1,230 research outputs found

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability

    Get PDF
    This study aims to develop an automatic classifier for risk assessment in patients suffering from congestive heart failure (CHF). The proposed classifier separates lower risk patients from higher risk ones, using standard long-term heart rate variability (HRV) measures. Patients are labeled as lower or higher risk according to the New York Heart Association classification (NYHA). A retrospective analysis on two public Holter databases was performed, analyzing the data of 12 patients suffering from mild CHF (NYHA I and II), labeled as lower risk, and 32 suffering from severe CHF (NYHA III and IV), labeled as higher risk. Only patients with a fraction of total heartbeats intervals (RR) classified as normal-to-normal (NN) intervals (NN/RR) higher than 80% were selected as eligible in order to have a satisfactory signal quality. Classification and regression tree (CART) was employed to develop the classifiers. A total of 30 higher risk and 11 lower risk patients were included in the analysis. The proposed classification trees achieved a sensitivity and a specificity rate of 93.3% and 63.6%, respectively, in identifying higher risk patients. Finally, the rules obtained by CART are comprehensible and consistent with the consensus showed by previous studies that depressed HRV is a useful tool for risk assessment in patients suffering from CHF

    Automatic risk evaluation in elderly patients based on Autonomic Nervous System assessment

    Get PDF
    Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations

    FEATURE EXTRACTION AND CLASSIFICATION THROUGH ENTROPY MEASURES

    Get PDF
    Entropy is a universal concept that represents the uncertainty of a series of random events. The notion \u201centropy" is differently understood in different disciplines. In physics, it represents the thermodynamical state variable; in statistics it measures the degree of disorder. On the other hand, in computer science, it is used as a powerful tool for measuring the regularity (or complexity) in signals or time series. In this work, we have studied entropy based features in the context of signal processing. The purpose of feature extraction is to select the relevant features from an entity. The type of features depends on the signal characteristics and classification purpose. Many real world signals are nonlinear and nonstationary and they contain information that cannot be described by time and frequency domain parameters, instead they might be described well by entropy. However, in practice, estimation of entropy suffers from some limitations and is highly dependent on series length. To reduce this dependence, we have proposed parametric estimation of various entropy indices and have derived analytical expressions (when possible) as well. Then we have studied the feasibility of parametric estimations of entropy measures on both synthetic and real signals. The entropy based features have been finally employed for classification problems related to clinical applications, activity recognition, and handwritten character recognition. Thus, from a methodological point of view our study deals with feature extraction, machine learning, and classification methods. The different versions of entropy measures are found in the literature for signals analysis. Among them, approximate entropy (ApEn), sample entropy (SampEn) followed by corrected conditional entropy (CcEn) are mostly used for physiological signals analysis. Recently, entropy features are used also for image segmentation. A related measure of entropy is Lempel-Ziv complexity (LZC), which measures the complexity of a time-series, signal, or sequences. The estimation of LZC also relies on the series length. In particular, in this study, analytical expressions have been derived for ApEn, SampEn, and CcEn of an auto-regressive (AR) models. It should be mentioned that AR models have been employed for maximum entropy spectral estimation since many years. The feasibility of parametric estimates of these entropy measures have been studied on both synthetic series and real data. In feasibility study, the agreement between numeral estimates of entropy and estimates obtained through a certain number of realizations of the AR model using Montecarlo simulations has been observed. This agreement or disagreement provides information about nonlinearity, nonstationarity, or nonGaussinaity presents in the series. In some classification problems, the probability of agreement or disagreement have been proved as one of the most relevant features. VII After feasibility study of the parametric entropy estimates, the entropy and related measures have been applied in heart rate and arterial blood pressure variability analysis. The use of entropy and related features have been proved more relevant in developing sleep classification, handwritten character recognition, and physical activity recognition systems. The novel methods for feature extraction researched in this thesis give a good classification or recognition accuracy, in many cases superior to the features reported in the literature of concerned application domains, even with less computational costs

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing

    Get PDF
    Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment. Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup uncertainties utilizing a novel MR-linear accelerator were also quantified. Treatment planning comparisons were performed with and without substructure inclusions and methods to reduce radiation dose to sensitive CS were evaluated. Lastly, these described technologies (deep learning U-Net) were translated to an MR-linear accelerator and a segmentation pipeline was created. Automatic segmentations from the hybrid MR/CT atlas was able to generate accurate segmentations for the chambers and great vessels (Dice similarity coefficient (DSC) \u3e 0.75) but coronary artery segmentations were unsuccessful (DSC\u3c0.3). After implementing deep learning, DSC for the chambers and great vessels was ≥0.85 along with an improvement in the coronary arteries (DSC\u3e0.5). Similar accuracy was achieved when implementing deep learning for MR-guided RT. On average, automatic segmentations required ~10 minutes to generate per patient and deep learning only required 14 seconds. The inclusion of CS in the treatment planning process did not yield statistically significant changes in plan complexity, PTV, or OAR dose. Automatic segmentation results from deep learning pose major efficiency and accuracy gains for CS segmentation offering high potential for rapid implementation into radiation therapy planning for improved cardiac sparing. Introducing CS into RT planning for MR-guided RT presented an opportunity for more effective sparing with limited increase in plan complexity

    Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing

    Get PDF
    Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment. Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup uncertainties utilizing a novel MR-linear accelerator were also quantified. Treatment planning comparisons were performed with and without substructure inclusions and methods to reduce radiation dose to sensitive CS were evaluated. Lastly, these described technologies (deep learning U-Net) were translated to an MR-linear accelerator and a segmentation pipeline was created. Automatic segmentations from the hybrid MR/CT atlas was able to generate accurate segmentations for the chambers and great vessels (Dice similarity coefficient (DSC) \u3e 0.75) but coronary artery segmentations were unsuccessful (DSC\u3c0.3). After implementing deep learning, DSC for the chambers and great vessels was ≥0.85 along with an improvement in the coronary arteries (DSC\u3e0.5). Similar accuracy was achieved when implementing deep learning for MR-guided RT. On average, automatic segmentations required ~10 minutes to generate per patient and deep learning only required 14 seconds. The inclusion of CS in the treatment planning process did not yield statistically significant changes in plan complexity, PTV, or OAR dose. Automatic segmentation results from deep learning pose major efficiency and accuracy gains for CS segmentation offering high potential for rapid implementation into radiation therapy planning for improved cardiac sparing. Introducing CS into RT planning for MR-guided RT presented an opportunity for more effective sparing with limited increase in plan complexity
    corecore