in-
terpreted as breathing or a heartbeat (i.e., biological functions) despite
the exposed inner workings which emphasize the mechanical aspects of
the robot. These findings indicate that movement rather than materiality
dominated how participants interpreted the expression of the emotions.
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Therefore, our hypothesis that FlexiBit’s behavior will be perceived as con-
veying more positive valence than RibBit’s is not supported. The observed
low impact of robot form on the expression of emotional state indicates
that behaviors might be reusable on physically distinct robots with similar
abstract abilities such as breathing.

5.6 conclusion

In this chapter we evaluated the expressive potential of breathing behav-
iors for 1-DOF zoomorphic robots. We investigated the extent to which
researcher-designed emotional breathing behaviors could communicate
four different affective states. Additionally, we were interested in the influ-
ence of robot form on the interpretation of these breathing behaviors. For
this reason two distinct robot forms were compared: a rigid wood-based
form resembling a rib cage called ‘RibBit’ and a flexible, plastic-based
form resembling a ball of fur called ‘FlexiBit’. In the study participants
rated for each robot how well the different breathing behaviors reflected
each of four affective states: stressed, depressed, relaxed and excited.

We started out with two hypotheses. Firstly, we hypothesized that differ-
ent levels of arousal would be communicated more accurately than differ-
ent levels of valence. Secondly, we presumed that robot materiality would
influence how the breathing patterns were perceived. To this end we hy-
pothesized that FlexiBit’s behavior would be perceived as conveying more
positive valence than RibBit’s. In accordance with our first hypothesis the
results showed that both robot forms were able to express high and low
arousal states through breathing behavior, whereas valence could not be
expressed reliably. Low arousal states could be communicated by low fre-
quency breathing behavior and higher frequency breathing conveyed high
arousal. In contrast, context might play a more important role in the in-
terpretation of different levels of valence. Contrary to our second hypoth-
esis robot form did not influence the perception of the behavior that was
expressed. These findings can help to inform future design of affective
behavior for robot pet companions.





6
T O U C H I N T E R A C T I O N W I T H R O B O T P E T S I N A
H E A LT H - C A R E S E T T I N G

The following chapter covers collaborative work which is based on the
master’s thesis of Lisa van der Leij [111]. The study was designed by Lisa
van der Leij with assistance from Merel Jung and Saskia Kelders. Lisa van
der Leij collected the data which was analyzed by Lisa van der Leij and
Merel Jung with assistance from Saskia Kelders. Merel Jung took the lead
in the writing of a paper based on the work described in the master’s
thesis with contributions from Lisa van der Leij and Saskia Kelders. The
content of this chapter is identical to that of the submitted paper1 with
some minor textual adaptations to embed the content into this dissertation.
The future work described in the paper has been moved to Chapter 7 of
the dissertation.

In the previous two chapters we focused on how a robot pet could under-
stand and respond to human touch (Chapter 4) and how robot pets could
express their emotions through breathing behavior (Chapter 5). As a next
step we will explore the use of touch in interaction with a fully function-
ing robot pet outside of the lab. Robot pet companions such as robotic
seal Paro are increasingly used in care for the elderly due to the positive
effects that interaction with these robots can have on the well-being of pa-
tients with dementia. As touch is one of the most important interaction
modalities for patients with dementia this can be a natural way to interact
with these robots. In this chapter we will present a study that aims to in-
form the development of robot pets that can understand and respond to
human touch for health care applications. In the study we administered
questionnaires and conducted interviews with health care providers in de-
mentia care to explore in what ways people with dementia could benefit
from interaction with a robot pet with more advanced touch recognition

1 Jung, M. M., van der Leij, L., and Kelders, S. M., An exploration of the benefits of an an-
imallike robot companion with more advanced touch interaction capabilities for dementia
care, Manuscript submitted for publication
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capabilities, what types of (tactile) behaviors patients with dementia do/
would use in their interactions with Paro and which other target groups
could benefit from interaction with Paro or a more advanced robot pet.

6.1 introduction

Social robots such as robot pet companions are increasingly being used
in health care (e.g. [12, 15, 67, 100, 117]). Research shows that interaction
with robot pets can have positive effects similar to those from interaction
with real animals (e.g. [8, 16, 32, 92, 97, 117]). Moreover, robots have ad-
vantages compared to real animals: their behavior can be better controlled;
they do not carry diseases; and they need less care [32, 35, 100]. These ad-
vantages are especially important when working with a vulnerable popu-
lation such as the elderly. When interacting with real animals, touch is one
of the most used forms of interaction. Furthermore, recent studies point
to the benefits of touch interaction in robot therapy [92, 97]. However, cur-
rently commercially available companion robots such as robot seal Paro
[100] and Sony’s robotic dog AIBO [39] do not focus specifically on touch
interaction, which seems like a missed opportunity.

Paro is one of the most researched robotic animals and one that is quite
often implemented in regular care [12, 67, 92, 100]. It was developed in
Japan for robot therapy and is mostly used with children and people with
dementia [13, 14, 100, 117, 118, 119]. Paro is equipped with touch sen-
sors but does not recognize or interpret different touch gestures [117]. In-
stead, the robot distinguishes between positive (i.e., soft) and negative (i.e.,
rough) touches. However, research indicates that people use mostly posi-
tive forms of touch when interacting with another human [59] or a robot
pet [124]. Furthermore, these positive forms of touch can have different
meanings depending on the context, for example, the intent of a touch
could be affectionate, comforting/supportive or playful [59, 64, 124]. In
addition, the results from the study presented in Chapter 4 showed that
the social message that was communicated to a robot pet varied based on
the user’s emotional state which also affected the response that was ex-
pected from the pet [64]. Based on these findings it is therefore likely that
recognizing and acting on these different meanings will benefit interaction
with robot pets.

The focus of this chapter will be on the use of touch in the interac-
tion with robot pet companions. In this study we will consult health care
providers to explore whether people with dementia would benefit from
interaction with a robot pet with more advanced touch recognition capa-
bilities. Dementia is a global, progressive and chronic condition, in which
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there are severe impairments in a person’s ability to think, reason and
remember [121]. Dementia has been recognized by the WHO as a public
health care priority because of the increase in the number of people living
with dementia due to the aging population, and the enormous burden this
places on the health care system [122]. To keep the costs of dementia care
manageable and the quality of care high, innovative solutions are needed.
The use of (animallike) robots is one of these solutions [12, 67]. Addition-
ally, enabling these robot pets to understand and respond to human touch
might be a way to further improve the effects of these robots in demen-
tia care as touch is one of the most important interaction modalities in
patients with dementia. As the disease progresses, verbal communication
becomes harder for these patients and nonverbal interaction, especially
touch, plays a prominent role in care, for instance, for communicating
messages of comfort and safety [9, 89].

In this study we administered questionnaires and conducted interviews
with two groups of health care providers in dementia care: a group that
worked with Paro and a group that had no experience with the use of
robot pet companions. We will address the following research questions
to inform the development of robot pet companions that can understand
and respond to human touch for health applications. (1) In what ways
could people with dementia benefit from interaction with a robot pet with
more advanced touch recognition capabilities? (2) What types of (tactile)
behaviors do/ would patients with dementia use in their interactions with
Paro? (3) Which other target groups could benefit from interaction with
Paro or a more advanced robot pet?

The remainder of this chapter is structured as follows. Related work
on the effectiveness of robot pet companions in care for the elderly and
touch interaction with robot pets will be discussed in Section 6.2. Then,
the material and methods for the presented study will be described in
Section 6.3. The results will be presented and discussed in Section 6.4 and
Section 6.5, respectively. Conclusions will be drawn in Section 6.6.

6.2 related work

6.2.1 Effectiveness of robot pet companions in care for the elderly

There are potential health benefits to be gained from interacting with a
robot pet companion. For example, a study by Banks et al. found that
the company of robotic dog AIBO could be as effective as a real dog in
reducing loneliness in elderly patients living in a long-term care facility
[8]. Furthermore, there are indications that stroking and interacting with



92 touch interaction with robot pets in a health-care setting

Paro could lower blood pressure in elderly people which is similar to the
effects found for interaction with real animals [32, 92]. In another body
of work, elderly people (including people in various stages of dementia)
in different care facilities interacted freely with Paro for either a couple
of weeks [117, 119] or up to one year [118]. The results of these studies
indicated that interaction with the robot pet could improve mood, make
people more active, lower stress and promote social contact with the robot
as well as with peers and nursing staff [117, 118, 119]. Furthermore, the use
of Paro seemed to ease the burden on the nursing staff as their reported
stress levels decreased after the robot’s introduction [119]. In addition, the
results showed that Paro is interesting enough for long-term interaction
and proved to be durable and safe enough for long-term use [118].

Systematic reviews into the effectiveness of socially assistive robots in
care for the elderly found that these robots (most studies investigated
robots that were animallike) have the potential to improve psychological
and physiological outcomes, but the methodological quality of the exist-
ing studies is low [12, 67]. Bemelmans et al. stress the need for structured
interventions, similar to those used in animal-assisted therapy [35], with
measurable outcomes as without proof of the added value of robots for
therapy their image of being mere entertaining gadgets might remain and
reimbursement could be problematic [12, 13, 15]. Furthermore, end-users
(i.e., patients and care providers) should be included in the process to
ensure successful adoption of robot therapy [12, 15, 67].

In an effort to study the effects of robot pets in health care in a more
structured manner, several interventions for Paro in dementia care were
developed together with care providers such as nurses, activity coordi-
nators, therapists and medical doctors [15]. These interventions could be
divided into three types: (1) therapeutic applications to stimulate percep-
tion, psychological functioning, psychosocial well-being and social behav-
ior; (2) facilitation of daily care activities by providing comfort and dis-
traction during stressful activities; (3) support of social visits by having a
shared focus point as Paro can attract attention. Based on these three types,
individualized interventions were defined and tested with patients suffer-
ing from dementia in two studies [13, 14]. 69 therapeutic interventions
and 17 care facilitating interventions were conducted in a within-subject
quasi-experimental time series ABAB study lasting four months which
was completed by 71 participants [13]. Overall, the interventions showed
a significantly positive effect indicating that Paro can be a valuable tool
in dementia care. In the other study 23 participants interacted with Paro
once or twice a week for a period of 3 weeks [14]. Of the 35 conducted in-
terventions 19 were therapeutic interventions, 7 were to facilitate care and
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9 were to support social visits. Care providers considered the majority of
the interventions to be feasible (26 out of 35) and of added value (22 out
of 35). Both studies showed that Paro was most suitable for therapeutic
interventions [13, 14].

6.2.2 Touch interaction with robot pet companions

Compared to hard-shelled robot pets such as AIBO [39], soft fur-covered
robots such as Paro and the elephant-like robot Probo are more pleasant
to touch and can evoke affective behaviors such as stroking and hugging
[92, 95, 100, 117]. For a more natural interaction these robot pets should be
able to understand and respond to these different types of touch. Recently,
research labs have started to develop robot pets that focus specifically on
touch interaction. For instance, the Huggable robotic teddy bear has its
own full-body somatosensory system in order to sense and process hu-
man touch [73, 106]. Another example is the Haptic Creature which is a
zoomorphic lap pet that can sense human touch all over its body and ex-
presses itself by purring, simulated breathing and stiffening of the ears [97,
123, 124]. The use of simulated breathing for robot pets has been explored
further in the CuddleBit robots [21, 22] (see also Chapter 5). These small
zoomorphic robots react to human touch by expressing emotions through
different breathing patterns resulting in a haptic affective display.

The study presented in this chapter will build upon previous research
on the effectiveness of existing robot pets such as Paro in health care facil-
ities and exploratory lab research on the development of new robots that
can engage in tactile interaction. In contrast to most previous research,
the purpose of this study is not to investigate the effectiveness of Paro in
dementia care per se. Instead, our focus is on how people with dementia
could benefit from interaction with an animallike robot companion that is
able to understand and respond to different types of touch.

6.3 material and methods

6.3.1 Study design

For this study, we opted to recruit health care providers who worked
in geriatric psychiatry departments. As these health care providers work
with patients suffering from dementia on a daily basis we expected that
they would have a lot of insight into the needs of people with dementia
and in what ways these patients might benefit from interaction with a
robot pet with more advanced touch recognition capabilities. The perspec-
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tives and expectations of a sample of health care providers on the use of
a robot pet with more advanced interaction capabilities in dementia care
and health care in general were explored through interviews. In addition,
in a questionnaire the health care providers were asked to assess the like-
lihood that people with dementia would use different touch gestures to
interact with a robot pet. Paro was used as the main example of a robot
pet because the robot seal is already used in Dutch care facilities.

6.3.2 Participants

In total 9 health care providers from two care facilities in the eastern part
of the Netherlands were recruited to participate in the study. One group
of health care providers did not have any experience with the use of robot
pets (the layman group, n = 4). These participants were recruited by one
of the members of the research team during coffee breaks. The other group
of health care providers worked at a different care facility and these par-
ticipants did have experience using Paro (the expert group, n = 5). In
this case participants were recruited via a contact person at the care fa-
cility. At the time of the interviews, Paro had been available to the expert
group for one year. Their amount of experience with Paro differed because
they cared for different patients with different needs. That is, some of the
experts used Paro every day (e.g. as part of a bedtime routine for a pa-
tient who has difficulty sleeping) and others used Paro more incidentally
(e.g. as a means to calm down a patient who is displaying vocally dis-
ruptive behaviour). All experts had experience in using Paro for multiple
goals and with multiple patients. All participants were females who had
completed secondary vocational training. The age of the participants was
between 30 and 52 (M = 44,SD = 10) for the layman group and between
24 and 67 (M = 46,SD = 15) for the expert group. Participants from
the layman group had more years of experience working in a geriatric
psychiatry department (M = 13,SD = 7) compared to the expert group
(M = 5,SD = 2). The study was approved by the ethics committee of the
Faculty of Behavioural, Management and Social Sciences of the University
of Twente.

6.3.3 Materials

6.3.3.1 Interviews

Semi-structured interviews were conducted based on a predefined frame-
work. Two versions of the interview were prepared to adjust the questions
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to ask about either expectations (layman group) or experiences (expert
group). In order to compare the expectations of the layman group with
the experiences of the expert group, the layman group was introduced to
Paro by means of a short video fragment2 at the beginning of the interview.
Four main topics were explored within both versions of the interview:

1. Vision on the use of robot pets in health care: what are suitable target
groups and for what kind of interventions can robot pets be used? In
addition, the expert group was also asked about Paro’s advantages
and disadvantages.

2. Expectations of (tactile) interaction capabilities of robot pets: which
emotions or other social messages should a robot pet communicate
to a person with dementia and how should a robot communicate
these? Additionally, the expert group was asked which social cues
Paro conveys in reaction to being touched by people with dementia.

3. Added value of a robot pet with more advanced capabilities to un-
derstand and respond to social touch for patients suffering from
dementia: would a more socially intelligent robot pet be more effec-
tive and would the advancements in the robot’s capabilities affect
how the robot could be used? In addition, the expert group was also
asked whether Paro’s interaction capabilities were perceived to be
sufficient.

4. Other contexts in which robot pets with more advanced capabilities
to understand and respond to social touch could be used: which
other target groups could benefit from interaction with a more so-
cially intelligent robot pet and how could the robot be used for these
new target groups?

6.3.3.2 Questionnaire

In the questionnaire, participants were asked to rate the likelihood that
people with dementia would use different touch gestures in their interac-
tion with a robot pet. 30 different touch gestures were rated on a 5-point
Likert scale from 1 (unlikely) to 5 (likely). The list of different touch ges-
tures was based on the ‘touch dictionary’ from Yohanan and MacLean
which consists of 30 different touch gesture labels and their definitions
[124]. For this study the touch gestures and definitions were translated to
Dutch by the members of the research team.

2 http://youtube.com/watch?v=-fkxdFwu8yE
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6.3.4 Procedure

The participants were welcomed by the interviewer in a quiet office within
the care facility where the participants worked. For practical reasons the
interviews with the participants from the expert group were conducted
in two groups consisting of either two or three participants while the in-
terviews with the participants from the layman group were conducted in-
dividually. Participants were informed about the nature of the interview
and the questionnaire before signing the informed consent form. Then,
the interview was conducted according to the predefined framework. The
interview started by collecting demographic information followed by a
video fragment of Paro which was only shown to the layman group. Dur-
ing the interview follow-up questions were asked where necessary. After
the interview participants completed the questionnaire. The interviewer
remained present in case clarification was needed on the questionnaire.
However, none of the participants needed any help. The total duration of
each session was approximately 30 minutes. Afterwards the participants
received a small token of appreciation.

6.3.5 Data analysis

6.3.5.1 Interviews

The interviews were analyzed following the guidelines from Baarda et al.
[5]. Transcriptions of the interviews were grouped based on topics using
an inductive approach. The interview data was divided into fragments
and each fragment was assigned a label that described the content. Mul-
tiple labels could be assigned to a fragment if the fragment could not be
split without losing context. For each label the number of participants per
group that mentioned the specific topic was counted and these numbers
are indicated in the results. In the results section we will highlight the
differences between groups or combine the results of both groups in cases
where results were similar. The interview results are presented within
themes that do not necessarily overlap with the four main topics of inter-
view question listed in Section 6.3.3.1.

6.3.5.2 Questionnaire

The questionnaire data was analyzed using IBM SPSS Statistics version 22.
The focus of the questionnaire was on the likelihood of the use of different
touch gestures to interact with Paro. However, due to the inclusion of two
groups of participants, the ratings of the layman group and the expert
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group were first compared by conducting Mann-Whitney U tests using
Bonferroni adjusted alpha levels of .0017 per test (.05/30). Exact p-values
are reported for two-tailed tests. Touch gestures with a median rating
of > 3 were considered likely to be used, gestures with a rating of 3
were considered neutral while those with a rating of < 3 were considered
unlikely to be used. Additionally, within each of these three categories the
touch gestures were ranked based on the summed likelihood ratings of all
participants.

6.4 results

6.4.1 Interviews

6.4.1.1 Usages of Paro in dementia care

Participants mentioned six different goals for which Paro can/ could be
used (see also Table 18).

1. All Participants perceived Paro to be especially suitable as a means
to distract patients who are restless or sad (layman: n = 4; experts:
n = 5). Restless behavior was reported to often occur during the
evening (layman: n = 2; experts: n = 3).

2. About half of the participants mentioned that Paro can be used to
interrupt problematic behaviors (layman: n = 3; experts: n = 2),
especially in cases of vocally disruptive behavior (layman: n = 2;
experts: n = 1). A participant from the expert group explained that
Paro can provide stimulation to confirm to the patient that he/she
is still alive.

3. Five of the participants mentioned that Paro can be used to make
contact with patients with severe dementia by stimulating their
senses through interaction (layman: n = 3; experts: n = 2).

4. About half of the participants stated that Paro can stimulate commu-
nication both between patients and between patients and health care
providers (layman: n = 3; experts: n = 2).

5. Some of the participants mentioned that Paro can be used to support
health care providers (layman: n = 2; experts: n = 2). For example,
participants from the expert group mentioned that the soothing ef-
fect of Paro can facilitate care moments (n = 1) and that Paro can
provide one-on-one contact at moments when the care staff does not
have the time or the manpower available to provide this individual
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level of contact (n = 1). The layman group also expected that Paro
would support them in their work but they attributed this to the re-
duced need for supervision (n = 2). In contrast, participants from
the expert group argued that interaction with Paro should be super-
vised to prevent patients from damaging Paro (n = 2) and to observe
the outcome of the intervention (n = 3).

6. A few of the participants argued that Paro can be used as company
to relieve feelings of loneliness (layman: n = 1; experts: n = 1).
However, another participant from the layman group (n = 1) argued
that she would not use Paro in this case as a robot could not replace
human contact.

Table 18: Goals for which Paro can/ could be used according to the health care
providers. The number of participants that mentioned each goal are
listed per group.

Goal No. of experts No. of layman

Distraction 4 5

Interrupt problematic behavior 3 2

Make contact 3 2

Stimulate communication 3 2

Support care providers 2 2

Relieve feelings of loneliness 1 1(+)/1(-)

6.4.1.2 (Touch) interaction between Paro and people with dementia

Some participants mentioned that the mere presence of Paro can already
have a positive effect on people with dementia (experts: n = 2). How-
ever, the others argued that feedback from Paro is essential to achieve the
desirable effect (layman: n = 4; experts: n = 3). Furthermore, according
to some participants Paro’s response should be adapted to the patient’s
touch (layman: n = 3). Participants indicated that Paro’s soft fur (layman:
n = 2; experts: n = 2), big eyes (layman: n = 2; experts: n = 2) and audi-
tory signals (layman: n = 1; experts: n = 2) seem to elicit care responses in
the patients who in return express their love to Paro and comfort the robot
(layman: n = 1; experts: n = 2). Patients display their affectionate behav-
ior in the form of touch gestures such as stroking and hugging (layman:
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n = 2; experts: n = 4) and verbal expressions (experts: n = 2). Accord-
ing to the participants, Paro mirrors the positive interaction by conveying
safety and security (layman: n = 2; experts: n = 5) and love (layman:
n = 1; experts: n = 1) in the form of an auditory response (layman: n = 1;
experts: n = 4) and by moving its head and fins (layman: n = 2; experts:
n = 3). One of the participants from the layman group mentioned that
Paro’s response subsequently seems to have a positive effect on the mood
of the patients.

A simulated heartbeat was suggested by some of the participants as a
valuable additional communication channel for robot pets which could at
the same time also have a soothing effect on the patients (layman: n =

1; experts: n = 1). Currently, Paro’s tactile feedback is mostly conveyed
through body movements as described by one of the participants in the
expert group:

“I notice when they [the patients] hold him [Paro] against their
neck, he lifts his head and as a result the whiskers move along
their faces which is a very sensitive area for these people, they
can feel it clearly".

Additionally, two of the participants mentioned that patients are able to
recognize Paro’s negative response to aggressive touch gestures such as
rough grabbing (experts: n = 2). For example, one of these experts recalled
that one of her patients had exclaimed: “oh he [Paro] doesn’t like that" in
response to Paro’s negative reaction. In response to these comments, some
other participants complemented that the use of rough touch occurs rarely
(experts: n = 2).

6.4.1.3 Suitability of Paro for people with dementia

In general, all health care providers were positive about the use of robot
pets in dementia care. Paro was described by participants of the layman
group as a promising (n = 3) and easy-to-use intervention (n = 1). Fur-
thermore, few participants of the layman group argued that Paro could
be a low maintenance (n = 1), more robust (n = 1) and more interactive
(n = 1) alternative to real animals The expert group was particularly posi-
tive about the effects that Paro has on people with dementia (n = 3). How-
ever, it was mentioned that robot pets might not be a suitable solution for
every person with dementia. Seven of the participants indicated that such
a robot should fit within the patients’ perception of their environment
and whether the patients will interact with a robot pet is dependent on
their affinity for animals (layman: n = 3; experts: n = 4). Moreover, some
of the participants argued that the use of a robot intervention should be
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discussed with the patient’s family (layman: n = 2; experts: n = 1) and
health care providers should be trained to use these interventions in an
effective and respectful manner (experts: n = 2).

Paro’s shortcomings also came to light during the interviews. Some of
the participants in the layman group argued that a robotic cat or dog
might be more suitable than Paro’s seal appearance as patients might be
more familiar with these animals and would feel more safe (n = 2). Also,
it was mentioned by one participant that these familiar animals might
elicit more reactions from the patients (layman: n = 1). Interestingly, one
of the participants in the expert group stated that the form of the robot
pet does not matter as long as the robot has similar functionality as Paro.
Moreover, two participants from the expert group were in general positive
about Paro’s endearing appearance although, at first, they were skeptical
about the seal-like design as well. Additionally, some remarks were made
about the auditory responses of Paro which do not seem to be the best fit
for this target group. Two participants from the expert group described the
responses as repetitive, irritating, too loud and too high-pitched which can
overstimulate the patients, especially in a group setting (n = 2). Also, the
feel of Paro was discussed. Paro was perceived to be not pliable enough
by some of the participants (experts: n = 3) especially on its underside as
the hard internal structure can be felt through the fur. Moreover, Paro’s
body was described as being too rigid.

However, in spite of the aforementioned shortcomings Paro was de-
scribed as being a sufficiently effective intervention for people suffer-
ing from dementia. When asked, almost all participants answered that
Paro does not need more advanced tactile interaction capabilities (layman:
n = 3; experts: n = 5). Some participants argued that additional stimuli
might overstimulate the patients (layman: n = 1; experts: n = 2).

6.4.1.4 Suitability of Paro for other target groups

The most frequently mentioned alternative target groups for which Paro
could be a suitable intervention were people with an intellectual disabil-
ity (layman: n = 3; experts: n = 2) and children (layman: n = 2; experts:
n = 2). Subgroups that were specifically mentioned by some of the par-
ticipants were autistic children (experts: n = 1) and those in hospitals
(layman: n = 1; experts: n = 2). In the latter case it was argued that Paro
could provide comfort. Notably, these groups either have reduced cog-
nitive capabilities or their cognitive abilities are still under development.
This commonality is understandable as Paro was originally designed for
people with dementia. Indeed, almost all participants stated that Paro
might be too childish and too simple for adults with normal cognitive
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health (layman: n = 4; experts: n = 4). Even within the target group of
people with dementia, Paro was perceived by most participants to be espe-
cially suitable for patients with severe dementia (layman: n = 2; experts:
n = 4). In addition, some participants from the expert group reported that
Paro seems to be more effective for these patients compared to patients
with mild dementia (n = 2). In contrast, one participant from the expert
group had positive experience with the usage of Paro for a patient with a
chronic physical illness who had normal cognitive abilities. Additionally,
some participants argued that Paro might be effective for patients with
psychiatric problems as well, for example, to calm down restless patients
or to reduce aggressive behavior (experts: n = 2).

Participants indicated that robot pets should be more technologically
advanced in order to be suitable for most other target groups. Examples
of target groups for more advanced robot pets that were given by indi-
vidual participants were robot pets for people with reduced mobility who
are unable to care for a real animal (layman: n = 1) or in rehabilitation
where people could exercise together with a robotic dog (layman: n = 1).
Another potential target group that was mentioned were healthy elderly
people that still live independently: in this case a robot could help to
prevent loneliness (experts: n = 1). However, this participant mentioned
that the current price of Paro is a limiting factor for the wide adoption of
robot companions for personal use. Moreover, it was argued that a more
advanced robot could improve mental health by starting conversations
to help people open up about repressed emotions (layman: n = 1). Two
participants mentioned that in general, as with all target groups, it will
depend on the person whether he/she will benefit from interaction with
a robot companion (layman: n = 2).

6.4.2 Questionnaire

The likelihood ratings for the use of different touch gestures did not differ
significantly between the expert and layman groups (all p’s > .048). The
data of both groups was therefore combined and divided into three cate-
gories based on the median ratings of the likelihood that people with de-
mentia would use the touch gestures in their interaction with a robot pet
(see Table 19). The touch gestures are ranked within each column based
on the summed ratings of all participants which ranged from 9 to 45 as 9

participants rated each touch gesture on a scale from 1 to 5. Notably, the
touch gestures that were rated to be most likely (i.e., stroke, cradle and
hold) were positively natured while the least likely gestures (i.e., slap, hit
and pick) were of a more negative nature.



102 touch interaction with robot pets in a health-care setting

Table 19: Likelihood that people with dementia would use different touch gestures
in their interaction with a robot pet according to health care providers.
Summed ratings are listed within parentheses.

Likely (med > 3) Neutral (med = 3) Unlikely (med < 3)

Stroke (44) Massage (33) Finger idly (27)

Cradle (44) Press (29) Squeeze (25)

Hold (43) Push (28) Shake (25)

Rub (40) Pinch (25) Grab (24)

Contact (39) Poke (24)

Pull (39) Tap (23)

Hug (38) Swing (23)

Tickle (38) Tremble (23)

Kiss (37) Toss (22)

Nuzzle (37) Pick (21)

Rock (36) Hit (19)

Pat (34) Slap (16)

Lift (33)

Scratch (33)

6.5 discussion

6.5.1 Usages for robot pets in dementia care

The health care providers perceived that interaction with Paro could in-
crease the well-being of people with dementia. According to Keyes, men-
tal health is more than the absence of mental illness, it comprises of three
components: emotional, psychological and social well-being [70]. Emo-
tional well-being is the presence of positive emotions and the absence
of negative emotions [70]. The interviews indicate that interaction with
Paro could induce a positive affective state such as calmness and could
reduce negative emotions such as sadness. Additionally, the results show
that Paro could stimulate communication between patients as well as be-
tween patients and health care providers. As positive relations with others
contribute to psychological well-being [70], Paro is perceived to improve
well-being in this area as well. Both findings are in agreement with the
results from literature reviews on the effects of social robots in care for
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the elderly [12, 67]. However, from this study it is unclear to what ex-
tent Paro could improve the social well-being of people with dementia
which refers to how a person functions within society. Improving social
well-being seems to be especially important for elderly people who are
still aware of their participation within society and/or those who still live
independently. Robot pets such as Paro could help elderly people to stay
connected by updating them about recent events. An existing example
is Nabaztag, a rabbit-shaped robot with an internet connection through
which users can have access to news and social media [67].

During the interviews health care providers mentioned that they felt
that Paro would support(s) them in their work due to its positive behav-
ioral and psychological effects. In Bemelmans et al. [15] similar expecta-
tions were mentioned and Wada et al. [119] reported a reduction in the
stress levels of the health care providers due to the reduced need for su-
pervision when the elderly people interacted with Paro. Some of the par-
ticipants from the layman group in this study also expected this reduction
in the need for supervision. In contrast, participants from the expert group
indicated that they often intentionally stayed with the patient to observe
and evaluate the effect of Paro. Additionally, some of participants in the
expert group stated that due to the costliness of the Paro robot and the
unpredictable behavior of people with dementia, the possibility of unsu-
pervised interaction with Paro was assessed on an individual basis.

The use of robot pet companions to reduce loneliness was only men-
tioned by a few participants while literature reviews indicate that this is a
goal for which both real animals [16] and robot pets are frequently used
[12, 67]. Meanwhile, the use of robots in care for the elderly has sparked
a debate about several ethical issues including whether robots will reduce
the need for human contact or could even replace humans in the future.
Although the participants were not specifically asked about these ethical
issues, some of the care providers made comments related to this topic
during the interviews. For example, one of the participants stated that she
was against the use of Paro to relieve feelings of loneliness as a robot can-
not replace human contact. Similarly, Sparrow and Sparrow [105] argued
that robots can merely simulate affection, concern and friendship as these
robots are unable to engage in genuine social interaction. For this reason
they stated that it is a form of deception to let elderly people believe that
they are loved and cared for by a robot. Additionally, participants men-
tioned that adults with normal cognitive health might not feel that they
are being taken seriously if they were given the opportunity to interact
with a robot pet. Nevertheless, it was also reported that a patient with a
chronic physical illness, who had normal cognitive abilities, liked to in-
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teract with Paro in spite of knowing that it was not a real animal. In this
case there was no form of deception as described by Sparrow and Spar-
row [105]. Instead, this case seems in agreement with the view of Sharkey
and Sharkey [98] who argued that there are more explanations for why
someone would interact with a robot besides being the victim of deceit
as people are often willing to interact with an object as if it was a living
creature. This argument is supported by the theory that states that peo-
ple generally treat computers as social actors [84]. With respect to the use
of Paro for people with dementia, the participants of this study seem to
accept the fact that these patients might see Paro as a living animal and
might form a connection with it. From the interviews it became clear that
the expert group mostly used Paro in targeted interventions and less of-
ten as a means to just keep elderly people company. Despite the ethical
considerations, the health care providers in this study perceived Paro as
a valuable tool to improve the well-being of people with dementia. More-
over, it was mentioned that, due to the sensitivity of the matter, the use of
Paro should always be discussed in advance with the patient’s relatives.

6.5.2 Types of (tactile) interactions between people with dementia and a robot
pet

When asked during the interviews, the health care providers indicated
that Paro, with its current capabilities, is a sufficiently effective tool for
interventions in dementia care. Nevertheless, during the interviews some
shortcomings of Paro came to light and even a few additional function-
alities were proposed. This discrepancy could be due to the lack of ex-
perience with other social robots and insufficient knowledge of available
technological options. We will discuss the insights gained from this indi-
rect information that was provided during the interviews by reviewing
how people with dementia (could) interact with Paro according to the
health care providers.

The participants indicated that Paro is/ would be able to initiate in-
teraction due to its tactile (softness), visual and auditory cues which can
elicit caring responses from people with dementia. Patients are reported/
expected to comfort Paro and show affection by touching the robot seal
using positive and affective forms of touch and by talking to it. The pre-
dominant use of friendly touch gestures in interactions with a robotic pet
was also found in a study with a healthy user group by Yohanan and
MacLean [124]. It was indicated by some of the care providers that the
use of negative touch gestures by the patients with dementia was often
accidental, for example grabbing hold of Paro a bit too roughly. While
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Paro is able to distinguish between positive and negative forms of touch,
the robot does not distinguish between different forms of positive touch
which is the predominant method of interaction. Indeed, Yohanan and
MacLean [124] showed that positively natured touch can be used to con-
vey different intentions to a robot pet, that is: protective, comforting, rest-
ful, affectionate and playful. Taking these various intentions into account
could avoid mistakes such as a robot reacting negatively to a playful, yet
slightly rough, touch interaction (e.g. tossing). If Paro was able to better
understand the intention behind an interaction the robot could adapt its
response to the patient’s need (see also Chapter 4). Direct observations
of elderly people interacting with an animallike robot will help to further
inform to which different types of touch the robot should be able to re-
spond. Moreover, as people with dementia are also reported/ expected
to use speech in their interaction with Paro, speech (emotion) recognition
might also help to interpret their intentions [33].

Paro’s auditory responses were criticized by some of the experts as they
can overstimulate the patients and can cause annoyance to the health care
providers. In [91] similar critique was expressed by relatives and health
care providers. Paro has a built-in volume control function which can be
operated using a tiny screwdriver. However, it seems that the participants
from the expert group were not aware of this functionality. In addition,
adjusting the volume has to be done by the health care providers and
requires the use of a special tool which increases the burden of the care
providers when working with Paro. The health care providers will have
to control for overstimulation, especially when working in groups, which
is not desirable. It might be more desirable if Paro’s auditory response
could be automatically adjusted to the social context, for example by using
sensors. Furthermore, not only the volume of the auditory response seems
to contribute to the overstimulation and annoyance mentioned by some of
the experts. The high pitch and repetitiveness were also part of the critique
on the auditory response of Paro.

Tactile responses such as a simulated heartbeat, as suggested by some
of the participants in this study, or breathing (e.g. see [21] and Chapter 5)
might serve as a more suitable alternative. Paro’s current use of tactile
responses consists of (accidental) physical contact during its movements.
Simulated breathing could be a valuable additional response as it has
been found to have a calming effect on the person who is interacting with
a robot pet [97]. Furthermore, tactile responses might be less intrusive for
others compared to auditory responses.

The way that patients interact with Paro might be influenced by their
previous interactions with pets. Some participants argued that a dog or
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cat design might therefore be more suitable as these are more familiar
animals. However, the developers of Paro deliberately opted for an ap-
pearance of a less familiar animal to reduce the chances that the robot
could not live up to the user’s expectations [100]. For similar reasons oth-
ers opted for zoomorphic robots with a minimalistic appearance [21, 124].
Currently it is unclear which design would be the most suitable for elderly
people with dementia.

6.5.3 Other target groups that could benefit from interaction with robot pets

In its current form Paro is perceived to be suitable for children and peo-
ple with an intellectual disability. Indeed, Paro has previously been used
for robot therapy with hospitalized children [99]. Most participants ar-
gued that companion robots should have more advanced capabilities to be
suitable for a more general audience. As the world’s population is aging
rapidly and elderly people tend to live longer independently, social robots
can be used to assist these people [20, 55, 67]. Service robots such as the
Care-O-bot [43] can support elderly people in their everyday activities (e.g.
eating and taking medication) and companion robots can be used to en-
hance their well-being [20, 67]. In order to develop robot pet companions
that are suitable for healthy elderly people that still live in their own home,
more research into their needs will be necessary. Matching the needs of a
target group is important to increase the chance that users will accept the
technology [20]. For example, previous research shows that social robots
should not negatively affect the self-image of elderly people (e.g. making
them feel disabled and dependent) and that the robot’s appearance should
be serious instead of toy-like [20, 55].

6.5.4 Considerations regarding the study

The sample size of the study is small and consists of female participants
who share a similar educational background and occupation. Therefore,
the results should be interpreted with caution as the findings of this
study might not be generalizable. We deliberately recruited health care
providers because of their vast experience with the daily care of people
with dementia. However, other stakeholders such as patients and their rel-
atives might have different experiences and visions regarding the use of
robot pet companions and desirable forms of interaction with these robots.
Additionally, it should be noted that there might be a bias in our sample
of recruited health care providers. All participants were generally positive
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about Paro which might have influenced their decision to agree to take
part in our study.

In this study we opted to use Paro as the main example of a robot
pet companion for both groups because the expert group already had
experience with the robot seal. None of the participants had any previous
experience with other social robots. Although the interviews were also
set up to explore robot pets in general, it is unclear to which degree the
results are applicable to other robots. Moreover, participants that had no
experience with Paro (i.e., the layman group) were shown a video of the
robot. As a result it might have been more difficult for these participants
to judge the capabilities of Paro without seeing and interacting with the
robot. In future studies it might therefore be valuable to give health care
providers a broader overview of existing robot technology by introducing
them to a range of different robots and prototypes similar to the approach
taken by [55].

6.6 conclusion

The aim of this study was to inform the development of robot pet com-
panions that can understand and respond to human touch. Such robots
might be able to better suit the needs of people with dementia for which
touch is an especially important interaction modality. In addition, robots
with more advanced interaction capabilities might also be more suitable
for other target groups. For this study two groups of health care providers
in dementia care were recruited. One group worked with robot seal Paro
and the other group did not have any experience with the use of robot pets.
Through interviews and a questionnaire we explored in what ways peo-
ple with dementia could benefit from interaction with an animallike robot
with more advanced touch recognition capabilities, how people with de-
mentia (would) interact with Paro (using touch gestures) and which other
target groups could benefit from interaction with Paro or an animallike
robot with more advanced interaction capabilities.

Interaction with Paro was perceived by the health care providers as an
effective intervention that can help to improve the well-being of people
with dementia. For example, interaction with Paro could provide distrac-
tion, could interrupt problematic behaviors and could stimulate commu-
nication. Furthermore, our findings indicated that people with dementia
were reported/ expected to mostly use positive forms of touch and speech
to interact with Paro. However, Paro’s ability to recognize and interpret
different types of touch is limited and the social context is not taken into
account. Responding to different touch gestures that were reported to be
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important during interaction such as stroke, cradle and hug might already
result in more effective communication with Paro (see Part II). Moreover,
Paro’s auditory responses were perceived to be unsuitable for patients
with dementia because of the risk of overstimulation. Therefore, more
subtle haptic responses such as breathing patterns or a heartbeat might
be a valuable addition to Paro’s interaction repertoire. Additionally, Paro
was perceived to be most suitable for specific target groups such as people
with dementia and young children due to its limited interaction abilities.
Robot pet companions with more advanced social capabilities such as the
ability to have a conversation might better fit the needs of other target
groups such as healthy elderly people that still live independently.
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7
C O N C L U S I O N

The aim of this dissertation was to work towards socially intelligent robots
that can understand and respond to human touch. We have argued in
Chapter 1 that a social robot should be able to sense, classify and interpret
human touch and respond to this in a socially appropriate manner. To
this end we have presented work that addressed different parts of the
interaction cycle illustrated in Figure 1. In this last chapter we will reflect
on our research efforts and we will provide directions for further research.

7.1 recognition of social touch gestures

To work towards more reliable recognition of social touch gestures we
have collected and disseminated CoST: Corpus of Social Touch. This
dataset contains 7,805 gesture captures of 14 different touch gestures
which were performed in 3 variants: gentle, normal and rough. Our results
showed that classification of the 14 touch gestures in the CoST dataset in-
dependent of the gesture’s variant yielded an average accuracy of 60%
using SVMs with the RBF kernel (see Chapter 2). Furthermore, gentle ges-
ture variants proved to be harder to classify than the normal and rough
variants. Misclassifications were most common between touch gestures
with similar characteristics such as grab and squeeze. Additionally, the
results showed that there are individual difference in how gestures are
performed which makes it difficult to train a generalizable model.

The results from the touch machine learning challenge showed how pre-
processing techniques and classification algorithms that are prominent for
other modalities can be applied to touch data (see Chapter 3). Many of
these methods proved to be reasonably transferable to touch gesture data
without much modification. Accuracies up to 61% were reported for the
CoST dataset using random forest, which is similar to our results pre-
sented in Chapter 2. However, it should be noted that the machine learn-
ing challenge comprised a subset of CoST (i.e., gentle and normal variants)
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and that the train and test data division was different from the leave-one-
subject-out cross-validation results reported in Chapter 2.

Despite the use of different methods, consistent classification confusions
between specific gesture pairs were reported by the different challenge
participants. Moreover, these misclassifications were also similar to our
own findings presented in Chapter 2. The findings presented in Chap-
ters 2 and 3 indicate that the discretization of certain gesture pairs such
as rub-stroke and scratch-tickle might be problematic. Additionally, the
segmentation and labeling of touch gestures proved to be difficult when
participants interacted with a robot pet companion without being given
specific instructions on the kinds of behaviors that they should display
(see Chapter 4). In contrast to controlled studies in which touch gestures
are performed sequentially guided by specific instructions we observed
more complex behaviors. Examples include the simultaneous use of multi-
ple touch gestures, touch gestures that were quickly alternated and hybrid
forms of prototypical touch gestures. The findings of this study indicated
that the categorization of touch behaviors into discrete touch gesture cat-
egories based on dictionary definitions is not a suitable approach to cap-
ture the complex nature of touch behavior in less controlled settings. This
might be problematic when moving towards the automatic understanding
of social touch in more naturalistic interactions.

7.2 social touch in the context of human-robot interac-
tion

To gain more insight into the factors that are relevant to interpret touch
within a social context we studied interactions between humans and a
robot pet companion in different affective scenarios. Our results showed
that depending on the emotional state of the user, different social mes-
sages were communicated to a robot pet such as expressing one’s emo-
tional state, seeking emotional support or enjoying the pet’s company (see
Chapter 4). The expected response from the robot pet to these social mes-
sages also varied based on the emotional state. Examples of expected re-
sponses were keeping the user company, providing emotional support or
picking up on the user’s mood. Additionally, the expected response from
the robot pet was dependent on the different roles that were envisioned
such as a robot that mimics a real pet with its own personality or a robot
companion that serves as a therapist/ coach offering emotional support.
Furthermore, findings from video observations showed the use of multi-
modal cues to communicate with the robot pet such as talking to the pet
while touching it and making eye contact.
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In another study the use of breathing patterns to convey the emotional
state of a 1-DOF robot pet was explored (see Chapter 5). The results
showed that it is possible to communicate different levels of arousal while
the communication of different levels of valence proved to be more dif-
ficult indicating that context might be an important factor in the inter-
pretation of valence. Furthermore, the movement rather than materiality
seemed to have dominated how participants interpreted emotional expres-
sion. This finding indicates that behaviors might be reusable on physically
distinct robots with similar abstract abilities such as breathing.

The results of both these studies (i.e., those described in Chapters 4

and 5) confirmed previous findings in the literature on the importance
of context in the interpretation of social and affective behavior. Unfortu-
nately, currently commercially available robot companions such as robot
seal Paro, which is specifically designed for robot therapy, do not interpret
touch within social context (see Chapter 6). As a result, social interaction
with Paro is limited and the use of the robot is mostly restricted to specific
target groups such as people with dementia and young children.

Similarly to the findings reported in Chapter 4, the results from Chap-
ter 6 showed that people with dementia express affection to Paro by using
touch and talking to it. These findings point to the need to study touch
within multimodal interaction. Moreover, our findings show that Paro’s
auditory response can be perceived to be repetitive, irritating, too loud
and too high-pitched and can as a result overstimulate patients with de-
mentia. The use of a haptic response using various breathing behaviors
as described in Chapter 5 might well avoid such situations. Despite the
fact that Paro’s interaction abilities could be improved, our results show
that the robot is perceived as an effective intervention in dementia care.
However, a robot pet that can interpret human touch into context and re-
sponds in a socially appropriate manner might suit the needs of patients
with dementia even better as touch is an especially important interaction
modality for this target group. In addition, robots with more advanced
social capabilities might also be more suitable for other target groups.

7.3 challenges and opportunities

Comparing the touch gesture recognition findings from different ap-
proaches used in the touch machine learning challenge described in Chap-
ter 3 as well as in our own findings presented in Chapter 2 has provided
us with the opportunity to pinpoint the difficulties that need to be ad-
dressed to increase the reliability of touch recognition. While we have
seen commonalities in feature sets used for touch recognition (e.g. calcu-
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lating statistics), developing a standard would help ease the feature engi-
neering process. For example, common feature extraction approaches for
automatic video classification based on text, audio and video are already
documented [19]. Moreover, further research into highly discriminating
features using feature selection or dimension reduction can be beneficial
for applications that require (onboard) real-time touch classification in
which computational power is costly. Furthermore, at this moment it is
still unclear how many and which touch gestures should be distinguished
and what the minimum requirements are regarding touch recognition per-
formance in order to have a meaningful touch interaction. As the require-
ments will most likely depend on the application it is important to first
assess the use of touch within the intended context. Consequently, social
context plays an important role in the classification step as described in
Figure 1 in order to determine which types of touch should be recognized.
Additionally, new sensor technologies might help to better differentiate
between similar touch gestures.

There are still a lot of open questions regarding the understanding of so-
cial touch as there is a lot more to determining touch semantics and intent
than performing touch gesture recognition. Further research will be neces-
sary to determine whether direct recognition and interpretation of higher
level social messages from touch sensor data would be a viable option as
this might be a more suitable approach for touch recognition in more nat-
ural interaction. In this case, the step of touch gestures recognition before
inferring the higher level social meaning of the touch would be omitted.
Moreover, multimodal cues could add to the contextual understanding of
touch data. Our findings presented in this dissertation indicate that the
use of verbal behavior that coincides with touch interaction is an interest-
ing direction for future studies into the automatic understanding of social
touch.

Currently, most studies, including the work presented in this disser-
tation, focuses on parts of the interaction. However, future work should
eventually tie together the full interaction cycle. For example, as the re-
sults of Chapter 4 are based on acted scenarios it is important to verify
whether similar behaviors occur in a naturalistic setting in which people
would interact with a fully functioning robot pet in their own home. A
first step could be to induce emotions in participants and observe their
interactions with a responding robot pet in a lab setting.

With regard to robot responses, future work should explore the expres-
sion of affect beyond the four emotional states that were studied in Chap-
ter 5. Additionally, future studies could focus on examining longer inter-
actions in which the robot would adapt its behavior to the users actions.
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In this scenario it might be interesting to study the effects of the robot’s
breathing behavior on the user’s emotional state. For example, could a
happy robot pet cheer up a sad person?

In the health care domain, additional research will be necessary to deter-
mine both the short and long term effects of interaction with robot pets on
different aspects of well-being. For example, the effects of robot pets can
be assessed through questionnaires such as the Mental Health Continuum-
Short Form (MHC-SF) [76]. Furthermore, the development of robot pets
with more advanced social capabilities such as touch and speech recog-
nition might result in more intelligent interactions which could help to
better adapt to the needs of people with dementia and could make in-
teractions more interesting for a broader audience. Moreover, to further
improve interactions with robot pet companions future studies should ex-
plore which forms of robot response modalities (e.g. sounds, movements
or breathing patterns) best suit a target group. Additionally, the advantage
that a familiar robot appearance can have by relating to previous experi-
ences versus the risk of unmet expectations could be the focus of future
research.
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