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Chapter 1

Introduction

Machine learning is often confronted with high-dimensional data. A common problem
is the so-called “curse of dimensionality”, meaning that an amount of data needed to
accurately learn parameters of a model grows exponentially with a number of input di-
mensions. For this reason, as well as computational issues, feature selection is often used
to reduce the data dimensionality to features that are relevant for solving a given problem,
such as classification. Moreover, in a situation when a training set is of the limited size, a
classifier built on a smaller number of features usually has better generalization ability.

Basically, one can distinguish between two types of feature selection algorithms: filters
and wrappers [Webb, 1999]. Filters try to reduce the data dimensionality while keeping
potential clusters in the data well separated. In this case, the relevance of each feature is
evaluated using different measures of a feature’s ability to discriminate between classes.
Wrappers also preprocess the data but directly take into account that the resulting features
should be useful for a certain classifier. Therefore, features are selected based on the
prediction accuracy of the classifier employing these features. This might lead to better
results but is usually computationally demanding and prone to overfitting.

For both wrappers and filters, the best feature subset of a certain cardinality can be found
using an optimal search strategy. However, a number of possible subsets is exponen-
tially large, therefore, testing all of them is computationally infeasible. To tackle this
problem, Narendra and Fukunaga proposed the branch and bound method that assumes
monotonicity of a selection criterion, which allows to avoid an exhaustive search [Naren-
dra & Fukunaga, 1977]. If such an assumption is not valid and the number of features is
large, suboptimal methods have to be used. This class of algorithms includes forward and
backward sequential feature selection, where a subset of relevant features is formed by
iteratively adding relevant features or removing irrelevant ones, respectively, e. g. [Ding
& Peng, 2005; Abe, 2005].
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For feature selection algorithms of the filter type, one of the central questions concerns
a selection criterion, i. e. a notion of the feature relevance. An intuitive choice for
such criterion is the Bayes error probability of classification using a considered feature
[Breiman et al., 1984]. Another popular family of techniques uses different dependency
and correlation measures to determine the degree of association between classes and a
feature [Mingers, 1987; Duch, 2006]. However, since such measures are usually pair-
wise, these techniques are not able to discover high-order dependencies in order to avoid
selecting mutually redundant features. As a partial solution, Hall proposed a correlation-
based measure punishing features that are highly pairwise correlated with the previously
selected features within the sequential feedforward setup [Hall, 1999].

Among probabilistic criteria used by filters, selection criteria based on Shannon entropy,
a measure of uncertainty in the information theory, are widely used [Duch et al., 2004].
Such criteria select features to reduce uncertainty about the class. Moreover, it was also
shown that features that have high mutual information with a class variable, a concept
closely related to the Shannon entropy, are indeed useful for classification [Lewis, 1962;
Brown et al., 2012]. Despite numerous estimators of mutual information developed in
the last several decades [Beirlant et al., 1997; Nemenman et al., 2002; Kraskov et al.,
20041], its estimation is still considered to be a hard task. However, a problem of feature
selection does not require precise values of mutual information. Therefore, even if an
estimator is biased, it is sufficient to have the right ordering of features according to their
informativeness, which significantly reduces requirements to the quality of estimates.

Battiti was one of the first to use mutual information, for sequential feature selection
[Battiti, 1994]. However, this involves estimation of the conditional mutual information
(CMI), i. e. the amount of information between the feature and the class given the al-
ready selected features, which requires multivariate density estimation. To circumvent
this problem, Battiti approximated CMI by pairwise mutual information. In addition, his
work gave rise to the development of various related approximations of conditional mu-
tual information as a criterion for feature selection, e. g. [Yang & Moody, 1999; Kwak
& Choi, 2002b; Fleuret & Guyon, 2004]. Alternatively, kernel density estimation is a
non-parametric technique widely used for multivariate density estimation. It was suc-
cessfully applied to estimate CMI and related quantities for the exhaustive search proce-
dure [Bonnlander & Weigend, 1994] and forward feature selection [Kwak & Choi, 2002a;
Bonnlander, 1996].

The feature selection algorithm developed in this thesis is inspired by the hypothesis
checking mechanism in the human visual system, which is implemented using numerous
feedback connections coming from the higher brain areas to the lower ones [Mumford,
1991; Bullier, 2001]. Due to the so-called information bottleneck referring to the limited
capabilities of visual processing, only a restricted amount of information can be processed
at the same time [Van Essen et al., 1991]. After the first portion of the input is processed



by bottom-up circuits, an initial set of hypotheses about a visual scene is formed in the
higher brain areas. If at this stage the scene can not be unambiguously classified, i. e.
there is still some uncertainty about the class and therefore no single hypothesis can be
chosen, a top-down signal from the higher areas will initiate processing of the next input
portion in order to refine the current hypothesis set. Such selection-refinement process
will be iteratively repeated until the visual scene is classified.

One can think about small portions of the visual input as its features. Then, the described
scheme is nothing else but a feature selection algorithm that selects features relevant for
classification of a certain visual scene. Thus, the selection is adapted to an object that
should be classified. This phenomenon inspired us to develop a computational algorithm
solving a visual classification task that would incorporate such principle, adaptive feature
selection. It is especially interesting because usually feature selection methods are not
adaptive as they define a unique set of informative features for a task and use them for
classifying all objects. However, an adaptive algorithm selects features that are the most
informative for the particular input. Thus, the selection process should be driven by statis-
tics of the environment concerning the current task and the object to be classified, which
in machine learning terms are called a training set and a testing sample, respectively. In
this context, the main question we ask in this thesis is whether the proposed adaptive
way of selecting features is advantageous and in which situations. Similarly to the visual
system where feedback is necessary for recognizing ambiguous objects, we expect that
adaptive feature selection should be advantageous for complex classification tasks where
it is difficult to define a single static feature subset of a moderate size that would be suf-
ficient for the accurate classification. In particular, the usage scenarios for the adaptive
selection scheme are the following.

When the structure of data is heterogeneous, one may need different features to discrim-
inate between classes, or even different objects belonging to one class may have differ-
ent discriminative features. As a result, it is very likely that no single small subset of
features is good enough for classification of all observations. One can partially over-
come this problem by having a collection of all relevant feature subsets. This, however,
will lead to an increase in the classifier complexity, which in turn will lead to its poor
performance, unless a large amount of training data is available for training a classifier
in high-dimensional space [Raudys & Jain, 1991]. Thus, conventional feature selection
schemes, which select a fixed subset of features before they are handed to a classifier, can
be inefficient.

In addition to the case with heterogeneous data, we expect the adaptive approach to feature
selection to be advantageous when the amount of available training data is limited and the
number of features exceeds the number of training samples. If features are selected in the
adaptive way, their relevance is judged only for a small subregion of the input space where
a testing sample lies. At the same time, static schemes look for features that are globally
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relevant, i. e. features with the high discriminative power for all samples from a training
set. Therefore, it is very probable that in the undersampled regime, when the training
set does not fully represent the true data distribution, estimates of the local relevance
would be more accurate than those of the global relevance. As a result, quality of the
adaptively selected features would be better and in order to reach the same classification
accuracy, one would need a smaller number of adaptively selected features comparing to
static selection schemes.

Thus, in cases when it is difficult to find a small fixed subset of relevant features, we
propose to use different features for every testing sample, i. e. select the informative
features in an “adaptive” manner. By adaptivity we mean that for a certain testing sample
every selected feature should be maximally relevant for its classification given values of
the already selected features observed on this testing sample.

The idea of adaptivity was used by Geman and Jedynak in their active testing model [Ge-
man & Jedynak, 1996] where they sequentially select tests in order to reduce uncertainty
about the true hypothesis. For their problem domain, they assumed that features are con-
ditionally independent given the class, which simplified the estimation. Jiang also used
an adaptive scheme [Jiang, 2008], however, without conditioning on the already selected
features, which are employed only to update a set of currently active classes. In contrast to
these schemes, we adaptively select features taking into account high-order dependencies
between them.

Therefore, we propose an adaptive feature selection algorithm that utilizes a selection
criterion based on Shannon entropy. Applied to a classification task, our adaptive feature
selection algorithm sequentially adds features one by one to a subset of features in order
to reduce uncertainty about a class of a certain testing sample. In information-theoretical
terms, a selection criterion is the mutual information of a class variable and a feature-
candidate conditioned on the already selected features, which take values observed on the
current testing sample. Hence, we call it adaptive conditional mutual information feature
selector (ACMIFS). For its estimation, we utilize a plug-in estimator based on kernel
density estimates with the proposed here adaptive smoothing. Even though the mutual
information is hard to estimate in general and from small data sets especially, practical
investigations of the algorithm show that it is able to select informative features in high
dimensions.

It is well-established that there are two factors affecting shifts of the visual attention: vi-
sual stimuli themselves and a task. While the influence of image statistics on the viewing
behavior is intuitive, a fact that a saccade sequence differs depending on a task had to
be proven experimentally [Yarbus, 1967; Rothkopf et al., 2007; Betz et al., 2010]. How-
ever, the question remains what kind of strategy people use to decide what is relevant
for a task, e. g. simple heuristics or complex algorithms based on the ideas of infor-
mation theory etc. Surprisingly, despite their computational complexity, statistical and



information-theoretical definitions of the task-relevance are often used in the state-of-
the-art algorithms predicting eye movements [Najemnik & Geisler, 2005; Itti & Baldi,
2006; Renninger et al., 2007]. Inspired by a process that selects relevant sources of the
visual information, our adaptive feature selection scheme can also be seen as a visual
search strategy underlying eye movements while performing a task. Therefore, further
we investigate the next question, namely whether the proposed information-theoretical
selection scheme, which is a computationally complex algorithm, is utilized by humans
while they perform a visual classification task. For this, we constructed a psychophysical
experiment where people had to select image parts that in their opinion are relevant for
classification of these images. We present the analysis of behavioral data where we in-
vestigate whether human strategies of task-dependent selective attention can be explained
by a simple scheme based on the pairwise mutual information, a more complex feature
selection algorithm based on the conventional static conditional mutual information and
the proposed here adaptive feature selector that mimics a mechanism of the iterative hy-
pothesis refinement.

The main contribution of this work is the adaptive feature selection criterion based on
the conditional mutual information, as well as its non-parametric estimation that does
not presume any problem-specific assumptions. Moreover, it is shown that such adaptive
selection strategy, being inspired by the attentional modulation of task-relevant parts of a
visual scene, is indeed used by people while performing visual classification.

The thesis is organized in the following way. Chapter 2 reviews the conventional feature
selection. Main approaches to dimensionality reduction in general and feature selection
in particular are discussed in Section 2.1. Further, in Section 2.2, we introduce a general
framework of sequential feature search which is used in Section 2.3 to present differ-
ent selection criteria. Information-theoretical feature selection together with appropriate
estimation techniques are reviewed in Section 2.3 and in Section 2.4, respectively.

Chapter 3 starts with the biological motivation and the general idea of the adaptive ap-
proach to feature selection, given in Section 3.1 and Section 3.2, respectively. Section
3.3 introduces a framework of adaptive feature selection, which is followed by Section
3.4 presenting a review on existing algorithms utilizing this approach to dimensionality
reduction. After that, in Section 3.5, the proposed adaptive conditional mutual informa-
tion feature selector is presented. In particular, Subsection 3.5.1 introduces the model, its
estimation using kernel density method with the adaptive smoothing is described in Sub-
section 3.5.2. Results of practical investigations are provided in Chapter 4, where ability
of ACMIFS to select relevant features in general and especially in high dimensions is
examined. In addition, Section 4.3 presents comparison of ACMIFS with two static and
adaptive feature selectors based on conditional mutual information, Parzen window fea-
ture selector [Kwak & Choi, 2002a] and active testing model [Geman & Jedynak, 1996].
Further, an alternative selection scheme combining ACMIFS and active testing model in
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order to reduce computational complexity is proposed in Section 4.4. The discussion of
advantages of adaptive feature selection is given in Section 4.5.

Chapter 5 presents the psychophysical experiment where human strategies of task-dependent
selective attention are investigated. Section 5.1 reviews existing strategies of attentional
selection with the emphasis on the task-dependent ones. Further, in Section 5.2, we de-
scribe an idea of the clicking experiment. Section 5.3 provides details of three tested
information-theoretical strategies based on mutual information, static and adaptive condi-
tional mutual information of a class with an image patch. Section 5.4 presents a statistical
method that is used to compare these strategies with respect to their explanatory power
of the observed behavioral data. Technical details of the experimental setup are described
in Section 5.5. Section 5.6 presents the analysis and interpretation of the clicking experi-
ments. Finally, the general discussion is provided in Chapter 6.



Chapter 2

Conventional feature selection

2.1 Main approaches to feature selection

Feature selection algorithms reduce dimensionality of the input space by picking a small
number of relevant features from the initial feature set. As representatives of dimension-
ality reduction techniques, they are used to solve a so-called ‘“curse of dimensionality”
problem, meaning that there exists exponential dependence between the dimension of
the input and the amount of data required to learn model parameters. Thus, decreasing
the input dimensionality should ease a learning process. Moreover, a model with fewer
parameters usually has better generalization ability.

Besides feature selection, there is another method of reducing dimensionality called fea-
ture extraction. This family of techniques performs transformation of the initial input
space to the space of reduced dimensionality, which usually has also some desired prop-
erties like orthogonality or independence of new features etc. It is worth to mention that
some feature extraction algorithms expand the initial input dimensionality in a way that a
learning problem becomes simpler in the transformed space [Broomhead & Lowe, 1988;
Simoncelli et al., 1992; Lewicki et al., 1998]. Since we are interested in selecting features
and not in their transformations, we will speak further exclusively about feature selection
algorithms. The review of feature extractors can be found for example in [Liu & Motoda,
1998; Guyon et al., 2006]. The most prominent representatives in pattern recognition
are principal component analysis [Pearson, 1901; Jolliffe, 1986], independent compo-
nent analysis [Hyvirinen et al., 2004] and sparse coding due to its biological plausibility
and connection to receptive field properties of neurons in primary visual cortex [Foldiak,
1990; Olshausen & Field, 1996].
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Feature selection algorithms can be divided into two main classes: filters and wrappers
[Webb, 1999]. The filters look for a minimal subset of features that can maximally en-
hance classification, i. e. discriminate between samples belonging to different classes
with the minimal error. In order to evaluate a discrimination power of a feature subset,
different metrics are used such as various distance measures between classes, dependency
measures between features and classes etc. Note that these metrics are not restricted to a
particular classification method, therefore, selected features can be used for training any
classifier. However, it can also be considered as a drawback, since the resulting feature
subset may be suboptimal for the chosen classifier. An extensive overview of distance
measures used by the filters will be presented later in Section 2.3.

Comparing to the filter methods, the wrappers select features that are useful for a cer-
tain classifier [Kohavi & John, 1997]. A goodness of a feature subset is measured by the
prediction accuracy of a classifier employing these features. Thus, one can be sure that
the selected features will indeed improve the quality of classification. However, there is
a danger of overfitting. This means that the features are selected in the way to provide
the best classification performance on the training data which might however lead to poor
accuracy on the previously unseen test data. Moreover, these methods are rather compu-
tationally expensive, since in order to find the best feature subset a classifier should be
run as many times as there are different subsets under consideration. Among represen-
tatives of wrappers, there are a recursive algorithm for support vector machines [Guyon
et al., 2002], a wrapper feature selector for Bayesian networks [Singh & Provan, 1995],
Kohavi’s sequential feature selection for a general classifier [Kohavi & John, 1997] etc.
Linear discriminant analysis can also be seen as a wrapper which performs feature selec-
tion while building a linear classifier on input features [Fisher, 1936]. Since the classifier
itself is simple and the only made assumption is that data drawn from each class are
normally distributed, this technique is often used as a filter [McLachlan, 2004].

There is another type of feature selectors called embedded methods [Duch, 2006]. They
can be considered as a subtype of the wrappers because during the selection process they
take also into account a classifier to be used. However, instead of directly employing re-
sults of classification, they rather use knowledge about the structure of a classifier while
evaluating how good different feature subsets are. Thus, compared to the wrappers, the
embedded methods are less computationally complex and less prone to overfitting. Exam-
ples of such methods are a feature selector for support vector machines, which minimizes
a generalization bound [Weston et al., 2000], decision trees and artificial neural networks.

In each case, one can look for the best feature subset of a certain cardinality using an op-
timal search strategy which assumes evaluating all possible feature subsets and choosing
the best one [Reunanen, 2006]. Since the number of such subsets is exponentially large,
testing all of them is infeasible unless a number of the initial features is small. A good
example of the optimal strategy avoiding an exhaustive search is the branch and bound
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method [Narendra & Fukunaga, 1977; Yu & Yuan, 1993; Somol et al., 2004]. The key
point here is monotonicity of a selection criterion. It means that if for two sets A4 and
‘B, A C ‘B, then the goodness of the set 4 is not larger than the goodness of the set B.
Using such assumption together with backward selection, i. e. iterative elimination of fea-
tures from the initial set, one can disregard some subsets on the intermediate iterations if
their discriminability is low. For references to selection criteria which are monotonic and
therefore can be used in combination with the branch and bound search, see the review on
feature selection and extraction of Webb [Webb, 1999].

We would rather consider a general case and assume that a selection criterion does not sat-
isfy the monotonicity assumption. Then, suboptimal methods have to be used. This class
of algorithms includes feedforward and backward sequential feature selection which use
the greedy search strategy [Webb, 1999; Jain & Zongker, 1997]. The feedforward algo-
rithms start with an empty feature set and iteratively add features, which are relevant with
respect to the features selected on the previous iterations [Whitney, 1971]. As was already
mentioned above, the backward approach starts with the full feature set and on every it-
eration removes features that are the least useful in the current subset of the remained
features [Marill & Green, 1963; Abe, 2005]. A popular backward method is the Markov
blankets algorithm that sequentially removes irrelevant features. A feature Fj is said to
be irrelevant if it has a Markov blanket, i. e. there exists such a feature subset F’ that if
Fy is conditioned on this subset, then it is independent of all remaining features [Koller &
Sahami, 1996; Tsamardinos et al., 2003].

The suboptimality of sequential methods comes from the fact that they do not explicitly
look for the best feature subset. They rather try to find a feature or several features that can
improve discriminability of the current subset as much as possible. The resulting feature
subsets found by optimal and suboptimal approaches will differ a lot if there are high-
order dependencies between features. Comparing feedforward and backward algorithms,
the latter can theoretically show better results. Assuming that there are some complemen-
tary features which are informative only together and not alone, the feedforward methods
would not choose any of these features at all, and therefore, they would not have a chance
to evaluate the goodness of these features together. In the case of the backward methods,
it is more likely that such features will be included in the final feature subset, because
eliminating any of them from the feature set will result in decrease of its discrimination
power. However, in practice, the backward methods are used less often. Feature subsets
on early iterations are of large cardinality, which makes the evaluation of their relevance
complicated. Moreover, practical studies have not shown that the backward approach pro-
duces always better feature subsets when compared to the feedforward approach [Aha &
Bankert, 1996; Kudo & Sklansky, 2000]. Sequential floating feature selectors belong to
the class of algorithms that assume alternation of feedforward and backward steps while
searching for the informative feature subsets. Though, they have proven quite efficient,
the applicability of floating search methods is limited due to their exponential complexity
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[Pudil et al., 1994; Jain & Zongker, 1997]. For a review on various search methods for
feature selection see [Reunanen, 2006; Somol et al., 2007].

A feature selection algorithm, which is proposed later in this thesis, is inspired by the
hypothesis checking mechanism in the visual system. It iteratively selects small parts
of a visual input for the detailed processing in order to refine hypotheses about objects
present in the visual scene. Keeping a parallel to this mechanism of the visual system,
we adopt a sequential feedforward approach to feature selection. Further, as a task we
consider image classification, therefore, all feature selection techniques will be presented
in connection to classification. Hence, a model describing data will refer to an abstract
classifier. For completeness, we name some examples of features selection methods for
regression. These are regression trees [Breiman et al., 1984], regularization schemes
[Tibshirani, 1996; Zou & Hastie, 2005] and various filters using correlation or entropy
between features and a dependent variable as a measure of the feature relevance, e. g.
[Hocking, 1976; Carmona et al., 2011].

2.2 Feature selection framework

2.2.1 Classification setup

Let us introduce a standard classification setup and a conventional scheme of feature
selection within this setup.

Suppose we have a space of possible inputs F = x|, i. e. each input is an n-
dimensional feature vector f = (f1,...,f,), where the i feature takes values f; € .
Our notion of feature is rather general. For example, for the image classification task,
features can be quite simple, such as gray-values of certain pixels, or more sophisticated,
such as frequencies of some objects on an image. Feature combinations are considered
as a random variable F' with a joint distribution on ¥y X --- X F, and the observation f is
drawn from that distribution.

Furthermore, each observation has an associated class label ¢ € C = {c1,...,cn}. The
task of the classifier is to assign a class label to each observation f. Thus, formally it is
considered as a map ¢ : ¥ — C or, more generally, as assigning to each f the conditional
probabilities p(c|f) of the classes c. To learn such classification, we are given a training set
X = {(xi,¢i)}_; of labeled observations, which are assumed to be drawn independently
from the distribution relating feature vectors and class labels. Then, the goal is to find a
classification rule ¢ that correctly predicts the class of future samples with unknown class
label, called testing samples. That is, confronted with a feature vector & we would classify
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it as ¢ = ¢(&). Feature selection then means that for this particular task only a subset of
features rather than the full feature vector is used.

2.2.2 General framework of feedforward selection

According to the conventional sequential feedforward feature selection for classification,
a feature Fy,, , selected on the (i+ 1)/ step should maximize some selection criterion S,
1. e.

1] = argmlfle(C,Fa,,...,Fai,Fk), Fre{F,....F} \{Fo,,- Fo, }» 2.1)

where Fy,,...,Fy, is a subset of the features selected before the (i + 1) iteration. In-
tuitively, the selection criterion S should favor such features that are relevant for clas-
sification with respect to the variable C. At the same time, it is desirable that the final
feature subset is of the minimal size, therefore, the selected features should be maximally
non-redundant with respect to each other.

Let us formalize the concepts of relevance and redundancy. Suppose we are given an
unlabeled sample. Before any feature is observed, we are completely uncertain about a
class label of this sample. Let U(C) be some measure of uncertainty about the variable
C. Then, a feature Fy is said to be relevant for classification if given this feature the
uncertainty about the class of some hypothetical sample will be reduced, i. e. U(C) <
U(C|F). Note that feature selection is performed before classification and therefore the
selected features should be discriminative for any sample that we would have to classify
in the future.

Suppose that we have already selected i features and let F' denote a subset of these fea-
tures, F' = {Fy,,...,Fo,}. At this stage, the current uncertainty about the class can be
expressed as U(C|F’). Then, the feature Fj is both relevant for classification and non-
redundant w. r. t. the already selected features if knowing this feature the current un-
certainty about the class will be reduced: U(C|F’) < U(C|Fy,F’). Thus, the criterion for
selecting a feature on the iteration (i 4 1) can be formulated in the following way:

Oyl = argm]?xS(C, F F)= argml?x{U(C|Fi) —U(C|F,F')}. (2.2)

In addition to a search strategy, a key issue in feature selection is the choice of a selection
criterion, which in the framework of uncertainty reduction corresponds to the choice of
the uncertainty function U(-). Breiman and coauthors, while working on decision trees,
which can also be considered as feature selectors, developed a set of desired properties for
uncertainty functions and proposed several examples satisfying these properties [Breiman
et al., 1984].
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Denoting a probability of the class c¢; after the i"" iteration as p(c j]fi), the uncertainty
U(C|F) is defined as a nonnegative function which depends on p(ci|ff),..., p(c|f). In
our notation, f stands for a vector of particular realizations of the selected features f' =
{Fy, = foys--, Fo; = fa;}- Then, U(C|F’) should have the following properties [Breiman
et al., 1984]:

1. U(C|F') = max, if all classes are equiprobable, i. e. p(c;|f') = p(cy|f'),Vj, ) =
I,...,m.

2. U(C|F') = min, if all samples belong to one class, i. e. p(c;[f') =1 and p(c;|f’) =
0,Vj # J.

3. U(C|FY) is symmetric in p(cy[f'), ..., p(cm|f).

2.3 Selection criteria

Here, we present various uncertainty functions which satisfy the above stated properties
and are widely used for feature selection. The review is given with respect to the presented
setup of the sequential feedforward feature selection for pattern classification.

2.3.1 Misclassification error

While solving a classification problem, the goal is to build a classifier with the best accu-
racy. So intuitively an uncertainty function should depend on the misclassification error.
Following Breiman and coauthors, let us define the misclassification error for i selected
features with the 0-1 loss function [Breiman et al., 1984]:

U(C|F) Zp (1 —maXp(cjyf")> , (2.3)
J

where ) stands for ) --- ) for brevity. Note that the expression (2.3) is in fact the Bayes
Fi Foyy Fa,

error probability, which is the lowest possible error probability for a given classification

problem:

Xr() (1-mpsric) = Lot (f],pcjw)

j=Lj#

1
Z i fl|CJ)
Fij=1,j

2.4)
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where ¢ i

7 is the winning class, i. e. p(cy|f') = mjglxp(cj|fi).

Using the misclassification error as an uncertainty function, the corresponding feature
selection criterion has the following form:
Qi1 = argmax{U(C|Fi) —U(C|F,F)} =

argmax{ Y p(f) max p I+ Y Y p(fi.f m]aXP(Cﬂfk, 0}
& Z7

(2.5)

This selection criterion is obviously useful for selecting features that can discriminate
well different classes. Since in practice neither an ideal classification rule nor posterior
distributions p(c;|fi,f’) are known, different approximations should be used. For exam-
ple, one can employ nonparametric techniques of density estimation such as the kernel
density method for estimating class-conditional pdfs p(fi,f|c;) and then apply the Bayes
rule to obtain the posteriors [Fukunaga & Hummels, 1987; Yang & Hu, 2012]. k-nearest
neighbor method is also used to estimate a selection criterion based on the Bayes er-
ror probability by margin-based feature selection algorithms such as Relief, which try
to weight available features in a way so that a margin between classes is maximal [Kira
& Rendell, 1992; Gilad-Bachrach et al., 2004; Sun, 2007; Yang & Hu, 2012]. Another
approach to the estimation problem is introducing simplifying assumptions about the in-
volved pdfs such as being Gaussian etc [Bruzzone & Serpico, 1998].

Despite its simplicity and intuitive usefulness for solving classification problems, the se-
lection criterion based on the misclassification error has a major disadvantage as an uncer-
tainty function. It does not explicitly favor situations where the posterior of some classes
approaches 0O or 1, which happens due to the linear dependence between the uncertainty

and (mjglxp(cj]fk,fi)).

Let us consider a two-class problem. In this case, the uncertainty function based on the
misclassification error (2.3) is the following:

U(ClF') ZP (1—max{p(c1[f), p(c2|f)} Zp )ymin{p(c1|f), p(calf)}. (2.6)

Keeping in mind that U (C|F') = ¥, p(f)U(C|f"), Figure 2.1 depicts U (C|f) as a function
ffi

of p(ci|f), illustrating its linear behavior. Therefore, as the class posterior distribution
becomes less uniform, i. e. when p(c1|f') decreases on the interval [0,0.5) or correspond-
ingly increases on the interval (0.5, 1], the function U (C|F’) decreases just linearly.
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— misclass. error
) — Gini index
H(C|f ) — Shannon entropy|
0.5+
0 : ; -
0 0.25 0.5, 0.75 ]
p(cil f7)

Figure 2.1: Uncertainty function U (C|f’) based on misclassification error, Gini index and Shannon
entropy plotted against p(c;|f') for a two-class problem.

2.3.2 Gini index

Following further the approach of Breiman and coauthors, we introduce a family of un-
certainty functions so that resulting selection criteria give more weight to less uniform
class posterior distributions, i. e. when p(c;|-) =1 or p(c;|-) =0.

For this, the desired property for U (C|F') would be to decrease faster than linearly. This
can be ensured if U(C|F") is strictly concave. So for U(C|F’), which is continuous on
the interval [0, 1], and p(c|f') € [0,1], the second derivative of the function should be
negative, U"” (C|F') < 0.

Let us proceed with construction of the improved uncertainty function. Recalling three
general requirements, we rewrite them for the two class problem. Since p(ca|f') =1 —
p(c1|f), we can consider that U (C|F’) depends only on p(ci|f'):

1. U(C|F) = max, if p(c|f}) =0.5.

2. U(C|F") = min, if p(c|f') = 1 or p(c;|f) = 0. Without loss of generality (w.l.0.g.)
we can require that the minimum value of U (p(c|f')) is 0.

3. U(C|F') is symmetric, i. e. U(c1|f') = U(cy|ff).
And we add the new requirement

4. U"(C|F) < 0.
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The simplest example of the concave function is a quadratic polynomial, which gives
U(C|f) = ap(c1|f)*> +bp(ci|f) +c.

The second and the forth requirements give ¢ =0, a+b = 0 and a < 0, respectively.

Assuming w.l.o.g. that a = —2, the uncertainty function is of the form:
U(CF) Zp pleilf)? +plalf))) =
, 2.7)
2219 pleilf) (1= p(ealf)) + p( 61If’ Zp (2p(c1lf)p(ealf’)),

which is known as the Gini index, a measure of statistical dispersion proposed by Corrado
Gini [Gini, 1912]. The general form of the Gini index for a multiclass problem has the
following form:

U(C|FY) Zp i Z P (c;|f)p plcy /) Zp (1—ip(cj|fi)2>. (2.8)
=1

Due to simplicity of its estimation and correspondence to the desired properties of the
uncertainty function (see Figure 2.1), this criterion is widely used in decision tree con-
struction [Breiman et al., 1984] and [Gelfand et al., 1991].

There is a modified version of the Gini index which is widely used for feature selection
in the field of text classification [Shang et al., 2007; Yang et al., 2011]. Let us rewrite the
feature selection criterion in the following way:

k= arg max {U(C|F) —U(C|F.,F)} = argmin {U(C|F.F)} =

m (2.9)
wen o) (1§ )
j=1

First, the criterion 2.9 is simplified to arg maxy {p(fk, ) Y plcjlfe, f)? }, where p(fi,f')
=1

is further replaced with p(fi,f|c;)%:

k:argml?x{Zp(fk,fi\cj)zp(cj\fk,i‘i)z}. (2.10)

j=1

The replacement is done in order to favor more class-specific features, i. e. features with
low marginal probabilities but high class-conditional probabilities for some c;. This is
especially useful when classes are unbalanced.
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2.3.3 Shannon entropy

In terms of information theory, a measure of uncertainty about the outcome of a random
variable is Shannon entropy [Shannon & Weaver, 1949]. For a random variable X, it is
defined by the following expression:

ZP x)log p(x 2.11)

The uncertainty about the class label after selecting certain features Fy,,.. ., Fg, 1S mea-
sured by the conditional entropy:

U(C|F') =H(C|F') = ZZ.P cj ) log p(c;|f). (2.12)

Shannon entropy has all four desired properties of the uncertainty function: it takes its
maximum when the class-conditional distribution is uniform, it equals zero when the pos-

. . m
terior of one of the classes is 1, and it is strictly concave: U”(C|F') =—Y p(f') ¥ m <
g

0. This can be seen on Figure 2.1 plotting Shannon entropy H (C|f’) against p(c|f') for a
two-class problem.

Rewriting the selection criterion with Shannon entropy as the uncertainty function, we
obtain:

S(C,F',F) =U(C|F") —U(C|F,F') = H(C|F') — H(C|F,F') = I(C; F|F'), (2.13)

where I(C; F;|F') is the mutual information between the class variable C and the feature
Fj, after selecting i features F'. It tells how much one can learn about C after observing an
outcome of the feature F, which is usually measured in bits, or equivalently how certain
one can classify the samples after selecting Fy given already selected features Fi, ..., F;.

Using the definition of mutual information, the selection criterion can be further rewritten
in the following way:

(e, filf)
S(C,F' F) =I(C; F|F") plc;, fi.f)log . =, (2.14)
~EE L vl s i
which can be interpreted as the expected value of the logarithmic function of %,

a degree of correlation between the variables C and Fj once the features F' are selected.

Mutual information as a selection criterion is very often used in feature selection algo-
rithms as it provides a natural measure of interdependence between features and the class,
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e. g. [Lewis, 1962; Quinlan, 1986; Battiti, 1994; Kwak & Choi, 2002a; Fleuret & Guyon,
2004; Peng et al., 2005], and it is invariant under invertible transformations of involved
variables [Reza, 1961; Kraskov et al., 2004]. The major difficulties in using mutual infor-
mation concern its estimation. As the feature selection criterion proposed in this thesis is
based on Shannon entropy or analogously on the mutual information, a detailed discus-
sion of entropy-related issues will be presented later.

2.3.4 Gain ratio

The selection criterion based on mutual information has a practical problem when fea-
tures are discrete. There is a bias in selection towards features with many values. The
reason is the following. Since the mutual information is a symmetric measure, then
I(C; Fi|F") = H(F}|F") — H(F;|C,F"). As aresult, a feature with many values has a high
entropy H(F|F’) that could lead to a high value of the mutual information.

An intuitive solution to this problem is to punish features with high entropy values. Thus,
the proposed modified uncertainty function, which is in the decision tree community
called “Gain ratio” [Quinlan, 1993], is a normalized form of (2.13), the selection criterion
using Shannon entropy as the uncertainty function:

i . U(CIF)—U(C|F',F) H(C|F')—H(C|F' F,) I(C;F]|F)
SORR =" mw amw e Y

This expression measures the ratio between the informativeness of the feature Fy, for clas-
sification and its entropy. However, the measure becomes unstable once the entropy of
some features starts approaching zero, i. e. when the feature has only one or very few val-
ues. Experiments using the gain ratio show that features with high entropy are punished
too much and almost never chosen [Mingers, 1987]. At the same time, a similar idea
has been successfully used for normalizing the mutual information between two features
I(F,,F j) as a component of the selection criterion (2.13) [Estevez et al., 2009]:

— . Ly 1(Fi: Fy)
k= argmax {I(C,Fk) - ;(E’l min(H (F), H(E,)} } . (2.16)

Another example is the symmetrical relevance criterion which uses the joint entropy
H(C, Fy,, Fy) as a normalization factor for the multivariate mutual information 7(C; Fy, Fy.)
[Meyer & Bontempi, 2006]:

1(C; Fy, F) }

i
k = argmax —_ 2.17)
g k {qZ] H(CvF(Xq7Fk)



18 2. CONVENTIONAL FEATURE SELECTION

Both above-mentioned criteria are approximations of 2.13. A detailed overview of various
approximations of entropy-based selection criteria will be presented further in Section 2.6.
For a review on information-theoretical selection criteria using different normalization
techniques see [Duch, 2006].

2.3.5 Alpha-entropies

Shannon entropy assumes a certain trade-off between contributions from the main mass
and tails of a distribution and events that occur too often or too rare do not influence much
the entropy. So-called a-entropies, Rényi entropy [Rényi, 1961] and Tsallis entropy [Tsal-
lis, 1988], are generalized versions of Shannon entropy that give a possibility to control
this trade-off explicitly. The a-entropy of some variable X is a function of Y y p(x)%,
where the parameter o corresponds to the degree of inhomogeneity in the structure of the
probability distribution of X [Holste et al., 1998]. That is, o controls a contribution of
events of different frequencies to the sum, i. e. for large o only the high-frequency events
contribute, whereas for small o all events are weighted more uniformly. Due to this flexi-
bility, ai-entropies are widely used to describe behavior of complex systems in such fields
like statistical thermodynamics, e. g. [Ramshaw, 1995], nonlinear dynamical systems, e.
g. [Grassberger & Procaccia, 1983], evolutionary programming, e. g. [Stariolo & Tsallis,
1996] etc.

o-entropies are also used as uncertainty functions in feature selection. For the o-entropy
Hg(C|F?), the parameter o allows to control a trade-off between the purity of the class
posterior distribution, which is considered to be the best criterion to optimize from the
Bayesian viewpoint [Duch, 2006], and reducing the average uncertainty. The less uniform
posteriors, i. €. when the posterior of one of the classes is around 1, can be achieved with
o — 0. In this case, all events contribute to the entropy and it will be significantly reduced
only when p(c; |fi) — 1. Both Rényi and Tsallis entropies are identical to Shannon entropy
for oo — 1. Let us take a closer look at these parameterized entropies.

The uncertainty function U (C|F) using the Rényi entropy is
i p(fi) - pia
Hr(CIF') =Y ——log | Y p(cj|f)*|, a>0a#l, (2.18)
il 0 =
F J=
leading to the following feature selection criterion (note its resemblance to mutual infor-
mation):

m

Y plcjIf)*

=1

S(C,F',F;) = Hg(C|F") — Hg(C|F', F, ZZ

J (2.19)
Fi Fi .Z]p(cj‘flafk)a
j:
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Rényi entropy has the first three desired properties of the uncertainty function but, in
contrast to the concave Shannon entropy, it is concave only for o € (0,1) and neither
concave nor convex for o > 1. Figure 2.2 illustrates the behavior of the quantity Hg(C|f')
as a function of p(c1|ff) for different values of o for a two-class problem. One can see that
for small o the decrease in entropy will be significant only if p(c|f') — 1 or p(c1|f) — 0.
However, for large o a slight move away from the uniform posterior, i. e. away from
p(c1|ff) = 0.5, causes noticeable entropy reduction.

A B

Hr(C|f")

—a=0.5
—a>1
o=

— a=10

0.5 0.5

0 0

0.75 1 0 0.25

0 025 0.75 1

05, 05_
p(eilf*) pleilf*).
Figure 2.2: A: Rényi entropy as the uncertainty function plotted against p(c;|f') for different
values of o for a two-class problem. B: Tsallis entropy as the uncertainty function plotted against

p(c1|ff) for different values of o for a two-class problem.

Tsallis entropy is a generalization of Boltzmann-Gibbs entropy from statistical mechanics
and for the distribution p(c|f') it is defined as follows:

Hr(C|F) = —ZLF) (1 - i p(cj|fi)°°> , o>0,00# 1. (2.20)
j=1

jr,.l—oc

As Tsallis entropy is always concave, it satisfies all four desired features of the uncertainty
function. However, compared to Shannon entropy, it is nonadditive. Additivity is one of
the algebraic properties of the uncertainty measure requiring the joint entropy of two
independent events to be a sum of their marginal entropies, i. e. H(X,Y) =H(X)+H(Y)
[Aczél & Daroczy, 1975]. For Tsallis entropy, we have:

Hr(X,Y) = Hr(X) + Hy (V) + (1 — o) Hy (X)Hr (Y), (2.21)

where (1 —a) indicates a degree of deviation from an additive system. Nonadditivity
can be useful if the system is known to have nonlinear long-range couplings between its
elements [Caruso & Tsallis, 2008].
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Figure 2.2 plots Tsallis entropy Hy (C|f') against p(c;|ff) for different values of o for a
two-class problem. For small o, as in case of Rényi entropy, Hr vanishes only when
p(c;|f) — 1. For large values of o, the Tsallis entropy of the system does not change
much by moving away from the uniform posterior. Such immunity to small changes in
the class conditional probability distribution can help to achieve better generalization and
robustness against noise.

Using Tsallis entropy as the uncertainty function, the feature selection criterion has the
following form

, ‘ . f, n
S(C.F. ) = Hy (CIF) i (CF. ) = Y3 20V
j,'l' "}'}( ]:

1 (pcjlf)* = p(c)If, fi)™).-

(2.22)

As uncertainty functions in decision tree construction, Rényi and Tsallis entropies were
used for example by [Maszczyk & Duch, 2008; Lima et al., 2010]. It was reported that
due to the possibility to adjust to a structure of the probability distribution describing a
given problem, constructed trees are usually smaller and have better performance than
trees using the Shannon entropy. Moreover, this class of entropies is attractive for general
feature selection due to the reduced computational complexity compared to the Shannon
entropy [Liu & Hu, 2009; Lopes et al., 2009].

2.3.6 Correlation-based feature selection

The list of the selection criteria presented above is not exhaustive. Among others, there
are criteria that do not formally fit in the framework of uncertainty reduction. The first
class of such approaches are based on dependency measures between variables.

As an alternative to the selection criterion based on mutual information (2.13), it was
suggested to use the 2-statistic instead [Hart, 1985]. Similarly to mutual information, -
statistic measures a degree of dependence between a class and discrete features. However,
this measure is usually used only for ranking, which assumes evaluating relevance of each
feature alone and not together with other features. As a result, features that are relevant
only in combination with other features will not be selected and a resulting feature subset
will be likely redundant.

The y>-statistic for a feature Fj after selecting i features is defined in the following way:

. T;i—E;;)?
S(C, B, F) =7 (C,R) =Y ) M Foe F\{F,....F}, (2.23)
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where r is a number of the discrete values of the feature Fy; 7;; is a number of training

samples belonging to the class c; and feature Fj taking the value f;. E;; = @ where 7; is
a number of samples with Fy equals f;, T} is a number of samples belonging to the class
c;j and finally T stands for a total number of the samples.

Using the determined y’-statistic and the degrees of freedom, which is (m — 1)(r — 1) in
our case, one can define the p-value, the level of confidence about the feature Fj; being
uninformative for a class variable C. Thus, the lower this value is, the more dependent
is the class on the feature under consideration. Note that this statistic naturally avoids
the problem of being biased towards features with many values because a number of
discrete values of the feature candidate Fy is taken into account via the degrees of freedom.
Moreover, a level of confidence about the class-feature independence is more intuitive to
interpret than a level of uncertainty, thus one can easily stop selecting features once the
confidence level exceeds a certain threshold.

On the negative side, the main problems of x>-statistic that were discovered are unreliable
estimates due to noise and limited amount of training data [Mingers, 1987]. Further, as
was already mentioned, 2-statistic is applicable only to discrete variables. In addition, as
x>-statistic measures the pairwise association between a class and a single feature, it does
not capture high-order dependencies between features.

Another feature selection criterion based on dependency measures is a Pearson correlation
coefficient. It favors features that are highly positively or negatively correlated with the
class [Duch, 2006]:

(fe,j — fi)(cj—2©)

1

T ’
\/, (frj — fi)? ,Zl(Cj—E)z
=

TMH

S(C,F,F) = r(C,Fy) = (2.24)

(Raghy

where f ; and c; are the values of the feature Fj and the class variable on the j'" training
sample, respectively, and fj and ¢ are the expectation values of the corresponding variable.
Like the y2-statistics, the correlation is usually measured between a single feature and a
class. Therefore, this method is used for ranking features rather than for selecting a small
informative subset of them. As an alternative to the Pearson correlation coefficient, other
criteria such as Fisher score [Furey et al., 2000], Kolmogorov-Smirnov test or G-statistics
can be used [Press et al., 1988; Duch, 2006; Miyahara & Pazzani, 2000]. Despite the fact
that the ranking approach does not take into account high-oder dependencies between
features, it can still be useful for dimensionality reduction purposes. For example, it was
shown during the NIPS feature selection challenge [Guyon et al., 2004]. Therefore, such
techniques remain popular due to their simplicity.
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A more advanced feature selection criterion was proposed by Hall [Hall, 1999]. It looks
for a subset of features that are individually correlated with the class and at the same time
minimally pairwisely correlated with each other:

) = (i+1)Fsr

SCF,F 3
CRE) = T oy

(2.25)

where (i + 1) indicates a number of feature in the considered feature subset and 7y and
rcr are the average Pearson correlation coefficients between two features and between
a class and a feature, respectively. Comparing to the y>-statistic, Hall’s CFS measures
redundancy between the features, however only pairwise. At the same time, an attractive
advantage of this selection criterion is that it can be easily applied to both classification
and regression problems. Note also that in contrast to mutual information, correlation-
based techniques are able to find only linear dependencies between variables.

2.3.7 Probabilistic distance measures

There is a class of feature selection criteria that utilize probabilistic distance measures in
order to select features which have the most distinct, i. e. minimally overlapping, class-
conditional distributions. Although this approach as well does not fit into the framework
of uncertainty reduction, we present it here for completeness.

Together with selection criteria based on the misclassification error, selection algorithms
using probabilistic distance measures are representatives of discriminative methods that
try to separate classes directly rather than model data. This approach can be a better
solution while building a classifier, especially if the amount of data is limited [Vapnik,
1998].

Considering a feature candidate Fj after i selection iterations, let us denote a distance
between two class-conditional distributions p(fi|c;, ) and p(fi|c j/,f’) asd! i (cj,cj). Fora
two-class problem, a selection criterion is defined simply as maximization of this distance,
i. e.

Qi) = argm]?xS(C, F F) = argmgxd,i(cl,cz), (2.26)

while for multiclass problems there are several ways of combining the pairwise distances
[Webb, 1999], for example:

S(C,F',F,) = maxdj(cj,cj), (2.27)
J#7
or

S(C,F' | F,) Zde cjrci)p(cilf)p(cy|f). (2.28)
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Similar to the notion of the uncertainty function, a distance between two distributions
should satisfy certain requirements:

1) di(cj,c;) = 0if the corresponding pdfs are identical, p(fi|c;,f) = p(fi|c;,f);

2) di(cj,cy) >0;

3) d,i(c j»¢j) = max when the corresponding pdfs have disjoint support.

This list can be extended by the requirement of symmetry, d; (c;,c;) = d.(c;»,c;), which

together with 1) and 2) are three standard necessary conditions for a function to be a
distance metric.

We provide some examples of probabilistic distance measures used in feature selection.
A more comprehensive list can be found for example here [Chen, 1976]:

* Kolmogorov variational distance:

dk C],C] //‘p fk|C]7 C]7 ) (fk’C], ) (le,fl)|dfkdfl:

7' 5 (2.29)

[ [ b1t = pleil )] pULIE) O i
Fi T

which for a two-class problem has a direct relation to the Bayes error probability:
plelsfist) =053 1= [ [ |perl i) = plealsic )| (1) e
Fi T
* Chernoff distance:

di(cj,cp) = 10g//p (filej, ) pU =9 (filejr, £)dfidf, s €[0,1]. (2.30)

Fi T
* Bhattacharyya distance:
1 .
difejrer) = —tog [ [ (pUflessf)plfiles 1)) dfic 231)
FiFi

which is equivalent to the Chernoff distance with s = % It also provides an upper
and lower bound of the Bayes error probability [Fukunaga, 1990].
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* Divergence:

dk C], "}—/lvf/ fk|C]> p(fk|cjl7fl))logp(fk|cj/,fi)dfkdfl_ (232)

Dir (p(fele; . 8)||p(filey ) +Dxr (p(felej B)|p(filej, ) ,

where Dk (+||-) is the Kullback-Leibler divergence between two pdfs (see the def-
inition (2.40) below). Although the Kullback-Leibler divergence can be used as
an asymmetric distance measure between two distributions alone, the summation
of two distances is used here in order to make the measure d symmetric, i. e.

d(x,y) = d(y,x), but Dgr, (p(x)||p(y)) # Dk (p(y)||p(x)).

e Patrick-Fischer distance:

S

di(cj,cp) = // (eles B p(eilF) — pfiles E)ple,l6) 2 dfidf §  (2.33)
FiFi

Despite an intuitive utility of the presented distance metrics for feature selection, they are
rarely used in contemporary algorithms, see few examples [Papantoni-Kazakos, 1976;
Devijver & Kittler, 1982; Miller, 1990]. More attention is paid to the Bhattacharyya
distance due to its connection to the Bayes misclassification error [E. & C., 2003; Xuan
et al., 2006]. In one of the recent works, Bhattacharyya, divergence and Patrick-Fischer
metrics were employed for evaluating relevance of feature subsets in sequential search
[Somol et al., 2005]. However, it was reported that filters using such metrics do not
always select good feature subsets due to the difficulties in accurately estimating involved
pdfs. For this reason, usage of the probabilistic distance measures is usually limited to
the cases when the class-conditional pdfs come from known distributions and the metrics
can be calculated analytically [Webb, 1999].

2.4 Information-theoretical feature selection

2.4.1 Definitions

Let us recall definitions and some properties of the fundamental information-theoretical
concepts, Shannon entropy and mutual information. Entropy as a measure of uncertainty
of a random variable was introduced by Claude Shannon [Shannon & Weaver, 1949],
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though the closely related thermodynamical entropy was known before. Thus, for a ran-
dom discrete variable A, its entropy is defined as follows:

Zp )log p(a (2.34)

where p(a) is the probability mass function of A.

A high level of entropy means that before observing a variable, we are highly uncertain
about its future value. Therefore, as was already stated while describing different un-
certainty functions, the entropy is maximal for uniform distributions and minimal if one
of the possible outcomes of the variable appears with probability 1. Though the entropy
was originally proposed for discrete variables, there is its analog for continuous variables
called differential entropy:

H(A) = — / p(a)log p(a)da, (2.35)
A

where p(a) refers to the probability density function. From now on, when referring to
entropy, the differential entropy will be meant unless stated otherwise.

In case of two variables A and B, the uncertainty about the variable A once the variable B
is known is quantified by the conditional entropy:

H(A|B) = H(A,B) / / a,b)log p(a|b)dbda, (2.36)

where p(a,b) is the joint probability density function of A and B and H(A, B) is the joint
entropy of two variables:

H(A,B) = / / pla,b)log p(a, b)dbda. (2.37)

Usually the logarithm with base 2 is used and entropy is measured in bits. Then, one can
interpret the entropy of a variable as a number of bits necessary for its coding.

There are defining properties of Shannon entropy that are worth to be mentioned [Cover
& Thomas, 1991]:

* the entropy is nonnegative, H(A) > 0;

* conditioning reduces the entropy, H(A|B) < H(A);

n
* H(Ay,...,A;) < ¥ H(A;), with equality only if the variables Ay,...,A, are inde-
i=1
pendent;
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Figure 2.3: A: Entropy of the binary variable A € {0, 1} plotted against p(a = 0). It is shown
that entropy reaches its maximum value at p(a = 0) = p(a = 1) = 0.5 and its minimum value
at p(a=0) =1 and p(a = 0) = 0. B: Diagram of the relation between mutual information of
two variables /(A; B) and their marginal, joint and condition entropies, H(A) and H(B), H(A,B),
H(A|B), respectively.

e H(A) is a concave function of p(a).

The mutual information of two continuous random variables A and B measures the degree
of their dependence is defined as follows:

I(A;B) = H(A) — H(A|B) = H(B) — H(B|A

I
X
=
_'_
X
o

|
X
=
=

i

In other words, mutual information quantifies a change in the uncertainty about one vari-
able after the second variable is observed. Note that the entropy H(A) or H(B) can be
infinite as da — 0 or db — 0, respectively. However, the mutual information is always

finite because it is defined as a difference of entropies, thus, the infinite terms will vanish
[Haykin, 1999].

Among the important properties of the mutual information, one can distinguish the fol-
lowing:

* the mutual information is symmetric, [(A;B) = I(B;A);

* it is nonnegative, I(A;B) > 0, with equality only if the variables A and B are inde-
pendent.
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Conditional mutual information /(A;B|C) measures the amount of information of two
variables A and B conditioned on the variable C:

I(A;B|C) =H(A|C)+H(B|C)—H(A,B|C) =

///p ab.c)log & T")bllj jdedbda (2.39)

Conditional mutual information is a key element of sequential information-theoretical
feature selection. Recall that on every iteration we look for a feature Fj that maximizes
I(C;F¢|Fy,, ..., Fy,), the mutual information with the class variables C conditioned on the
already selected features Fy,, ..., Fy,.

1

Another central concept of information theory is the relative entropy or Kullback-Leibler
divergence, which for two probability distributions p(a) and g(a) measures a distance
between them:

Dru(p(a)la(a)) = [ playiog? ) da (240
Aa

However, the Kullback-Leibler divergence is not a true metric because it is not symmetric
and the triangle inequality does not always hold. Using the definition of the Kullback-
Leibler divergence, one can represent the mutual information and get its interpretation in
terms of the distance between two distributions:

I(A:B) / / b)Dx(p(a]b)][p(a) ba @41)

Then, the mutual information measures how much on average the distribution of A changes
if it is conditioned on B. Obviously, if A and B are independent, conditioning on B will
not have any effect on A and the average Kullback-Leibler distance will be zero.

For further reading on information theory, refer to [Shannon & Weaver, 1949; Cover &
Thomas, 1991; Mackay, 2003].

2.4.2 Use in solving classification tasks

Already in 1962 Lewis proposed mutual information between a class variable and a fea-
ture as a statistic measuring “goodness” of this feature for classification [Lewis, 1962].
The statistic had to reflect a degree of correlation between the feature and the class vari-
able and it was derived with an objective to reduce a misclassification error. Lewis showed
experimentally that the accuracy of the classification was higher when using features with



28 2. CONVENTIONAL FEATURE SELECTION

higher value of the mutual information. Therefore, it was concluded that it is indeed use-
ful for selecting features that are relevant for classification. Similar finding appeared also
in the field of visual neuroscience, where Ullman and colleagues showed that features
maximizing mutual information with a class are optimal for use in visual classification
tasks [Ullman et al., 2002].

A more formalized justification for using mutual information as a criterion for selecting
discriminative features is based on inequalities relating the Bayes error probability to the
conditional entropy p(c|f) and consequently to the mutual information /(C; F).

For example, the Fano weak lower bound on the conditional entropy [Fano, 1961] states
the following:

H(C|F) < 14 p,logy(m—1), (2.42)

where p, is the Bayes error probability when using the feature F for classification and
m is a number of the classes. However, this bound becomes degenerated for two-class
problems. Fano also introduced a strong lower bound on this quantity [Fano, 1961]:

H(C|F) < H(p.)+ pelog,(m—1). (2.43)

And the upper Hellman-Raviv bound [Hellman & Raviv, 1970] is given by the following
expression:

H(C|F) > 2p.. (2.44)

As I(C;F) =H(C)— H(C|F), it is obvious that a feature F, which maximizes the mu-
tual information /(C; F') or equivalently minimizes H(C|F), assures a small classification
error.

Recently Brown and colleagues showed that selection criteria based on mutual informa-
tion can be derived from the formulation of the conditional likelihood maximization prob-
lem [Brown et al., 2012]. Let us review their analysis.

In our standard classification framework, the goal is to estimate a posterior probability
p(c|f). Assuming that some features are redundant, we want to select only relevant fea-
tures for classification. Suppose that there is an N-dimensional binary vector 6 indicating
selected features. Thus, 6; = 1 if a feature F; is in the subset of the relevant features and
0; = 0 otherwise. We want to find the optimal parameter 6* ensuring the best possible
classification accuracy, which is ideally provided by using all features F = {Fj,..., F,}.
Thus, we look for such 8* that p(c|F) = p(c|F®").

Suppose also that a true posterior p(c|F®) is approximated by the model ¢(c|F®, 1), where
T represents parameters necessary for classification. Within such setup, our goal is to find



2.4. INFORMATION-THEORETICAL FEATURE SELECTION 29

the parameters (0, 1) that maximize the conditional loglikelihood of the class labels given
the data D:

1(6,1]D) = Zlogq ciltdT) A E e [logq(c,-|f?,‘c)] 7 (2.45)

where ¢ ¢ [] is the expectation w. 1. t. the distribution p(f,c) and L 121( ) is its finite

sample estimate. After adding and subtracting both p(c|f®) and p(c|f), 2.45 can be written
in the following form:

p(clf®) p(clf)
—I=Epq) {log m} +Epte) {log W] —E 1) [logp(c|f)]. (2.46)

The first and the third terms are Dz (p®||¢®) and H(C|F), respectively. Let us look at the
second term:

Epto) 108 2 | = Bpne [lop(eln ~togp(cl’)] =

c,f
Epte) [log oI +log p(c) —log p(e)p(®) IOgP(C)} = (2.47)

m] e {k’g#}f:@ﬂ |

Let F® denote the non-selected features. Then, the variable F can be represented as a joint
variable, F = {F® F®}. Taking this into account, we have:

pef) | o e | o [ )
Et |08 7] e [ iper] e [t @4

as the function whose expectation is calculated does not depend on F 8, Plugging this into
(2.47), we get:

pled) T ) ) ey e
p<c>p<f>1 P [Ing@p(fe)] =1(C:F) —I(GF). (2.49)

Finally, the minimization problem (2.46) under the assumption that a number of training
samples T tends to infinity can be rewritten as:

— lim [ ~ Dy (p°[lq°) +1(C:F) —I(C:F°) + H(C[F). (2.50)
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Following [Brown et al., 2012], we interpret all components of the conditional loglikeli-
hood. Dxz(p®||¢®) is the Kullback-Leibler divergence between the true and approximated
probability of the class labels given the selected features. In other words, it measures how
good the approximation of the model g is, which in turn depends on the model parame-
ters T. Note that though Dk (p®||¢®) formally depends on 8, it does not tell much about
optimality of 0 but only about the quality of approximation given some fixed 0. The dif-
ference I(C;F) —I(C;F®) shows the amount of information that is left between the class
variable C and non-selected features. If the optimal parameter 6* is found, this difference
will be 0. The last term can not be reduced by optimization and represents the intrinsic
uncertainty of the classification problem at hand, i. e. the uncertainty about the class
labels which is left after observing all features.

As the goal of feature selection is to find the optimal parameter 6%, the minimization prob-
lem (2.50) can be reduced just to maximizing /(C ;Fe), as other terms are not influenced
by 0. This proves again that features maximizing the mutual information with the class are
good candidates to be included in a classifier. Note that sequential feedforward techniques
form a subset of relevant features sequentially. Therefore, they maximize I(C;F®) by iter-
atively maximizing /(C; Fg|Fy,, ..., Fy,;). Then, the above statement can be reformulated
in the following way: on every iteration a feature F; maximizing I(C; Fy|Fy, .. ., Fy,) will
decrease the classification error more than other feature candidates.

2.5 [Estimation of mutual information

Despite theoretical attractiveness of mutual information, its practical use is complicated.
The reason is that usually mutual information is not known a priori and therefore it should
be estimated from data at hand. As mutual information can be decomposed into a sum of
marginal and joint entropies, I(C;F) = H(C) + H(F) — H(C,F), its estimation is usually
reduced to the problem of estimating these entropies. Although entropy estimation has
been massively studied already for several decades, it is still considered to be a difficult
task. Moreover, in situations when the amount of data is limited, there exists no unbiased
entropy estimator [Panzeri et al., 2007].

Methods for entropy estimation can be divided into plug-in and nonplug-in types [Beirlant
et al., 1997]. Recall the differential entropy of a random variable:

H(X) = — / p(x)log p(x)dx. 2.51)
X

Then, according to the plug-in approach, first a probability density p(x) is estimated and
then this estimate p(x) is plugged into the expression of the entropy definition (2.51). In
turn, the nonplug-in methods estimate the entropy function directly.
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Before introducing different estimation techniques, let us formally define the notion of the
accuracy of an estimator. An estimation error can be decomposed into two components:
the bias and the variance. The former is the error due to the difference between the
expectation value of the estimate and the true value, whereas the latter is the error due to
the variability of estimates build on different data subsamples. Therefore, given T i.i.d.
samples x1,...,xr, an estimator p(x) of a function p(x) has no error if both the bias and
the variance are equal to zero:

lim E,y[(x)] — p(x) =0,  lim Var,,[p(x)] = 0. (2.52)

T—oo T—o0

2.5.1 Plug-in approaches

In case there is no knowledge about a structure of the probability density function p(x), the
differential entropy as it is given by the expression (2.51) requires numerical integration.
Note that (2.51) is nothing but the expectation of the logarithmic function w. r. t. the
distribution p(x):

H(X) =K, [logp(x)]. (2.53)

In order to avoid integration, the expectation value can be approximated by the average of
log p(x) over all samples. Given a training set {xj,...,xr}, such approximation leads to
the following resubstitution estimator [Beirlant et al., 1997]

H(X)= .

N

T
Y log p(xi). (2.54)
i=1

Another plug-in estimator is based on the idea of leave-one-out cross-validation and there-
fore is less prone to overfitting [Ivanov & Rozhkova, 1981; Hall & Morton, 1993]:

1 T
HX)=—= Y log pi(x:), (2.55)
i=1

where the estimate of the probability density p;(x;) in the point x; is built using all samples
excluding the sample x;, which is used for validation.

2.5.1.1 Density estimation.

Now we turn to estimation of a probability density function which can be plugged in the
estimators presented above. Stating the problem formally, given a finite number of i.i.d.
n-dimensional samples, we want to model a density p(x).
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Depending on the assumptions about a form of the density function used for its estimation,
one distinguishes parametric and nonparametric estimation techniques. The parametric
estimators assume that a density function can be described by a certain model. Then, the
estimation problem is reduced to fitting parameters of the assumed model to observed
data. The nonparametric techniques do not use such assumptions and estimation is driven
purely by the observations. On the one hand, such a dependence on the data obviously
implies a higher variance compared to the parametric methods. On the other hand, the
bias of the nonparametric estimators vanishes asymptotically as more data are observed,
while the parametric estimators will be always biased if the wrong model of the underly-
ing density function is assumed [Scott, 2004]. One of the advantages of the parametric
methods is that the mean integrated squared error is of the order O(T~!) and does not
depend on the dimension of a model, whereas convergence of the nonparametric methods
becomes slow in higher dimensions [Scott, 1992].

The main representatives of parametric techniques are maximum likelihood, maximum
a-posteriori and bayesian parametric methods.

As was mentioned before, within this approach one assumes that the estimated density
can be modeled as a function of a certain form. Let this function be characterized by a
parameter vector 0. Then, the goal of the maximum likelihood estimator (MLE) is to find
such 0" that maximizes the likelihood of the observed data:

T
0" = argmeaxp(x|9) = argmax p(xi]0).
=1

1

The main drawback of this method is a high possibility of overfitting, since the value 0*
is the best fit on the observations used for learning.

At the same time, MLE provides the easiest way of estimating the probability mass of
discrete variables. Suppose a variable x has N possible outcomes {ry,...,ry}. Assuming
that the outcomes are multinomially distributed, pyre(x = r;) is just a frequency count %,
where ¢#; is a number of the observations with the outcome r;. Plugging such counts into
the resubstitution estimator (2.54), we obtain the simplest plug-in estimate of the entropy
of a discrete variable x

N 1

A ti
Hyie(X) = =}, = log . (2.56)
i=1

This estimate is known to have a negative bias that depends on the number of observations
[Antos & Kontoyiannis, 2001].



2.5. ESTIMATION OF MUTUAL INFORMATION 33

Another example of the plug-in estimator based on the ML density estimate is the jack-
knifed ML entropy estimate, which is the asymptotic correction of MLE [Efron & Stein,
1981]:

T
Hjx =THyre(X)+ —— Y Hure—i(X), (2.57)

where Hy;rg_;(X) is the estimate based on the all training samples except the i’ one. The
jackknife estimate of a function is known to be consistent, i. e. it converges in probability
to the true value of this function!.

Bayesian methods tackle the problem of overfitting by imposing a prior on the distribution
of the parameter vector 6. The observations are used to update a posterior distribution on
the parameter values which is expressed in terms of the prior p(6) and data likelihood
p(x]0) according to the Bayes rule [Lee, 2004; Robert, 2001]:

p(8)p(x|6)
/' p(0)p(x(6)d6°

Then, for any new observation &, a value of the density function p(§|x) is estimated by
marginalizing the likelihood at this point over the learned posterior of 0:

p(6]x) = (2.58)

p(E) = [ plEIBIp(OLd. 259

As more data are observed, the posterior of 6 moves towards its true distribution and
consequently the estimate p(&|x) moves towards the real value p(§|x).

Note that, unlike MLE, the bayesian methods do not look for the single best parameter
vector O but rather learn its posterior distribution. Moreover, the final posterior is not
purely data-driven as it depends on the chosen prior, which helps to avoid overfitting.
Therefore, bayesian estimates are usually quite accurate if a sufficient amount of training
data is available. At the same time, in situations when a number of observations is not
large, the estimate p(§|x) can be highly biased if the specified prior is far from the real
distribution p(0). In addition, the bayesian techniques are computationally expensive as
they require integration over the parameter space.

In order to estimate Shannon entropy or mutual information, the most popular Bayesian
methods infer directly the entropy rather than pdfs for plug-in estimators. Therefore,
they will be reviewed further while discussing the nonplug-in techniques, see Subsection
(2.5.2).

! An estimator f(x) converges in probability if Tlim p(|f(x) = f(x)| > €) = 0 for some small €.
—3o0



34 2. CONVENTIONAL FEATURE SELECTION

Maximum a-posteriori techniques represent some sort of a mixture of the maximum like-
lihood and the Bayesian methods. Here, the modeled density is estimated using a single
value of 0, which is equal to the mode of its posterior distribution:

0= argmealxﬁ(9|x).

Such approach does not require normalization and consequently integration as in (2.58),
because the value of 6 maximizing p(6|x) is the same as maximizing p(0)p(x|6). Some
examples of using the maximum a-posteriori method for probability density estimation
include [Gauvain & Lee, 1994; Premus & Alexandrou, 1995; Anzai & Hara, 2010].

As the name suggests, nonparametric techniques do not use any assumptions about the
form of the estimated density functions, these densities are rather inferred purely from
observations.

Let us introduce a formal framework for the nonparametric density estimation. For a
random variable x, in order to find its probability density function p(x), we want to build
an estimator p(x) using T i.i.d. samples drawn from the distribution p(x). For this, we
define a small region & containing x and say that k out of 7" samples fall in this region, i. e.
% is the probability of a sample to fall in &. Then, the density p(x) can be approximated
by:

(2.60)

where V is a volume of the region &. In order to converge, this estimator should satisfy
the following conditions

limV =0, limk=-oc, lim&k/T =0. (2.61)
The first condition requires that the region & shrinks with a number of the samples. The
second condition makes sure that in case p(x) # 0, % converges in probability to the true
probability of x being in & And according to the third condition, kK — oo slower than
T — oo,

Histograms. One-dimensional histograms represent the simplest nonparametric density
estimation technique [Pearson, 1895; Tukey, 1977; Scott, 1979, 1992]. Imagine that a
domain of definition of a continuous variable x is partitioned in N bins of equal size.
Then, the probability density p(x) is estimated by counting a number of the observations
that fall in the same bin as x and then properly normalizing it:

kj

p(X) = ﬁa
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Figure 2.4: Histogram estimators with different bin widths # =1 and & = 2 (subplots A and
B, respectively). The histogram bins are depicted in blue and the estimated probability density
function is in red.

where k; is a number of the samples in the 7 bin where x falls and 4 is a bin width.
Within the general approach described by the expression (2.60), the region % is defined
by the j* bin, and the volume of this region V is the bin width .

In multidimensional case, the volume of the n-dimensional bin is V = h". Although gen-
eralization to multivariate histograms is straightforward, their application is limited. The
reason is that the number of bins grows exponentially with the number of dimensions, that
is in n-dimensional case one needs N” bins, which can obviously cause memory problems.
Moreover, as in higher dimensions data become sparse, most of the univariate bins across
the different dimensions will be empty resulting in zero values of the density function. To
solve this issue, one needs a large number of observations for constructing a histogram
estimator, otherwise the tails of the pdf will be estimated rather poor [Scott, 1992].

The error of a density estimator is often measured by the mean integrated squared error
which can be decomposed into the integrated variance and the integrated squared bias:

MISE(()) = B, | (900~ plw)2ax| = [ Varlplac+ [ ias[p(oP o
(2.62)
where Var [5(2)] = Epqq [(5(6) ~ B [5(0)])] and Bias [((6)] = Epgy) [5(0) — p()].

For the equally-spaced histogram estimator, the former is proportional to ﬁ and the latter

is about % [ p'(x)?dx [Scott, 2004]. Thus, in order to keep both components of the error
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low, the following conditions should be met, which are related to the general convergence
conditions of nonparametric density estimators (2.61):

limh—0, lim Th— oco. (2.63)

T—oo T—oo

Due to discontinuities at the boundaries of the histogram bins, the estimated densities are
not smooth. As a solution, a frequency polygon estimator was developed [Scott, 1985;
Beirlant et al., 1999]. This extension to the histograms performs a linear interpolation
based on the middle points of the equally-sized equally-spaced histogram bins. Another
extension assigns every data point to several bins with weights given by B-spline functions
[Daub et al., 2004].

There are some examples of using histograms in plug-in estimators of entropy and mutual
information [Gyorfi & van der Meulen, 1987; Hall & Morton, 1993; Battiti, 1994; Kwak
& Choi, 2002b]. However, note that the resubstitution histogram entropy estimate is in
fact the maximum likelihood estimate of entropy of the discretized continuous distribu-
tion. Therefore, it is also negatively biased. For this reason, contemporary histogram-
based entropy estimators usually try to find a way to cancel this bias, e. g. [Moddemeijer,
1989; Paninski, 2003]. Since they no longer fit in the framework of the plug-in approach,
such estimators will be reviewed later in Subsection 2.5.2.

Kernel density estimation. To construct a probability density estimate, the kernel tech-
nique, which was developed by Rosenblatt [Rosenblatt, 1956] and Parzen [Parzen, 1962],
specifies a set of small regions centered at every training sample x;. These regions are
shaped by some kernel functions that assign an observation x to the corresponding region
depending on the distance between the kernel center x; and x. Then, for a training set
consisting of 7 i.i.d. one-dimensional samples, the kernel density estimate (KDE) of the

pdf p(x) is

1 & X—X;
50) — — VK
p(x) Thi_zi ( -

) ) (2.64)

where K(*5*) is a kernel function with a bandwidth parameter / that specifies the width
of the kernel. Note that a sum of the kernel responses gives an estimate for k from the
expression (2.60), a number of points around x.

In order to assure that the estimate p(x) satisfies the necessary conditions for a probability
density function, i. e. p(x) > 0 and [ p(x)dx = 1, there are the following constrains that
should be imposed on the kernel function K(w):

K(w) >0, / K(w)dw =1, / WK (w)dw = 0. (2.65)
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That is the kernel should be positive, a density function itself and centered at zero.
There are several commonly used kernels such as rectangular, triangular, normal, Barlett-
Epanechnikov, cosine etc. However, practical investigations showed that the choice of the
particular kernel function is not crucial for estimation accuracy [Webb, 1999].
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Figure 2.5: Kernel density estimators using Gaussian kernels with the different bandwidth param-
eters 1~ 0.6 and h ~ 1.2 (subplots A and B, respectively). Blue dashed curves represent the single
kernel functions centered at the training points and the red curves depict the estimated pdf.

For n-dimensional observations {xi,...,X,}, the multivariate generalization of the kernel
density estimate is

T

px)=(TIH|) 'Y K(H ' (x—x))), (2.66)
i=1

here K(+) is a n-dimensional kernel function and H is a symmetric positive definite n x
n matrix of kernel smoothing parameters, also called a bandwidth matrix. Usually for
simplicity a diagonal form of the matrix H is assumed. In this case, the multivariate
kernel function is a product of the univariate kernels and the above expression simplifies
to

n T n

px) =TI Y 1K<M), (2.67)

j=1 i=1 j= hj

where (A1, ..., h,) are the diagonal elements of the matrix H, and x; ; is the value of the jth
feature of the sample x;. If the data is prerotated, i. e. correlations between the dimensions
are removed, the product kernel is equivalent to the KDE with the full bandwidth matrix.
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The convergence of this technique was proven under the following conditions [Duda et al.,
20017]:

limV =0, Ilim 7TV =oo, (2.68)
T —o T—oo

where V' is a volume of the region defined by the kernel, so V = [H| or V =[Tj_, h;

depending on the type of the bandwidth matrix. The plug-in entropy estimator based

on one-dimensional kernel density estimates was shown to be asymptotically normal 2

with an error of the rate T~/ 2 however, for the multivariate case the estimator is just

consistent, i. e. converges in probability [Eggermont & LaRiccia, 1999].

Scott [Scott, 1992] states that in theory for a number of dimensions n > 5 it is not possible
to obtain accurate estimates using kernel density method. However, he mentions practical
examples showing reasonable results, for example in case of a 10-dimensional space with
225 training samples. His conclusion is that in such situations it is possible to find at least
the structure of the pdf, though with a large estimation error, which is still acceptable in
higher dimensions.

Due to their simplicity, natural extension to the multivariate pdfs and satisfactory accu-
racy which depends on the amount of data available, kernel density estimates are widely
used in practical applications. Among them, there are examples of using KDE in estima-
tion of entropy [Dmitriev & Tarasenko, 1973; Ahmad & Lin, 1976; Ivanov & Rozhkova,
1981; Ahmed & Gokhale, 1989; Joe, 1989], mutual information in general [Moon et al.,
1995; Zhou et al., 2005; Lin & Tang, 2006; Xu et al., 2008; Qiu et al., 2009] and mutual
information for feature selection [Kwak & Choi, 2002a; Ozertem et al., 2006; Carmona
et al., 2011; Zhang & Hancock, 2011].

k-nearest neighbor density estimation. In contrast to the discussed above histogram and
kernel estimators, in order to approximate a probability density p(x) the k-nearest neigh-
bor technique [Fix & Hodges, 1951; Loftsgaarden & Quesenberry, 1965] does not directly
specifies a volume of the the region & where x falls but rather fixes a number & of the sam-
ples contained in this region. That is, an estimate p(x) is based on the k direct neighbors
of the observation x and can be thought as to have a data-adaptive nature.

For x € R", the k-NN density estimate is an already familiar expression with fixed k:

K B I (x)m"/?
T TV(x) V(X)_rfn/zﬂ)’

p(x) (2.69)

where V(x) is the volume of the n-dimensional hypersphere with the radius ry(x) =
d(x,x;) being the n-dimensional Euclidean distance between x and its k’" neighbor x;.

2 Asymptotic normality of an estimate implies that Jim T'2(A(X)—H(X)) = N(0,62).
—yoo
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The estimator converges in probability, if the followings conditions are satisfied [Devroye
& Wagner, 1977]:

Th—lgok - Thgiof =0 I logT - 2.70)
A B

Figure 2.6: k-nearest neighbor density estimators with different number of neighbors £k = 1 and
k = 3 (subplots A and B, respectively).

In practice, k-NN density estimates are not very popular since they are heavy-tailed, noise-
sensitive and discontinuous due to the fact that r;(x) is not differentiable. However, this
approach is closely related to the widely used k-NN entropy estimators which will be
reviewed later in Subsection (2.5.2).

Guided by the same idea of fixing the number of the observations falling in &, Scott
proposed histograms with an equal number of points in every bin. This modification was
meant to improve inaccurate estimates in the tails occurring due to lack of data [Scott,
1992].

Selection of a smoothing parameter. All nonparametric techniques discussed above have
a primary parameter which has to be tuned: a bin width for histograms, a kernel bandwidth
for KDE and a number of neighbors for k&-NN. All these parameters control the smooth-
ness of the estimated density and therefore we will refer to all of them as “smoothing
parameters”. Setting it too large, all details of the density structure are lost, whereas set-
ting it too small will lead to a highly variable estimate with many false peaks around every
sample point. This also illustrates the known bias-variance trade-off: undersmoothed es-
timators will have the large variance but the low bias, whereas the situation is opposite for
the oversmoothed estimates [Kraskov et al., 2004].



40 2. CONVENTIONAL FEATURE SELECTION

For the k-NN estimator, the optimal value of k for should be usually tuned for the partic-
ular data at hand. However, k = /T was reported to show good results [Loftsgaarden &
Quesenberry, 1965].

For the plug-in estimator of the mutual information using histograms, it was shown that
the difference between the estimate /(X,Y) and the true value /(X,Y) depends on the
number of bins Nx and Ny of both variables [Li, 1990]:

N 1
](X,Y)—I(X,Y)%ﬁ(NxNy—Nx—Ny). 2.71)

The approximation can be used for correcting an estimation error if ratios of true counts
fvy/1:ty are approximately the same for different bins of x and y. However, in the extremely
undersampled regime, this correction is inaccurate [Battiti, 1994]. The difference between
I(X,Y) and I(X,Y) is usually greater than zero and it can be decreased by reducing the
number of bins, i. e. setting the bin widths larger. However, as was already stated, too
wide bins will not capture the data structure. Therefore, the proper smoothing parameter
acting as a compromise is important. See Figures 2.4 and 2.5 for examples of histograms
and kernel density estimates with different smoothing parameters.

For the histogram estimator, there are a lot of suggestions how to choose a bin width,
see [Scott, 1992] for a good review. For a general case, Tukey suggested a number of
equally-spaced bins being N = /T [Mosteller & Tukey, 1977]. For normal data, there
is the Sturges’ rule: N = 1+1log, T, however, it produces too few bins and the data is
heavily oversmoothed [Scott, 1992]. A more robust rule gives an expression in terms of

the interquartile range (IQR): & = 2(/ QR)T_% [Freedman & Diaconis, 1981].

Using the normal density as a reference while minimizing the asymptotic mean integrated
squared error of the estimate, the optimal width of the n-dimensional histogram can be
expressed in terms of the standard deviation of the sampled data [Scott, 1979]

hi=2.3m2nmEacT i, (2.72)

Such expression is called the normal reference rule. Following the analogous procedure,
one can also derive the optimal bandwidth for kernel density estimate [Silverman, 1986].
For the n-dimensional product kernel, the optimal bandwidth parameter for the i’ dimen-
sion is:

4
n+2

1 1
hi = ( Yra g T~ (2.73)
where o; is the standard deviation of the data points along i dimension. The method pro-

duces good estimates for univariate densities but tends to oversmoothing for multivariate
cases.
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There is a number of bandwidth selection techniques based on cross-validation optimizing
different criteria such as the Kullback-Leibler loss function [Rudemo, 1982; Bowman,
1984] or usual asymptotic mean integrated squared error [Hall et al., 1991]. Bootstrapping
was also used to find the optimal bandwidth for univariate [Taylor, 1989] and multivariare
data [Sain et al., 1992]. Among more sophisticated methods that can be easily extended
to the multivariate densities are Markov chain Monte Carlo methods. They estimate a
bandwidth matrix through the data likelihood using cross-validation and are reported to
have a good performance, e. g. see [Zhang et al., 2004]. For further review on bandwidth
selection methods, see [Turlach, 1993].

Instead of looking for the globally best bandwidth vector, it can be defined adaptively
[Scott, 2004]. One of the approaches is to change the bandwidth value pointwise to adjust
to varying density of data in different regions of the input space [Breiman et al., 1977; Hu
et al., 2012]. Another approach assumes the bandwidth that depends on the estimation
point [Scott, 1992]. In this case, the width of the kernel varies to catch a certain number
of the neighboring points. In fact, this technique can be called k-nearest neighbor kernel
density estimate. Though, asymptotically this is the best possible estimate of h, similarly
to k-NN, the resulting density estimate is not a true density function.

The problem of finding an optimal width of histogram bins can also be solved adaptively.
The Fraser-Swinney algorithm hierarchically divides the plane into bins until they be-
come uniform [Fraser & Swinney, 1986]. Alternatively, the bins with the equal number
of samples can be constructed [Scott, 1992; Cellucci et al., 2005]. The latter estimator
was reported to have similar performance to the more complicated Fraser-Swinney algo-
rithm, which in turn was reported to perform worse than the kernel method [Silverman,
1986; Moon et al., 1995]. There are techniques which address adaptive partitioning in the
multidimensional space for estimating the entropy and the mutual information [Darbellay
& Vajda, 1999; Stowell & Plumbley, 2009] providing faster convergence with respect to
the sample size compared with non-adaptive case [Trappenberg et al., 2006].

2.5.2 Nonplug-in approaches

Methods, which are classified as nonplug-in, usually directly solve a problem of estimat-
ing entropy rather than a probability density function, though both approaches are often
related.

One of such examples is k-nearest neighbor entropy estimation which can be seen as
an extension of the plug-in approach using k-nearest neighbor density estimation. The
entropy estimator for multivariate densities and k = 1 was first introduced by Kozachenko
and Leonenko [Kozachenko & Leonenko, 1987]. Its generalization for multiple nearest
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neighbors, 1. e. for kK > 1, was developed later and it has the following form [Singh et al.,
2003; Leonenko et al., 2008]:

1
TV(x)

. N
Ay (X) = —7 Y log ¥(k), (2.74)
i=1

where V (x;) is a volume of N-dimensional sphere with a radius defined as a distance from
X; to its k'" nearest neighbor (2.69) and ¥(-) is the digamma function, ¥(z) = % Note
that this is in fact the resubstitution plug-in entropy estimator with k-NN density estimate,
whose bias is corrected by (—W(k) +1og(k)). With this correction the estimator is proven

to be asymptotically unbiased [Singh et al., 2003].

There is a related estimator based on k spacings, which is however applicable only to
one-dimensional variables [Vasicek, 1976; Dudewicz & van der Meulen, 1981]:

N 1 Tk k

g
1 (XitkeT —XiT)

— (k) +logk, (2.75)

where x1.7 < xo.7 < --- < x7.7 are ordered statistics of x1,x>,...,x7.

While estimating mutual information using k-NN entropy estimates, it was noted that a
fixed value of k for H(X), H(Y) and H(X,Y) leads to biased results because distances
to the k" neighbor in marginal and joint spaces are different [Kraskov et al., 2004]. As
a solution, Kraskov and colleagues proposed the following scheme. A distance r; to the
k" nearest neighbor is defined in the joint space Z = (X,Y) with the maximum norm
d(z;,z') = max{||x;,X||,||y:;,¥'||}. Then, in the marginal spaces, instead of setting k and
measuring the distances from x; and y; to their k¥ neighbors, one counts the neighbors
t¢(i) and t,(i) within the radius r; defined in their joint space. The resulting estimator of
mutual information is

i[‘l’(rx(i)) +W¥(t, (i) +¥(T), (2.76)

N
I
—_

1K1, X) = W) — S = o Y [ () -+ Wty ()] + (N = D¥(T). 2.77)

The authors numerically proved that the proposed modification reduces the bias, espe-
cially for a small number of training samples. Comparative studies report good accuracy
of Kraskov’s nearest neighbor algorithm and KDE in contrast to simple and adaptive
histograms for estimating pairwise mutual information for general purpose [Khan et al.,
2007; Schaffernicht et al., 2010]. In the case of information-based feature selection, not
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the absolute values of the multivariate mutual information estimates but the correct rank-
ing of features according to their mutual information with the class is important. Within
such setup, Kraskov estimator was shown to outperform KDE. It was also noted that both
methods are quite sensitive to the choice of their smoothing parameters, which results in

selecting different feature subsets for different parameter settings [Doquire & Verleysen,
2012].

ML-based estimators. As was already mentioned, the entropy estimator Hy g based on
the ML density estimates has a negative bias [Harris, 1975]:

N

E[Hyie(X)] = H(X) — 1\12_T1 + 121T2 <1 — ; ;r,)) +0(T73). (2.78)
An attempt to reduce this bias has led to various correction techniques based for example
on a series expansion of the bias [Miller, 1955; Carlton, 1969; Treves & & Panzeri, 1995;
Victor, 2000; Hacine-Gharbi et al., 2012]. Their classical representative is the Miller-
Madow estimator that provides the O(T~!) correction term of the form L2—_T1 where L
is a number of discrete values of x with observed non-zero probabilities [Miller, 1955].
Unfortunately, such correction does not fully cancel the bias. An alternative approach is
to fit the O(T~!) and O(T ~2) from the data [Strong et al., 1998]. For the undersampled
regime, Paninski has proposed an estimator based on a polynomial approximation of the
entropy with the O(T~2) bias [Paninski, 2003]. The key idea is to find the expansion
coefficients that provide the best trade-off between the variance and the bias.

With an assumption that possible outcomes r; of x follow the Poisson distribution, the
Grassberger estimator [Grassberger, 1988] and its later improvement [Grassberger, 2003]
were shown to be asymptotically unbiased for large 7" and to be less biased than Miller-
Madow estimator in the undersampled regime.

Wolpert and Wolf proposed a bayesian method of estimating entropy of discrete variables
[Wolpert & Wolf, 1995]. Suppose there are T observations of a variable x that can take N
different values {ry,...,ry}. Let x; denote the number of the samples with the outcome

N
ri, ¥ xi =T, and let p; denote the probability of observing this outcome. Then, the vector
i=1

of counts X = (x1,...,xy) is said to be multinomially distributed.

A quantity of interest is the entropy H(p) which is estimated from the data by H(p|x).
For this estimate, we need a posterior probability p(p|x) that can be specified according
to the Bayes rule as p(p|x) «< p(x|p)p(p) with the data likelihood:

N p)fi
p(xlp) =TT =

i=1 i
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and the Dirichlet prior, which is a conjugate prior of the multinomially distributed likeli-
hood !:

L T
P01 =g L1 = ey L 7

1

Here, B(+) and I'(+) are the beta and the gamma functions, respectively, and B is a param-
eter vector of the Dirichlet distribution.

It was suggested that instead of estimating the entropy of the distribution p(p|x), it is
easier to estimate its moments [Wolpert & Wolf, 1995]. For the uniform prior with 3; = 1,
the k' moment of the entropy can be found as follows:

O(T +N i
ot = [ A p)ploldp = s [ A Gp(e) [Toicp. 250

For k = 1, the Bayesian estimator of the entropy mean H(p|x), which is the best guess in
terms of the mean squared error, is:

ﬂmw%=—2;i;ﬂﬂm+%—TU+N+U) (2.81)

Following the same procedure, one can estimate moments of any function of p(p|x).
Thus, for f(p(p|x)) = p(p|x), we have

xl+Bl

T+ NB;' (2.82)

p(plx) =

Note that for B = 0, this corresponds to the maximum likelihood estimate discussed be-
fore. B = % gives the Jeffreys’ or Krichevsky-Trofimov probability estimator [Jeffreys,
1946; Krichevsky & Trofimov, 1981] and B = % gives the Schiirmann-Grassberger prob-
ability estimator [Schiirmann & Grassberger, 1996].

As was already mentioned, the bayesian estimates are quite sensitive to the choice of
the prior distribution in the undersampled regime. For example, it was shown that a
fixed value of the parameter B almost uniquely defines the entropy and as a remedy the
improved estimator was suggested [Nemenman et al., 2002]. The Nemenman-Shafee-
Bialek estimator specifies a near flat prior distribution pysg(p), which is a mixture of
Dirichlet priors with different [3:

prsalp) < [ Sorp(p)ap. 83

I'A prior is called a conjugate prior for the likelihood if it belongs to the same family of distributions as
the posterior.
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Here, pg(p) is the prior defined in the expression (2.79) for the fixed value of f and

§:= Eg[H(p)]. Acting as mixing coefficients, the fractions dEBg}é(pﬂ make the contribu-

tion of every pg(p) depend on the degree of peakedness of the average entropy for the
current value of B. Utilizing this prior, we obtain the Nemenman-Shafee-Bialek entropy
estimator:

J Hp(plx)q(&,x)d&
Ja@Ex)dg

A N . . .
with g(&,x) = p(B(&))F{T(ﬁ]%%()%)) H1 F%&g(%%)) and Hp(p|x) is the Bayesian entropy esti-

mate defined by (2.81) for the fixed B. The NSB-estimator shows good performance in
terms of bias and robustness compared to ML-based entropy estimators and it is one of
the most popular entropy estimators for discretized data. However, it is computationally

expensive due to the necessity of averaging over B or & [Panzeri et al., 2007; Montani
et al., 2007].

Aysp(plx) = (2.84)

i=

Estimators of differential entropy and mutual information using cumulant expansions are
popular in the field of independent components analysis. On the one hand, they are quite
simple, but on the other hand, their estimates are rather rough [Amari et al., 1996; Hyviri-
nen et al., 2004; Steuer et al., 2002]. Recently an extension of one of such techniques for
multivariate entropy based on Edgeworth expansion has been proposed. The authors re-
ported the accuracy comparable with Kraskov’s multivariate variant of k-NN [Van Hulle,
2005].

2.6 Approximated schemes

All probability density and entropy estimation techniques, which are described above, re-
quire considerable amount of training data in order to achieve good accuracy. As was al-
ready stated, in case of multivariate data, the necessary amount of data is even larger. The
feature selection criterion based on mutual information is of the form I(C; Fy |Fy, , - . . , Fu,)-
It means that a dimensionality of the involved entropies or equivalently pdfs grows itera-
tively with selecting new features. Therefore, there have been a lot of attempts to approx-
imate the multivariate conditional mutual information using only pairwise or triplewise
estimates. The conditional mutual information selection criterion can be rewritten as:

S(C,Fyys- . Foy, Fx) = I(C; Fi| Fy - . . F,) =

(2.85)
I(C;Fy) —I(Fi; Fyy s - - Foy) HI(Fis Fay s - -, Foy [C).

Two assumptions have to be introduced in order to reduce the dimensionality of the mutual
information terms: the already selected features are independent of the feature-candidate
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and they are independent of the feature-candidate and the class. Incorporating these as-
sumptions, after some transformations we obtain the following simplified scheme [Brown
etal., 2012]:

i

I(C;F) — Z I(Fi;Fo,) —I(Fi: Fo, |C) } - (2.86)

Iappr(C;Fk|F0617 FOL

1

Such approximation was used as a criterion for both feature selection [El Akadi et al.,
2008; Guo & Nixon, 2009] and feature extraction [Lin & Tang, 2006]. While the first
term measures the relevance of the feature-candidate for classification, the second term
represents the approximated redundancy of this feature with respect to the selected fea-
tures. Some schemes introduce a weight parameter [ for the redundancy term:

Luppr(C3 Fy|Fy s - .. Fo,) = 1(C; F) BZ {I(Fy:Fa,) —I(F: Fo, IC) } - (2.87)

It can be shown that with = =, maximization of (2.87) corresponds to the maximization

of Z 1 (Fqu ;C), which is the so-called joint mutual information (JMI) selection crite-
q_

rion [Yang & Moody, 1999]. Intuitively, as i grows, such [ expresses the belief that the

redundancy term becomes less significant [Brown et al., 2012].

Substituting the summation in the redundancy term with the maximum operator, after
some trivial transformations one obtains the following selection criterion known as con-
ditional mutual information maximization (CMIM) [Fleuret & Guyon, 2004]:

SCMIM(C7 FOL1 yoee 7Foc,-7Fk> = qil}in i{](Fk;Faq ’C)} . (288)
Obviously, in order to get rid of triplewise information terms, further simplifying as-

1(FaiFlC)  H(FC)
o) — HiFg) OIS,

sumptions should be introduced. Assuming that the relation

I(Fj; Fo,,|C) can be represented as

H(Fq,|C)

HsFel) = T
q

1(Fi; Fo, ),

The assumption is true for the cases when Fy, is uniformly informative for all classes. The
final approximation is

1(CiF),

Smirs—uv(C, Foys - - Fo;, Fo,)) = 1(Fi; C BZ H(Fo)
0‘/

Fk;FOCj)a (289)
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which is used by MIFS-U algorithm (mutual information feature selection uniform) [Kwak
& Choi, 2002b]. Here, the parameter [ is not fixed but tunable.

Instead of the uniformity assumption, Battiti assumed that all features are pairwise inde-
pendent given the class [Battiti, 1994]. As a result, the last term / (Fk;Faq|C) in (2.87)
turns to zero and Battiti’s MIFS criterion becomes:

i
Swirs(Cy Foy s, Fayy Fi) = 1(Fi;C) =B Y I(Fis ). (2.90)
j=1
The minimum redundancy maximum relevance (MRMR) feature selection algorithm is
identical to MIFS with one difference that it uses the adaptive value of f = % [Peng et al.,
2005].

Finally, the assumption that features are independent gives the simple ranking criterion
based on the mutual information

Smim (C, Foys - - - Foy, Fr) = 1(F; C), (2.91)
which is known as the mutual information maximization [Lewis, 1962].

There are many other algorithms that approximate the conditional mutual information
with low-order information and entropy terms in the way to obtain good classification per-
formance with the selected features [Duch, 2006; Vidal-Naquet & Ullman, 2003; Meyer &
Bontempi, 2006; Estevez et al., 2009; Cheng et al., 2011; Yu & Lee, 2012]. Efficiency of
different approximations depends on dependencies between features in a given problem.
However, it is not surprising that more complex schemes that take into account higher
order interactions between features perform better than simpler algorithms. For example,
JMI criterion demonstrated better results than CMIM, MRMR and MIFS [Brown, 2009].
In turn, Liu and colleagues showed that CMIM outperforms MIM, MIFS and MIFS-U
[Liu et al., 2008]. Among the schemes, only CMIM employs a mutual information of
three variables, while MIM, MIFS and MIFS-U use only pairwise terms in their approx-
imations. Along the same lines are results presented by Kwak and Choi who used kernel
density method to estimate the original conditional mutual information criterion. Their
algorithm was shown to outperform MIFS and MIFS-U [Kwak & Choi, 2002a]. Despite
such results, in practice, simple approximate schemes are usually preferred due to the
reduced computational complexity.

2.7 Conclusion

In this section, we presented the conventional approach to feature selection that assumes
reducing dimensionality of the input space before building a classifier. As a result, a learn-
ing problem is significantly simplified and a classification rule has better generalization
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ability. This is especially important in the undersampled regime, i. e. when a number
of features is larger than the number of training samples. Moreover, performing feature
selection improves interpretability of data by highlighting the important input dimensions.

An emphasis of the presentation was put on feature selection algorithms of the filter type
whose selection criteria are independent of a classifier to be used. The problem of feature
selection was introduced within a framework of the sequential uncertainty reduction that
assumes iterative selection of features informative with respect to a class variable but non-
redundant with respect to the previously selected features. This framework was adopted
to preserve an analogy to the sequential process of the hypothesis checking mechanism in
the human visual system, which serves as an inspiration for the feature selection scheme
proposed later in this thesis.

Feature selection algorithms have two key components, a search strategy and a selection
criterion. As the search strategy is set to the sequential feedforward search by design,
we reviewed possible uncertainty functions that can make up a selection criterion in the
uncertainty reduction framework. For example, the misclassification error is an intuitive
choice for selecting features that can be useful for classification. The Gini index for fea-
ture selection was initially derived heuristically as an uncertainty function corresponding
to the certain requirements, though it is widely used in statistics as a diversity measure. In
contrast, Shannon entropy is a fundamental measure of uncertainty in information theory
and therefore it is a natural candidate for the uncertainty function. Moreover, mutual in-
formation, the entropy-based selection criterion, is able to measure nonlinear interactions.
It was also shown that the entropy-based selection criterion favors features that can dis-
criminate well between classes. Two generalizations of Shannon entropy, namely Rényi
and Tsallis entropies, give an additional possibility to adjust an uncertainty measure to
the structure of data and therefore they can be useful in feature selection for complex sys-
tems. There are other popular selection criteria that however do not fit in the framework
of the sequential uncertainty reduction. Among them are different statistical tests of inde-
pendence used for feature ranking and probabilistic distance measures that select features
ensuring maximal distance between distributions of different classes.

Shannon entropy as an uncertainty function and mutual information as a corresponding
selection criterion are widely used in feature selection due to the above-mentioned ad-
vantages like information-theoretical interpretation and usefulness for classification. The
feature selection algorithm proposed in this thesis employs mutual information as well.
However, estimation of mutual information is known to be a difficult problem. We pre-
sented a review of various estimation techniques ranging from relatively simple plug-in
schemes utilizing nonparametric density estimators to complex algorithms trying directly
to build unbiased estimators of entropy and mutual information. Kernel density method
can be named as one of the successful representatives of the fist group, whereas among the
second group one can distinguish Kraskov’s modification of k-NN and the Nemenman-
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Shafee bayesian estimator. Since the estimation problem becomes even harder in higher
dimensions, there are a lot of selection criteria that use low-order approximations of mu-
tual information. Their efficiency of course depends on whether simplifying assumptions
used in approximations contradict data describing a problem at hand.

Despite all difficulties with estimating entropy and related concepts, information-theoretical
feature selection is popular in practice and it remains an active area of research. More-
over, using mutual information as a selection criterion, one does not need its precise
values. Therefore, even if an estimator is biased, it is only important to have the right
ordering of features according to their mutual information with a class. This peculiarity
significantly reduces requirements to the quality of estimates.
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Chapter 3

Adaptive feature selection

3.1 Biological motivation

The human visual system is characterized by a large number of connections going back-
wards along its hierarchy. Moreover, feedback is observed even on the lowest levels of
visual processing. These facts gave rise to numerous investigations of functional roles of
the top-down information flow in visual perception.

For example, feedback connections exist already in the retina, an inner tissue of the eye
that analyzes spatial and time variations of light and sends this information further to the
brain. Though, possible functions of the feedback from higher retinal layers and from the
brain are not well-understood, it is hypothesized that it may influence adaptation processes
of neurons in the retina [Kolb, 2011].

The primary visual cortex (V1), where the analysis of color, shape and orientation occurs,
is a key component of many feedforward-feedback loops in the visual system. V1 sends
the feedforward signal to and receives the excitatory feedback from areas of both dor-
sal and ventral visual pathways, which process information about location and complex
characteristics of a stimulus, respectively [Mishkin & Ungerleider, 1982].

It is known that a size of receptive fields grows successively as one goes up along the
hierarchy of the visual areas. Hence, feedback to a cell from the higher area is usually
integrated over the larger region of the visual field compared to the visual region visible
by this cell [Livingstone & Hubel, 1987; Van Essen et al., 1990]. The complexity of
features to which cells are tuned on the subsequent levels grows successively as well. It
means that cells on the higher levels are usually sensitive to different combinations of
features, to which cells on the preceding layers respond. As a result, the higher-level
cells extract more abstract representations that are invariant under scale, orientation and
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shift transformations. Therefore, by sending feedback to the cells on the lower levels,
they provide context, i. e. more global information. In this way, the feedback enhances
activation of cells tuned to simple features in order to improve their further binding into
more complex structures on the higher levels [Desimone & Duncan, 1995; Murphy et al.,
2000; Sillito et al., 2006]. This function is also performed by long-range excitatory lateral
connections operating within one visual layer. While such connections enhance grouping
for many complex features at the same time, it is important to note that only a small
fraction of feedback connections are active simultaneously. The reason for this is limited
processing resources of the visual system that force high-level concepts to compete for
representation [Van Essen et al., 1991]. Therefore, only few winners of such competition
send their modulating feedback to the lower levels at once [Macknik & Martinez-Conde,
2009]. Let us look at the two main examples of the feedforward-feedback loops in which
V1 is involved.

On the early stages of visual processing, the area V1 receives its feedforward input from
the lateral geniculate nucleus (LGN) in the thalamus, which processes a visual scene
based on the retinal output. At the same time, the primary visual cortex sends the massive
excitatory feedback to LGN, which constitutes about 30% of its input. For comparison,
LGN receives only about 10% of its input from the retina [Montero, 1991; Wilson, 1993;
Sherman, 2001]. It is known that almost all feedback connections from V1 to LGN orig-
inate from orientation- and direction-selective cells [Grieve & Sillito, 1995]. Moreover,
within the dorsal pathway, the same cells in V1 receive their excitatory feedback from
the higher area MT, which is responsible for motion analysis [Rosa, 2002]. It should be
noted that MT itself depends on the activity in V1, which is sent to it via feedforward cir-
cuits. Thus, the signal going from MT to V1 and further to LGN facilitates movement and
orientation processing as well as contrast perception. Therefore, such feedback plays an
important role in the contextual and spatial attentional modulation [Murphy et al., 1999;
Jones et al., 2000; Hupe et al., 2001; Sillito et al., 2006].

Within the ventral pathway, the known feedforward-feedback loop consists of the areas
V1, V2, V4 and the inferior temporal cortex (IT). The first three areas analyze such stimu-
lus characteristics like size, shape, color with increasing complexity, whereas I'T responds
already to complex objects and therefore it is supposed to be involved in object recogni-
tion and identification, as well as in formation of the visual memory. Activity in IT is in
turn modulated by the feedback signal from the prefrontal cortex, which is important for
decision making, behavioral planning and where the working memory might be formed
[Chelazzi et al., 1993; Schall et al., 1995; Yang & Raine, 2009]. Therefore, it is believed
that feedback going along this pathway back to LGN modulates binding of high-level fea-
tures that are relevant for a current task, such as recognition [Chelazzi et al., 1998; Miller
& Cohen, 2001; Herd et al., 2006]. This feedback modulation is also called object-based
attention [Fink et al., 1997; Valdes-Sosa et al., 1998].
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Based on these facts, there is a hypothesis that the area V1 together with the subsequent
area V2 act as an active blackboard, which integrates the results of information process-
ing from the preceding and subsequent areas and sends it further along the feedforward
circuits [Mumford, 1991; Bullier, 2001].

In line with this idea, Lee and Mumford suggested a theory describing the nature of in-
formation processing in the ventral pathway [Lee & Mumford, 2003]. Inspired by the
hierarchical Bayesian inference, it states that higher areas of the visual system generate
a hypothesis about a visual scene on the basis of information sent from the lower areas
via bottom-up circuits. If this information is not enough for unambiguous recognition,
1. e. there are several competing hypotheses about a visual scene, the feedback or top-
down signal is sent back to enhance processing of those pieces of the visual input that
can help to reduce the uncertainty. The whole process can be seen as inference which
is based on the scene-specific bottom-up information integrated with the top-down con-
textual prior. It is important to note that neither bottom-up nor top-down components are
static. A feedback signal modulates processes on the preceding levels, which in turn influ-
ence the refinement of the current hypotheses about a visual scene. There is experimental
evidence that such iterative and bidirectional interactions happen in parallel between the
adjacent areas as sending information back and forth along several areas would take long
[Bichot & Schall, 1999; Lee et al., 2002]. In the computational literature, this hypothesis
refinement mechanism is known as “adaptive resonance” of Grossberg [Grossberg, 1976],
which inspired also neural models of cortical interactions, e. g. LAMINART [Raizada &
Grossberg, 2003].

Although many studies demonstrated that object recognition and categorization could be
done purely in the feedforward fashion [Riesenhuber & Poggio, 1999; Serre et al., 2007;
VanRullen, 2007], it is obvious that feedback is important if the information sent via
bottom-up circuits is ambiguous or imprecise [Wyatte et al., 2012]. This fact is also
supported by neurophysiological experiments showing that later activity in V1 and V2
as well in the prefrontal cortex have influence on recognition [Bar et al., 2006; Koivisto
et al., 2011], hence the feedback is involved in this process. Studies using such psy-
chophysical experimental paradigm as object substitution masking also demonstrate that
visual perception involves bidirectional interactions between the lower and higher areas
of the visual system. Masking experiments show that perception of a stimulus can be
impaired by another stimulus, a so-called mask, if the latter is presented shortly after the
first stimulus [Di Lollo et al., 2000; Enns & Di Lollo, 2000; Elze et al., 2011]. This phe-
nomenon suggests that while the first stimulus is not yet fully recognized and the higher
areas have to send a top-down signal to request the additional information, the lower areas
are already activated by the second stimulus. As a result, the next portion of the visual
input will correspond to the later stimulus and the inference of the first stimulus will be
interfered. Moreover, Elze and colleagues in their masking experiment showed that the
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prior information influences very early stages of visual perception, which is likely to be
sent by a feedback signal from the higher brain areas [Elze et al., 2011].

To conclude, one of the most prominent functions of the extensive feedback from the
higher brain areas within and outside of the visual cortex is attentional modulation. While
in the dorsal or “where” pathway top-down signals are involved in the spatial modula-
tion, the feedback within the ventral or “what” pathway helps the brain to concentrate
its resources on visual features that are relevant for recognition or categorization. Such
feedback iteratively selects certain aspects of the visual scene for refined processing by the
lower areas until the inference process in the higher areas converges to a single hypothesis
about this scene.

3.2 Adaptive feature selection

Obviously, it is desirable to minimize a number of required selection-refinement iterations
before the final recognition of a visual scene. For this, one has to find a short sequence
of maximally informative portions of the visual input. As was already mentioned, the
feedback is not static and therefore the selection process is adapted to a visual scene
that should be recognized. To find a scene-specific subset of informative patches, the
adaptive selection process on every iteration utilizes results of previous processing in
order to reduce the remaining uncertainty about the visual scene. Therefore, every next
portion of the input is chosen as the most informative for the current hypothesis space,
which is refined based on information extracted on preceding iterations.

Let us think about a visual input divided into patches as an object described by a set of its
features. Then, the mechanism deciding which portion to process next is nothing else but
a feature selection algorithm. Further, suppose that for a certain classification problem
there is a preselected set of informative features. That is, feature selection is performed
during the learning phase before actual classification starts. And once learning is finished,
the resulting set of informative features is fixed and it will be used for classification of all
samples in the future. Obviously, within such setup features are selected to be on average
discriminative for all samples. Though, the selected subset includes only a part of all
available features, it can still be large especially if the data has inhomogeneous structure.

Now, suppose that we are classifying a particular sample. Already after the first itera-
tion, there is partial knowledge about the testing sample, which is formed as the result
of processing the first features. This sample-specific information is then used to refine
the initial hypotheses about the possible class label, i. e. to update the prior uncertainty
about the class. Intuitively, it would be reasonable to select next features that can reduce
the uncertainty for this particular sample rather than for some average representative of
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the training set. In such case, as we do not try to generalize, it is likely to end up with a
smaller number of relevant features required to make a confident classification decision.
This way of selecting features we call adaptive. The conventional approach will be fur-
ther called ““static” as a subset of relevant features remains fixed during the classification
process.

Thus, adaptivity in feature selection means the following. For a certain testing sample,
every selected feature should yield the maximum reduction in uncertainty about the class,
which is iteratively updated with the values of already selected features observed on this
testing sample. Then, according to the adaptive approach, every testing sample is classi-
fied with the unique subset of discriminative features. On the one hand, this is obviously
more computationally demanding compared to selecting a single static feature subset. On
the other hand, the adaptive methods have the potential to produce smaller feature subsets.

When do feature subsets selected in the static and the adaptive way differ significantly
in their size? As was already mentioned, conventional feature selection methods can fail
to select a small number of relevant features when data are heterogeneous. That is, the
structure of the data can vary in different subregions of the input space and therefore every
subregion is characterized by different features. For example, one may need different
features to discriminate between classes, or even different objects belonging to one class
may have different discriminative features. One can partially overcome this problem by
forming a collection of all relevant feature subsets. This, however, will lead to an increase
in the classifier complexity, which in turn increases the amount of data necessary for
training [Raudys & Jain, 1991]. Thus, conventional feature selection schemes, which
select a fixed subset of features before they are handed to a classifier, can be inefficient.

In addition, we suggest that the adaptive approach to feature selection is advantageous in
situations when the amount of data is limited, especially if the number of features exceeds
the number of training samples, hence, a classification problem is difficult. The reason
for this is the following. It is known that a small sample size impairs the estimation
accuracy of estimates of a selection criterion [Raudys & Jain, 1991]. Recall that the
static scheme tries to generalize and therefore it selects features that are informative for
the whole input space, reconstructed from a training set. At the same time, the adaptive
scheme performs local feature selection, i.e. selects features that should be discriminative
for a certain subregion of the input space. Moreover, this subregion is iteratively refined
using values of the previously selected features, which simplifies a classification problem
on every iteration. Thus, the adaptive scheme usually evaluates relevance of features
only in the small input subregion for a small subset of classes to which a testing sample
can belong. Therefore, in the undersampled regime, when the training set does not fully
represent the true data distribution, we expect estimates of the local feature relevance
used by the adaptive approach to be more accurate compared to estimates of the global
relevance utilized by static selection schemes. Consequently, as a quality of adaptively
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selected features is higher, a smaller subset of them will be enough to achieve the same
classification performance compared to a subset of statically selected features.

Thereby, in cases when it is difficult to find a small fixed subset of relevant features, we
propose to use different features for every testing sample, i. e. select relevant features
in the “adaptive” manner. In addition, by analogy with the visual processing, adaptive
feature selection can be useful for systems where evaluation of every additional feature is
associated with considerable costs, which might be much higher compared to additional
computations due to the adaptive selection.

3.3 Framework

Let us adjust the standard feature selection framework presented in the previous chapter to
the adaptive approach. Suppose that we have a testing sample &. Suppose also that after
i steps we have selected the features Fy,,...,Fy, and observed their values &g, , .. .,&q,
on this testing sample. Then, for this testing sample the next feature Fg, , is selected
according to the adaptive criterion:

01 = argml?XS(C7F(X1 = F:(Xla" '7FOC,' = E,aOC,';Fk)- 3.1

In contrast to the static criterion (2.1), the adaptive criterion takes also into account the
values of the already selected features, which are observed on the current testing sample.
That is, every next feature should be relevant w. r. t. the class variable whose distribution
is updated with the values of the already selected features observed on the current testing
sample. In other words, the selected feature should be both relevant for classification and
non-redundant w. r. t. the previously selected features taking values observed on the
current testing sample.

Recall that the selection criterion was expressed in the form of uncertainty reduction:
o1 = argmax{U (C|F') — U (C|F, F')}, (32)

however, the selected features now takes particular values from the testing sample and
therefore F' = {Fy, =&q,,...,Fo; = &o;}- In order to differentiate between F' for static
and adaptive schemes, let us introduce §' = {Fy, =&q,,- - -, Foy = &a; }-

It is necessary to make a remark regarding the difference in estimating the uncertainty
function for the static and adaptive schemes. In the adaptive case, since we observe a
certain realization of the selected features on the testing sample &, the uncertainty depends
on the class posteriors only w. r. t. to this testing sample &:

U(C|§i) = ZU(Cj|f(X1 :éalv"'af%‘ :gai) (3.3)
=1
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At the same time, the static scheme aims for features useful for classification of all sam-
ples in general. Therefore, the uncertainty function has to be averaged over the joint space
of the involved features:

U(C|Fl): Z Zp fOLlu 7f0€, (Cj|f0617"'7f(xi)~ (34)
Fouy v Fa; J

l

But note the uncertainty updated by the feature-candidate Fy:

U(C|F. &) ZZP SlENU (¢l fi, &),

T J= (3.5)

Uk, F)= Y Z (YU (cjl fi. 1),
f]:k>f0c177 J=1

where the adaptive scheme averages also over the space of the feature F; because it has
not yet seen values of the unselected features on the testing sample .

3.3.1 Relation to complex adaptive systems

Our adaptive feature selection framework is inspired by the definition of complex adap-
tive systems given by Jost [Jost, 2004]. According to this definition, while operating an
adaptive system tries to increase its external complexity and at the same time to decrease
its internal complexity. In other words, the goal of the adaptive system is extracting as
much information as possible from its environment, which is described by data X, and
representing this information internally in the most efficient way using some model 6.
Then, formally one can express an adaptation problem in the following way:

min {—(0) +i(8)} = min { ~E, g log, p(X10)] — log p(6)} (3.6)

where ¢(0) and i(8) correspond to the external and internal complexities, respectively,
which are however optimized on different time scales. Here, p(X|0) is the probability
of data X given a model 6 and p(0) is the probability of this model itself. Then, the
first term, —e(0) = —E,(x|g)[log, p(X[0)], is nothing else but the Shannon entropy of the
data once they are processed by the model 0. It means that a model that we are looking
for should maximally reduce our uncertainty about the environment. This is exactly the
adaptive selection criterion proposed here, see the expression (3.2) together with (3.3).
That is, if we take U(C|&') as the current uncertainty of the system on the iteration i, then
the next feature F; should minimize U (C|F;,&'), which would be the uncertainty about
the environment on the next iteration (i + 1) if this feature was selected.
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The second term i(0) = —log, p(0) in (3.6) controls complexity of the model 6 and can
be seen as a regularization parameter. The simpler model is, the higher its probability is.
Complexity of a model can be measured by a number of its parameters, e. g. like in the
Akaike information criterion used in model selection [Akaike, 1974]. Recall that the aim
of any feature selection algorithm is to find a minimal number of informative features,
1. e. to find a model with a minimal number of parameters that efficiently describes the
given data.

As aresult, on every iteration, an adaptive feature selection algorithm within the proposed
framework modifies a classification model! by adding a feature that can minimize the
current uncertainty about the environment, i. e. a testing sample. In addition, but on
the longer time scale, the adaptive algorithm tries to keep the structure of a classifier as
simple as possible and therefore a number of selected features is minimized.

3.4 Existing algorithms

3.4.1 Local feature selection by decision trees

The idea of adaptive feature selection has some similarities with the so-called local feature
selection. For situations when available training data are inhomogeneous and of high
complexity, i. . when there exists no unique relationship between features in all parts of
the input space, algorithms performing local feature selection use the following approach.
They divide the input space into homogeneous regions and then for every such region
construct a separate classifier that catches local dependencies between features. Usually
the same type of the classifier is used, however, for every region of the input space, this
classifier is built using different features.

Classification decision trees are an example of models implementing this idea. The goal of
the tree classifier is to partition the input space into pure regions with a minimal number of
splits. However, for a multiclass problem, finding the smallest possible tree that partitions
the training samples with a minimal error is proven to be a NP-complete problem [Tu &
Chung, 1992]. Therefore, similar to sequential feedforward feature selection methods,
decision trees perform the greedy local search. That is, instead of looking for globally
the best set of splits, they start from the initial input space and recursively partitions it so
that every selected split reduces maximally the impurity of the current partition. The most
used decision tree algorithms are ID3 [Quinlan, 1986], its improvement C4.5 [Quinlan,
1993] and CART [Breiman et al., 1984].

I As the adaptive feature selection framework is rather general, here by a classifier we mean any estimator
of the class posterior distribution.
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Figure 3.1: A binary decision tree where every split of the nonterminal node corresponds to some
binary function, e. g. #; : fx > 0.5, and terminal nodes correspond to the class labels.

A decision tree consists of a root, internal and terminal nodes. It is constructed by re-
cursive partitioning of the input feature space into several descendant subspaces. That is,
starting from the root, every nonterminal node #; partitions the current feature space into
further subspaces according to a test function associated with this node. The terminal
subspaces correspond to the final partitions of the input space and have associated class
labels cy,...,c,. Thus, all data points falling into the certain final partition are assigned
to one class. It is usually the most common class among the samples in the partition or it
is chosen to minimize the cross-validation classification error [Breiman et al., 1984].

Test functions of the internal nodes are usually binary functions of one argument. Then,
the corresponding models are called univariate binary decision trees, see Figure 3.1 for an
example of such a tree.

One of the main issues that should be addressed while constructing a decision tree is
selection of splits, i. e. tests for every internal node. For univariate decision trees, the
problem of split selection is nothing else but the previously introduced sequential feature
selection, however for certain subregions of the input space defined by branches. Hence,
it is called local feature selection.

Note that partitioning and associated with it feature selection are done during the learning
phase. Therefore, the final partitioning should be general enough to achieve good classi-
fication performance. For this reason, decision trees need a rather large amount of data in
order to define robust partitions of the input space corresponding to different classes.
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In contrast, our adaptive approach to feature selection assumes the incremental refine-
ment of that part of the input space where a testing sample lies and defines the subset
of relevant features appropriate for this region. That is, we are not bounded to the fixed
decision boundaries that are constructed offline using only training data. Instead, feature
values observed on the testing sample are used to influence construction of the accurate
classification rule with the minimal number of features.

3.4.2 Active testing model

There exists an adaptive scheme that selects features for every testing sample proposed by
Geman and Jedynak [Geman & Jedynak, 1996]. Their so-called “Active testing model”
(ATM) was developed specifically for online road tracking. Interestingly, the idea of
adaptivity was also motivated by selective attention in the visual system which can be
observed on the example of eye movements. The authors as well make a parallel to
decision tree classifiers performing the local feature selection. For the problem of road
tracking with a large number of possible roads, they claim that offline learning of such
classifier based on the training data would lead to deep and bushy decision trees. Thus, the
adaptive approach allows avoiding complex and lengthy learning and gives a possibility
to build only those tree branches that are necessary for the testing samples.

The estimation of the feature (or tests as the original work states) selection criterion is
based on the statistical model specific for their problem. Given one point on the road,
the aim of the system is to extract this road from the satellite image based on small line-
like segments called arcs. It is supposed that if all arcs are known, then the road & can
be unambiguously tracked. However, a number of all possible segments on the satellite
image is very large and evaluating all of them is not feasible for online tracking. As a
solution, iterative testing is suggested, which is the same as sequential adaptive feature
selection for a particular road . That is, the arcs are sequentially selected and evaluated
on the satellite image, and then this information is used to form hypotheses about the
location of the road . Obviously, the selected arcs should bring as much information as
possible about the true hypothesis.

Formally, the problem is described by two classes ¢ € C = {cy, ¢, } representing roads and
background and features f € F = {fi,..., f,} representing the arcs. Every feature has N
discrete values, f; € {fi1,...,fin}. The selection criterion is formulated as follows. For
the road &, every feature selected on the iteration a4 should minimize the uncertainty
about the road location updated after evaluating i previously selected features. This un-
certainty is defined as the entropy of the class conditioned on the feature candidate Fj and
the already selected features taking the values observed on &:

Q41 :argn}cin{H(C|Fk7&i)}7 &i:{f(xl :&.,ocp'uafoc,':éoc[}' (37)



3.4. EXISTING ALGORITHMS 61

Note that as mutual information between the class and the feature candidate F; given
already observed features is I(C; Fy|€) = H(C|&') — H(C|F,&"), maximizing I(C; Fi|&')
w. . t. Fy is equivalent to minimizing H (C|F,&).

In order to simplify the estimation of the selection criterion, the features are assumed to
n

be conditionally independent given a class, i. e. p(fi,..., fa|lc) = I1 p(filc). So the main
i=1

consequence of this assumption is a possibility to estimate the multidimensional joint pfs
of the features using their marginals. Applying the probability chain rule, this leads to the
following form of the selection criterion:

041 = argmin {H(C|F.E)} = argmin {H(R|E,C)+H(CIE) ~H(R(E)} =

argmin {H(F|E,C)—H(F&)} = (3.8)

arg min { f‘, Y p(cil€)p(file;) (log p(file;) —log p(flcj)p(cilED) } :

=1 %

The same independence assumption allows to estimate the class posterior p(c;|f) recur-
sively based on the estimates from the previous iterations:

pleslf) = p(Elej)p(e)) _  p(fi=Eile))p(E"le;)p(c;) (3.9)

p(f) ﬁlp(f,. =&ilcy)p(E="cj)p(cy)
jiz

The authors report efficiency of selected features. In addition, the model has compara-
tively good speed due to the introduced simplifying assumption about interdependencies
of the features. Although this assumption is in reality violated also for the considered
problem domain, it makes it possible for the active testing model to operate fast in online
mode.

The active testing model with the Gini index as the uncertainty function was also suc-
cessfully applied to face detection and localization [Sznitman & Jedynak, 2010]. Since a
scale of a face is not known in advance, theoretically the whole image has to be inspected
with filters of all possible sizes. Adaptivity in selecting tests allows a so-called coarse-
to-fine face detection, i. e. starting with large-scale filters and further refining them only
in locations where the posterior probability of face presence is high enough. Comparing
to the exhaustive search, such adaptive approach gave an exponential gain in speed while
preserving the detection performance.
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3.4.3 Jiang’s sequential feature selector

The idea of adaptive sequential feature selection based on mutual information was also
used by Jiang [Jiang, 2008]. According to Jiang, systems implementing adaptive feature
selection are better suitable for working in non-stationary conditions when the character-
istics of the process change over time. As a subset of the informative features is defined
during the testing stage, the selection process can incorporate changes in the statistics of
the training data without additional efforts. While the general idea is within the intro-
duced framework of the adaptive feature selection, the exact algorithm uses very rough
approximation of the posterior probabilities of the classes which can negatively influence
its performance for complex problems. Let us look at the algorithm in the details.

The general form of the selection criterion is the following:

S(C.E, fu =&) =H(CIE) — H(C|fi = &, &), (3.10)

from which we see that the values of the feature-candidate on the testing sample &; is
known already during the selection process. This is in contrast to our idea stating that it
is necessary to spend system resources to evaluate a feature value only if this feature is
relevant for the task to be solved. This is crucial when the precise evaluation of features
is costly as in the hierarchy of the human visual system.

Now consider the components of the selection criterion, namely H(C|&') and H(C|f; =
Ex,E). There is a particular way of estimating the class posterior distribution p(c|&')
which is used for further selection. Suppose we have selected the first feature Fy,. Then,
if the posterior of some class p(c;|fo, = Ea,) is below a certain threshold, then this class
is excluded from the pool of the possible classes for the next selection iterations. And
accordingly, the relevance of the features candidates on the next iteration is tested for the
reduced set of the classes, which are reset to be uniformly distributed.

Formally, on the iteration i, there is a set of the currently active classes C ! with
C [
( J |§ ) ‘Cl|

which implies that H(C|&') = log(|C'|). H(C|fi = &k,&') is defined in the following way:

VC]'E Ci,

H(Clfi =&8) =— Y. plcjlfi = &) logp(cjlfi = &),

cjeCt
which together with the equiprobable classes gives:
' p(fi = Gile)) p(fi = &lc))
H(C|fk =&.&') = log _
“ ) CE’C, Y p(fi = &ler) Y p(fi = &ler)

ciEC! c1€C!
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Note that the previously selected features Fy, , ..., Fy; do not directly appear in the esti-
mation of H(C|fy = &,&").

The final form of the selection criterion is then the following:
iyl = argml?X{S(C7 aiafk = gk)} =

i p(fi = &lc)) o P(fi = &lc))
wemp BT b (= ke % p(= &l

ceC! ceC!
Fk E {F‘l7 7Fn}\{F(X]7"'7F(Xi}'

b (3.11)

Once the feature Fy,,, maximizing this selection criterion is found, the set of the classes
is updated, i. e.

it ={c;}, Vej, st oc;e and  p(cj|fa;, = o) > b,
where b is a threshold value.

One can see that the features selected on the previous iterations are used only to threshold
the unlikely classes. Since the remaining classes are set to be uniformly distributed, the
precise values of their posterior distribution are not further used. This iterative threshold-
ing can be seen as a rough and greedy approximation to the multivariate class posteriors.
Moreover, once the class is eliminated, it cannot be recovered again. And this decision is
based on the value of the single feature that makes the scheme sensitive to the noisy data.

The suggested scheme in combination with the 1—-NN classifier was used for classifi-
cation of discrete data. The author reports its efficiency compared to the 1-NN with
the arbitrary sequence of the available features for neural decoding problem. There, the
assumptions that features are independent results in a good approximation due to the rel-
atively large distance between electrodes with respect to the size of the recorded neurons.
Taking this into account and the fact that the proposed way of estimating the selection cri-
terion is oversimplified, we believe that for complex problems with many interdependent
features the performance can be poor.
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3.5 Adaptive conditional mutual information feature se-
lector

In Section 3.3, we introduced the general framework of the adaptive feature selection. It
was suggested that for classification problems with heterogeneous or small training sets
it is advantageous to select features adaptively because it is possible to find a smaller
number of discriminative features compared to the static approach. Heterogeneous data
are likely to be described by different features in different subregions of the input space.
Thus, adaptive selection gives a possibility to define a small subset of informative features
depending on the location of a testing sample. In the case of limited training data, we
expect estimates of local relevance of a feature, i. e. relevance for a small subregion of
the input space defined by a certain testing sample, to be more accurate than estimates
of global feature relevance, which is used by static schemes. As a result, the adaptive
scheme would select features of better quality. Consequently, in order to reach the same
classification accuracy, one would need a smaller number of adaptively selected features
comparing to static selection schemes.

Thus, one does not predefine a single subset of relevant features but rather selects a spe-
cific one for every new testing sample. The proposed approach assumes a sequential
feedforward feature selection where every next feature added to the subset should be dis-
criminative and non-redundant w.r.t the already selected features, which take particular
values observed on the current testing sample [Avdiyenko et al., 2012c¢,b].

3.5.1 Model

Now, we present a particular algorithm realizing the idea of adaptive sequential feature
selection. The proposed method uses a selection criterion based on the mutual information
of the features and class variables [Cover & Thomas, 1991]. As a subset of informative
features is formed