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Chapter 1

Introduction

Machine learning is often confronted with high-dimensional data. A common problem
is the so-called “curse of dimensionality”, meaning that an amount of data needed to
accurately learn parameters of a model grows exponentially with a number of input di-
mensions. For this reason, as well as computational issues, feature selection is often used
to reduce the data dimensionality to features that are relevant for solving a given problem,
such as classification. Moreover, in a situation when a training set is of the limited size, a
classifier built on a smaller number of features usually has better generalization ability.

Basically, one can distinguish between two types of feature selection algorithms: filters
and wrappers [Webb, 1999]. Filters try to reduce the data dimensionality while keeping
potential clusters in the data well separated. In this case, the relevance of each feature is
evaluated using different measures of a feature’s ability to discriminate between classes.
Wrappers also preprocess the data but directly take into account that the resulting features
should be useful for a certain classifier. Therefore, features are selected based on the
prediction accuracy of the classifier employing these features. This might lead to better
results but is usually computationally demanding and prone to overfitting.

For both wrappers and filters, the best feature subset of a certain cardinality can be found
using an optimal search strategy. However, a number of possible subsets is exponen-
tially large, therefore, testing all of them is computationally infeasible. To tackle this
problem, Narendra and Fukunaga proposed the branch and bound method that assumes
monotonicity of a selection criterion, which allows to avoid an exhaustive search [Naren-
dra & Fukunaga, 1977]. If such an assumption is not valid and the number of features is
large, suboptimal methods have to be used. This class of algorithms includes forward and
backward sequential feature selection, where a subset of relevant features is formed by
iteratively adding relevant features or removing irrelevant ones, respectively, e. g. [Ding
& Peng, 2005; Abe, 2005].
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For feature selection algorithms of the filter type, one of the central questions concerns
a selection criterion, i. e. a notion of the feature relevance. An intuitive choice for
such criterion is the Bayes error probability of classification using a considered feature
[Breiman et al., 1984]. Another popular family of techniques uses different dependency
and correlation measures to determine the degree of association between classes and a
feature [Mingers, 1987; Duch, 2006]. However, since such measures are usually pair-
wise, these techniques are not able to discover high-order dependencies in order to avoid
selecting mutually redundant features. As a partial solution, Hall proposed a correlation-
based measure punishing features that are highly pairwise correlated with the previously
selected features within the sequential feedforward setup [Hall, 1999].

Among probabilistic criteria used by filters, selection criteria based on Shannon entropy,
a measure of uncertainty in the information theory, are widely used [Duch et al., 2004].
Such criteria select features to reduce uncertainty about the class. Moreover, it was also
shown that features that have high mutual information with a class variable, a concept
closely related to the Shannon entropy, are indeed useful for classification [Lewis, 1962;
Brown et al., 2012]. Despite numerous estimators of mutual information developed in
the last several decades [Beirlant et al., 1997; Nemenman et al., 2002; Kraskov et al.,
2004], its estimation is still considered to be a hard task. However, a problem of feature
selection does not require precise values of mutual information. Therefore, even if an
estimator is biased, it is sufficient to have the right ordering of features according to their
informativeness, which significantly reduces requirements to the quality of estimates.

Battiti was one of the first to use mutual information, for sequential feature selection
[Battiti, 1994]. However, this involves estimation of the conditional mutual information
(CMI), i. e. the amount of information between the feature and the class given the al-
ready selected features, which requires multivariate density estimation. To circumvent
this problem, Battiti approximated CMI by pairwise mutual information. In addition, his
work gave rise to the development of various related approximations of conditional mu-
tual information as a criterion for feature selection, e. g. [Yang & Moody, 1999; Kwak
& Choi, 2002b; Fleuret & Guyon, 2004]. Alternatively, kernel density estimation is a
non-parametric technique widely used for multivariate density estimation. It was suc-
cessfully applied to estimate CMI and related quantities for the exhaustive search proce-
dure [Bonnlander & Weigend, 1994] and forward feature selection [Kwak & Choi, 2002a;
Bonnlander, 1996].

The feature selection algorithm developed in this thesis is inspired by the hypothesis
checking mechanism in the human visual system, which is implemented using numerous
feedback connections coming from the higher brain areas to the lower ones [Mumford,
1991; Bullier, 2001]. Due to the so-called information bottleneck referring to the limited
capabilities of visual processing, only a restricted amount of information can be processed
at the same time [Van Essen et al., 1991]. After the first portion of the input is processed
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by bottom-up circuits, an initial set of hypotheses about a visual scene is formed in the
higher brain areas. If at this stage the scene can not be unambiguously classified, i. e.
there is still some uncertainty about the class and therefore no single hypothesis can be
chosen, a top-down signal from the higher areas will initiate processing of the next input
portion in order to refine the current hypothesis set. Such selection-refinement process
will be iteratively repeated until the visual scene is classified.

One can think about small portions of the visual input as its features. Then, the described
scheme is nothing else but a feature selection algorithm that selects features relevant for
classification of a certain visual scene. Thus, the selection is adapted to an object that
should be classified. This phenomenon inspired us to develop a computational algorithm
solving a visual classification task that would incorporate such principle, adaptive feature
selection. It is especially interesting because usually feature selection methods are not
adaptive as they define a unique set of informative features for a task and use them for
classifying all objects. However, an adaptive algorithm selects features that are the most
informative for the particular input. Thus, the selection process should be driven by statis-
tics of the environment concerning the current task and the object to be classified, which
in machine learning terms are called a training set and a testing sample, respectively. In
this context, the main question we ask in this thesis is whether the proposed adaptive
way of selecting features is advantageous and in which situations. Similarly to the visual
system where feedback is necessary for recognizing ambiguous objects, we expect that
adaptive feature selection should be advantageous for complex classification tasks where
it is difficult to define a single static feature subset of a moderate size that would be suf-
ficient for the accurate classification. In particular, the usage scenarios for the adaptive
selection scheme are the following.

When the structure of data is heterogeneous, one may need different features to discrim-
inate between classes, or even different objects belonging to one class may have differ-
ent discriminative features. As a result, it is very likely that no single small subset of
features is good enough for classification of all observations. One can partially over-
come this problem by having a collection of all relevant feature subsets. This, however,
will lead to an increase in the classifier complexity, which in turn will lead to its poor
performance, unless a large amount of training data is available for training a classifier
in high-dimensional space [Raudys & Jain, 1991]. Thus, conventional feature selection
schemes, which select a fixed subset of features before they are handed to a classifier, can
be inefficient.

In addition to the case with heterogeneous data, we expect the adaptive approach to feature
selection to be advantageous when the amount of available training data is limited and the
number of features exceeds the number of training samples. If features are selected in the
adaptive way, their relevance is judged only for a small subregion of the input space where
a testing sample lies. At the same time, static schemes look for features that are globally
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relevant, i. e. features with the high discriminative power for all samples from a training
set. Therefore, it is very probable that in the undersampled regime, when the training
set does not fully represent the true data distribution, estimates of the local relevance
would be more accurate than those of the global relevance. As a result, quality of the
adaptively selected features would be better and in order to reach the same classification
accuracy, one would need a smaller number of adaptively selected features comparing to
static selection schemes.

Thus, in cases when it is difficult to find a small fixed subset of relevant features, we
propose to use different features for every testing sample, i. e. select the informative
features in an “adaptive” manner. By adaptivity we mean that for a certain testing sample
every selected feature should be maximally relevant for its classification given values of
the already selected features observed on this testing sample.

The idea of adaptivity was used by Geman and Jedynak in their active testing model [Ge-
man & Jedynak, 1996] where they sequentially select tests in order to reduce uncertainty
about the true hypothesis. For their problem domain, they assumed that features are con-
ditionally independent given the class, which simplified the estimation. Jiang also used
an adaptive scheme [Jiang, 2008], however, without conditioning on the already selected
features, which are employed only to update a set of currently active classes. In contrast to
these schemes, we adaptively select features taking into account high-order dependencies
between them.

Therefore, we propose an adaptive feature selection algorithm that utilizes a selection
criterion based on Shannon entropy. Applied to a classification task, our adaptive feature
selection algorithm sequentially adds features one by one to a subset of features in order
to reduce uncertainty about a class of a certain testing sample. In information-theoretical
terms, a selection criterion is the mutual information of a class variable and a feature-
candidate conditioned on the already selected features, which take values observed on the
current testing sample. Hence, we call it adaptive conditional mutual information feature
selector (ACMIFS). For its estimation, we utilize a plug-in estimator based on kernel
density estimates with the proposed here adaptive smoothing. Even though the mutual
information is hard to estimate in general and from small data sets especially, practical
investigations of the algorithm show that it is able to select informative features in high
dimensions.

It is well-established that there are two factors affecting shifts of the visual attention: vi-
sual stimuli themselves and a task. While the influence of image statistics on the viewing
behavior is intuitive, a fact that a saccade sequence differs depending on a task had to
be proven experimentally [Yarbus, 1967; Rothkopf et al., 2007; Betz et al., 2010]. How-
ever, the question remains what kind of strategy people use to decide what is relevant
for a task, e. g. simple heuristics or complex algorithms based on the ideas of infor-
mation theory etc. Surprisingly, despite their computational complexity, statistical and
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information-theoretical definitions of the task-relevance are often used in the state-of-
the-art algorithms predicting eye movements [Najemnik & Geisler, 2005; Itti & Baldi,
2006; Renninger et al., 2007]. Inspired by a process that selects relevant sources of the
visual information, our adaptive feature selection scheme can also be seen as a visual
search strategy underlying eye movements while performing a task. Therefore, further
we investigate the next question, namely whether the proposed information-theoretical
selection scheme, which is a computationally complex algorithm, is utilized by humans
while they perform a visual classification task. For this, we constructed a psychophysical
experiment where people had to select image parts that in their opinion are relevant for
classification of these images. We present the analysis of behavioral data where we in-
vestigate whether human strategies of task-dependent selective attention can be explained
by a simple scheme based on the pairwise mutual information, a more complex feature
selection algorithm based on the conventional static conditional mutual information and
the proposed here adaptive feature selector that mimics a mechanism of the iterative hy-
pothesis refinement.

The main contribution of this work is the adaptive feature selection criterion based on
the conditional mutual information, as well as its non-parametric estimation that does
not presume any problem-specific assumptions. Moreover, it is shown that such adaptive
selection strategy, being inspired by the attentional modulation of task-relevant parts of a
visual scene, is indeed used by people while performing visual classification.

The thesis is organized in the following way. Chapter 2 reviews the conventional feature
selection. Main approaches to dimensionality reduction in general and feature selection
in particular are discussed in Section 2.1. Further, in Section 2.2, we introduce a general
framework of sequential feature search which is used in Section 2.3 to present differ-
ent selection criteria. Information-theoretical feature selection together with appropriate
estimation techniques are reviewed in Section 2.3 and in Section 2.4, respectively.

Chapter 3 starts with the biological motivation and the general idea of the adaptive ap-
proach to feature selection, given in Section 3.1 and Section 3.2, respectively. Section
3.3 introduces a framework of adaptive feature selection, which is followed by Section
3.4 presenting a review on existing algorithms utilizing this approach to dimensionality
reduction. After that, in Section 3.5, the proposed adaptive conditional mutual informa-
tion feature selector is presented. In particular, Subsection 3.5.1 introduces the model, its
estimation using kernel density method with the adaptive smoothing is described in Sub-
section 3.5.2. Results of practical investigations are provided in Chapter 4, where ability
of ACMIFS to select relevant features in general and especially in high dimensions is
examined. In addition, Section 4.3 presents comparison of ACMIFS with two static and
adaptive feature selectors based on conditional mutual information, Parzen window fea-
ture selector [Kwak & Choi, 2002a] and active testing model [Geman & Jedynak, 1996].
Further, an alternative selection scheme combining ACMIFS and active testing model in
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order to reduce computational complexity is proposed in Section 4.4. The discussion of
advantages of adaptive feature selection is given in Section 4.5.

Chapter 5 presents the psychophysical experiment where human strategies of task-dependent
selective attention are investigated. Section 5.1 reviews existing strategies of attentional
selection with the emphasis on the task-dependent ones. Further, in Section 5.2, we de-
scribe an idea of the clicking experiment. Section 5.3 provides details of three tested
information-theoretical strategies based on mutual information, static and adaptive condi-
tional mutual information of a class with an image patch. Section 5.4 presents a statistical
method that is used to compare these strategies with respect to their explanatory power
of the observed behavioral data. Technical details of the experimental setup are described
in Section 5.5. Section 5.6 presents the analysis and interpretation of the clicking experi-
ments. Finally, the general discussion is provided in Chapter 6.



Chapter 2

Conventional feature selection

2.1 Main approaches to feature selection

Feature selection algorithms reduce dimensionality of the input space by picking a small
number of relevant features from the initial feature set. As representatives of dimension-
ality reduction techniques, they are used to solve a so-called “curse of dimensionality”
problem, meaning that there exists exponential dependence between the dimension of
the input and the amount of data required to learn model parameters. Thus, decreasing
the input dimensionality should ease a learning process. Moreover, a model with fewer
parameters usually has better generalization ability.

Besides feature selection, there is another method of reducing dimensionality called fea-
ture extraction. This family of techniques performs transformation of the initial input
space to the space of reduced dimensionality, which usually has also some desired prop-
erties like orthogonality or independence of new features etc. It is worth to mention that
some feature extraction algorithms expand the initial input dimensionality in a way that a
learning problem becomes simpler in the transformed space [Broomhead & Lowe, 1988;
Simoncelli et al., 1992; Lewicki et al., 1998]. Since we are interested in selecting features
and not in their transformations, we will speak further exclusively about feature selection
algorithms. The review of feature extractors can be found for example in [Liu & Motoda,
1998; Guyon et al., 2006]. The most prominent representatives in pattern recognition
are principal component analysis [Pearson, 1901; Jolliffe, 1986], independent compo-
nent analysis [Hyvärinen et al., 2004] and sparse coding due to its biological plausibility
and connection to receptive field properties of neurons in primary visual cortex [Foldiak,
1990; Olshausen & Field, 1996].
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Feature selection algorithms can be divided into two main classes: filters and wrappers
[Webb, 1999]. The filters look for a minimal subset of features that can maximally en-
hance classification, i. e. discriminate between samples belonging to different classes
with the minimal error. In order to evaluate a discrimination power of a feature subset,
different metrics are used such as various distance measures between classes, dependency
measures between features and classes etc. Note that these metrics are not restricted to a
particular classification method, therefore, selected features can be used for training any
classifier. However, it can also be considered as a drawback, since the resulting feature
subset may be suboptimal for the chosen classifier. An extensive overview of distance
measures used by the filters will be presented later in Section 2.3.

Comparing to the filter methods, the wrappers select features that are useful for a cer-
tain classifier [Kohavi & John, 1997]. A goodness of a feature subset is measured by the
prediction accuracy of a classifier employing these features. Thus, one can be sure that
the selected features will indeed improve the quality of classification. However, there is
a danger of overfitting. This means that the features are selected in the way to provide
the best classification performance on the training data which might however lead to poor
accuracy on the previously unseen test data. Moreover, these methods are rather compu-
tationally expensive, since in order to find the best feature subset a classifier should be
run as many times as there are different subsets under consideration. Among represen-
tatives of wrappers, there are a recursive algorithm for support vector machines [Guyon
et al., 2002], a wrapper feature selector for Bayesian networks [Singh & Provan, 1995],
Kohavi’s sequential feature selection for a general classifier [Kohavi & John, 1997] etc.
Linear discriminant analysis can also be seen as a wrapper which performs feature selec-
tion while building a linear classifier on input features [Fisher, 1936]. Since the classifier
itself is simple and the only made assumption is that data drawn from each class are
normally distributed, this technique is often used as a filter [McLachlan, 2004].

There is another type of feature selectors called embedded methods [Duch, 2006]. They
can be considered as a subtype of the wrappers because during the selection process they
take also into account a classifier to be used. However, instead of directly employing re-
sults of classification, they rather use knowledge about the structure of a classifier while
evaluating how good different feature subsets are. Thus, compared to the wrappers, the
embedded methods are less computationally complex and less prone to overfitting. Exam-
ples of such methods are a feature selector for support vector machines, which minimizes
a generalization bound [Weston et al., 2000], decision trees and artificial neural networks.

In each case, one can look for the best feature subset of a certain cardinality using an op-
timal search strategy which assumes evaluating all possible feature subsets and choosing
the best one [Reunanen, 2006]. Since the number of such subsets is exponentially large,
testing all of them is infeasible unless a number of the initial features is small. A good
example of the optimal strategy avoiding an exhaustive search is the branch and bound
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method [Narendra & Fukunaga, 1977; Yu & Yuan, 1993; Somol et al., 2004]. The key
point here is monotonicity of a selection criterion. It means that if for two sets A and
B , A ⊂ B , then the goodness of the set A is not larger than the goodness of the set B .
Using such assumption together with backward selection, i. e. iterative elimination of fea-
tures from the initial set, one can disregard some subsets on the intermediate iterations if
their discriminability is low. For references to selection criteria which are monotonic and
therefore can be used in combination with the branch and bound search, see the review on
feature selection and extraction of Webb [Webb, 1999].

We would rather consider a general case and assume that a selection criterion does not sat-
isfy the monotonicity assumption. Then, suboptimal methods have to be used. This class
of algorithms includes feedforward and backward sequential feature selection which use
the greedy search strategy [Webb, 1999; Jain & Zongker, 1997]. The feedforward algo-
rithms start with an empty feature set and iteratively add features, which are relevant with
respect to the features selected on the previous iterations [Whitney, 1971]. As was already
mentioned above, the backward approach starts with the full feature set and on every it-
eration removes features that are the least useful in the current subset of the remained
features [Marill & Green, 1963; Abe, 2005]. A popular backward method is the Markov
blankets algorithm that sequentially removes irrelevant features. A feature Fk is said to
be irrelevant if it has a Markov blanket, i. e. there exists such a feature subset F ′ that if
Fk is conditioned on this subset, then it is independent of all remaining features [Koller &
Sahami, 1996; Tsamardinos et al., 2003].

The suboptimality of sequential methods comes from the fact that they do not explicitly
look for the best feature subset. They rather try to find a feature or several features that can
improve discriminability of the current subset as much as possible. The resulting feature
subsets found by optimal and suboptimal approaches will differ a lot if there are high-
order dependencies between features. Comparing feedforward and backward algorithms,
the latter can theoretically show better results. Assuming that there are some complemen-
tary features which are informative only together and not alone, the feedforward methods
would not choose any of these features at all, and therefore, they would not have a chance
to evaluate the goodness of these features together. In the case of the backward methods,
it is more likely that such features will be included in the final feature subset, because
eliminating any of them from the feature set will result in decrease of its discrimination
power. However, in practice, the backward methods are used less often. Feature subsets
on early iterations are of large cardinality, which makes the evaluation of their relevance
complicated. Moreover, practical studies have not shown that the backward approach pro-
duces always better feature subsets when compared to the feedforward approach [Aha &
Bankert, 1996; Kudo & Sklansky, 2000]. Sequential floating feature selectors belong to
the class of algorithms that assume alternation of feedforward and backward steps while
searching for the informative feature subsets. Though, they have proven quite efficient,
the applicability of floating search methods is limited due to their exponential complexity
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[Pudil et al., 1994; Jain & Zongker, 1997]. For a review on various search methods for
feature selection see [Reunanen, 2006; Somol et al., 2007].

A feature selection algorithm, which is proposed later in this thesis, is inspired by the
hypothesis checking mechanism in the visual system. It iteratively selects small parts
of a visual input for the detailed processing in order to refine hypotheses about objects
present in the visual scene. Keeping a parallel to this mechanism of the visual system,
we adopt a sequential feedforward approach to feature selection. Further, as a task we
consider image classification, therefore, all feature selection techniques will be presented
in connection to classification. Hence, a model describing data will refer to an abstract
classifier. For completeness, we name some examples of features selection methods for
regression. These are regression trees [Breiman et al., 1984], regularization schemes
[Tibshirani, 1996; Zou & Hastie, 2005] and various filters using correlation or entropy
between features and a dependent variable as a measure of the feature relevance, e. g.
[Hocking, 1976; Carmona et al., 2011].

2.2 Feature selection framework

2.2.1 Classification setup

Let us introduce a standard classification setup and a conventional scheme of feature
selection within this setup.

Suppose we have a space of possible inputs F = ×n
i=1Fi, i. e. each input is an n-

dimensional feature vector f = ( f1, . . . , fn), where the ith feature takes values fi ∈ Fi.
Our notion of feature is rather general. For example, for the image classification task,
features can be quite simple, such as gray-values of certain pixels, or more sophisticated,
such as frequencies of some objects on an image. Feature combinations are considered
as a random variable F with a joint distribution on F1×·· ·×Fn and the observation f is
drawn from that distribution.

Furthermore, each observation has an associated class label c ∈ C = {c1, . . . ,cm}. The
task of the classifier is to assign a class label to each observation f. Thus, formally it is
considered as a map φ : F → C or, more generally, as assigning to each f the conditional
probabilities p(c|f) of the classes c. To learn such classification, we are given a training set
X = {(xi,ci)}T

i=1 of labeled observations, which are assumed to be drawn independently
from the distribution relating feature vectors and class labels. Then, the goal is to find a
classification rule φ that correctly predicts the class of future samples with unknown class
label, called testing samples. That is, confronted with a feature vector ξ we would classify
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it as c = φ(ξ). Feature selection then means that for this particular task only a subset of
features rather than the full feature vector is used.

2.2.2 General framework of feedforward selection

According to the conventional sequential feedforward feature selection for classification,
a feature Fαi+1 selected on the (i+1)th step should maximize some selection criterion S,
i. e.:

αi+1 = argmax
k

S(C,Fα1, . . . ,Fαi,Fk), Fk ∈ {F1, . . . ,Fn}\{Fα1, ...,Fαi}, (2.1)

where Fα1, . . . ,Fαi is a subset of the features selected before the (i+ 1)th iteration. In-
tuitively, the selection criterion S should favor such features that are relevant for clas-
sification with respect to the variable C. At the same time, it is desirable that the final
feature subset is of the minimal size, therefore, the selected features should be maximally
non-redundant with respect to each other.

Let us formalize the concepts of relevance and redundancy. Suppose we are given an
unlabeled sample. Before any feature is observed, we are completely uncertain about a
class label of this sample. Let U(C) be some measure of uncertainty about the variable
C. Then, a feature Fk is said to be relevant for classification if given this feature the
uncertainty about the class of some hypothetical sample will be reduced, i. e. U(C) <
U(C|Fk). Note that feature selection is performed before classification and therefore the
selected features should be discriminative for any sample that we would have to classify
in the future.

Suppose that we have already selected i features and let Fi denote a subset of these fea-
tures, Fi = {Fα1, ...,Fαi}. At this stage, the current uncertainty about the class can be
expressed as U(C|Fi). Then, the feature Fk is both relevant for classification and non-
redundant w. r. t. the already selected features if knowing this feature the current un-
certainty about the class will be reduced: U(C|Fi) < U(C|Fk,Fi). Thus, the criterion for
selecting a feature on the iteration (i+1) can be formulated in the following way:

αi+1 = argmax
k

S(C,Fi,Fk) = argmax
k
{U(C|Fi)−U(C|Fk,Fi)}. (2.2)

In addition to a search strategy, a key issue in feature selection is the choice of a selection
criterion, which in the framework of uncertainty reduction corresponds to the choice of
the uncertainty function U(·). Breiman and coauthors, while working on decision trees,
which can also be considered as feature selectors, developed a set of desired properties for
uncertainty functions and proposed several examples satisfying these properties [Breiman
et al., 1984].
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Denoting a probability of the class c j after the ith iteration as p(c j|fi), the uncertainty
U(C|Fi) is defined as a nonnegative function which depends on p(c1|fi), . . . , p(cm|fi). In
our notation, fi stands for a vector of particular realizations of the selected features fi =
{Fα1 = fα1, ...,Fαi = fαi}. Then, U(C|Fi) should have the following properties [Breiman
et al., 1984]:

1. U(C|Fi) = max, if all classes are equiprobable, i. e. p(c j|fi) = p(c j′|fi),∀ j, j′ =
1, . . . ,m.

2. U(C|Fi) = min, if all samples belong to one class, i. e. p(c j|fi) = 1 and p(c j′|fi) =
0,∀ j′ 6= j.

3. U(C|Fi) is symmetric in p(c1|fi), . . . , p(cm|fi).

2.3 Selection criteria

Here, we present various uncertainty functions which satisfy the above stated properties
and are widely used for feature selection. The review is given with respect to the presented
setup of the sequential feedforward feature selection for pattern classification.

2.3.1 Misclassification error

While solving a classification problem, the goal is to build a classifier with the best accu-
racy. So intuitively an uncertainty function should depend on the misclassification error.
Following Breiman and coauthors, let us define the misclassification error for i selected
features with the 0-1 loss function [Breiman et al., 1984]:

U(C|Fi) = ∑
F i

p(fi)

(
1−max

j
p(c j|fi)

)
, (2.3)

where ∑
F i

stands for ∑
Fα1

· · · ∑
Fαi

for brevity. Note that the expression (2.3) is in fact the Bayes

error probability, which is the lowest possible error probability for a given classification
problem:

∑
F i

p(fi)

(
1−max

j
p(c j|fi)

)
= ∑

F i

p(fi)

(
m

∑
j=1, j 6= j′

p(c j|fi)

)
=

∑
F i

m

∑
j=1, j 6= j′

p(c j)p(fi|c j),

(2.4)
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where c j′ is the winning class, i. e. p(c j′|fi) = max
j

p(c j|fi).

Using the misclassification error as an uncertainty function, the corresponding feature
selection criterion has the following form:

αi+1 = argmax
k
{U(C|Fi)−U(C|Fk,Fi)}=

argmax
k
{−∑

F i

p(fi)max
j

p(c j|fi)+∑
F i

∑
Fk

p( fk, fi)max
j

p(c j| fk, fi)}. (2.5)

This selection criterion is obviously useful for selecting features that can discriminate
well different classes. Since in practice neither an ideal classification rule nor posterior
distributions p(c j| fk, fi) are known, different approximations should be used. For exam-
ple, one can employ nonparametric techniques of density estimation such as the kernel
density method for estimating class-conditional pdfs p( fk, fi|c j) and then apply the Bayes
rule to obtain the posteriors [Fukunaga & Hummels, 1987; Yang & Hu, 2012]. k-nearest
neighbor method is also used to estimate a selection criterion based on the Bayes er-
ror probability by margin-based feature selection algorithms such as Relief, which try
to weight available features in a way so that a margin between classes is maximal [Kira
& Rendell, 1992; Gilad-Bachrach et al., 2004; Sun, 2007; Yang & Hu, 2012]. Another
approach to the estimation problem is introducing simplifying assumptions about the in-
volved pdfs such as being Gaussian etc [Bruzzone & Serpico, 1998].

Despite its simplicity and intuitive usefulness for solving classification problems, the se-
lection criterion based on the misclassification error has a major disadvantage as an uncer-
tainty function. It does not explicitly favor situations where the posterior of some classes
approaches 0 or 1, which happens due to the linear dependence between the uncertainty
and (max

j
p(c j| fk, fi)).

Let us consider a two-class problem. In this case, the uncertainty function based on the
misclassification error (2.3) is the following:

U(C|Fi) =∑
F i

p(fi)(1−max{p(c1|fi), p(c2|fi)}) =∑
F i

p(fi)min{p(c1|fi), p(c2|fi)}. (2.6)

Keeping in mind that U(C|Fi) = ∑
F i

p(fi)U(C|fi), Figure 2.1 depicts U(C|fi) as a function

of p(c1|fi), illustrating its linear behavior. Therefore, as the class posterior distribution
becomes less uniform, i. e. when p(c1|fi) decreases on the interval [0,0.5) or correspond-
ingly increases on the interval (0.5,1], the function U(C|Fi) decreases just linearly.
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Figure 2.1: Uncertainty function U(C|fi) based on misclassification error, Gini index and Shannon
entropy plotted against p(c1|fi) for a two-class problem.

2.3.2 Gini index

Following further the approach of Breiman and coauthors, we introduce a family of un-
certainty functions so that resulting selection criteria give more weight to less uniform
class posterior distributions, i. e. when p(c j|·) = 1 or p(c j|·) = 0.

For this, the desired property for U(C|Fi) would be to decrease faster than linearly. This
can be ensured if U(C|Fi) is strictly concave. So for U(C|Fi), which is continuous on
the interval [0,1], and p(c1|fi) ∈ [0,1], the second derivative of the function should be
negative, U ′′(C|Fi)< 0.

Let us proceed with construction of the improved uncertainty function. Recalling three
general requirements, we rewrite them for the two class problem. Since p(c2|fi) = 1−
p(c1|fi), we can consider that U(C|Fi) depends only on p(c1|fi):

1. U(C|Fi) = max, if p(c1|fi) = 0.5.

2. U(C|Fi) = min, if p(c1|fi) = 1 or p(c1|fi) = 0. Without loss of generality (w.l.o.g.)
we can require that the minimum value of U(p(c1|fi)) is 0.

3. U(C|Fi) is symmetric, i. e. U(c1|fi) =U(c2|fi).

And we add the new requirement

4. U ′′(C|Fi)< 0.
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The simplest example of the concave function is a quadratic polynomial, which gives
U(C|fi) = ap(c1|fi)2 +bp(c1|fi)+ c.

The second and the forth requirements give c = 0, a+ b = 0 and a < 0, respectively.
Assuming w.l.o.g. that a =−2, the uncertainty function is of the form:

U(C|Fi) = ∑
F i

p(fi)
(
2(−p(c1|fi)2 + p(c1|fi))

)
=

∑
F i

2p(fi)
(
−p(c1|fi)(1− p(c2|fi))+ p(c1|fi)

)
= ∑

F i

p(fi)
(
2p(c1|fi)p(c2|fi)

)
,

(2.7)

which is known as the Gini index, a measure of statistical dispersion proposed by Corrado
Gini [Gini, 1912]. The general form of the Gini index for a multiclass problem has the
following form:

U(C|Fi) =∑
F i

p(fi)
m

∑
j=1

m

∑
j′=1, j 6= j′

p(c j|fi)p(c j′|fi) =∑
F i

p(fi)

(
1−

m

∑
j=1

p(c j|fi)2

)
. (2.8)

Due to simplicity of its estimation and correspondence to the desired properties of the
uncertainty function (see Figure 2.1), this criterion is widely used in decision tree con-
struction [Breiman et al., 1984] and [Gelfand et al., 1991].

There is a modified version of the Gini index which is widely used for feature selection
in the field of text classification [Shang et al., 2007; Yang et al., 2011]. Let us rewrite the
feature selection criterion in the following way:

k = argmax
k

{
U(C|Fi)−U(C|Fk,Fi)

}
= argmin

k

{
U(C|Fk,Fi)

}
=

argmin
k

{
p( fk, fi)

(
1−

m

∑
j=1

p(c j| fk, fi)2

)}
.

(2.9)

First, the criterion 2.9 is simplified to argmaxk

{
p( fk, fi)

m
∑
j=1

p(c j| fk, fi)2

}
, where p( fk, fi)

is further replaced with p( fk, fi|c j)
2:

k = argmax
k

{
m

∑
j=1

p( fk, fi|c j)
2 p(c j| fk, fi)2

}
. (2.10)

The replacement is done in order to favor more class-specific features, i. e. features with
low marginal probabilities but high class-conditional probabilities for some c j. This is
especially useful when classes are unbalanced.
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2.3.3 Shannon entropy

In terms of information theory, a measure of uncertainty about the outcome of a random
variable is Shannon entropy [Shannon & Weaver, 1949]. For a random variable X , it is
defined by the following expression:

H(X) =−∑
X

p(x) log p(x). (2.11)

The uncertainty about the class label after selecting certain features Fα1, . . . ,Fαi is mea-
sured by the conditional entropy:

U(C|Fi) = H(C|Fi) =−∑
F i

m

∑
j=1

p(c j, fi) log p(c j|fi). (2.12)

Shannon entropy has all four desired properties of the uncertainty function: it takes its
maximum when the class-conditional distribution is uniform, it equals zero when the pos-

terior of one of the classes is 1, and it is strictly concave: U ′′(C|Fi)=−∑
F i

p(fi)
m
∑
j=1

1
p(c j|fi)

<

0. This can be seen on Figure 2.1 plotting Shannon entropy H(C|fi) against p(c1|fi) for a
two-class problem.

Rewriting the selection criterion with Shannon entropy as the uncertainty function, we
obtain:

S(C,Fi,Fk) =U(C|Fi)−U(C|Fk,Fi) = H(C|Fi)−H(C|Fk,Fi) = I(C;Fk|Fi), (2.13)

where I(C;Fk|Fi) is the mutual information between the class variable C and the feature
Fk after selecting i features Fi. It tells how much one can learn about C after observing an
outcome of the feature Fk, which is usually measured in bits, or equivalently how certain
one can classify the samples after selecting Fk given already selected features F1, . . . ,Fi.

Using the definition of mutual information, the selection criterion can be further rewritten
in the following way:

S(C,Fi,Fk) = I(C;Fk|Fi) = ∑
F i

∑
Fk

m

∑
j=1

p(c j, fk, fi) log
p(c j, fk|fi)

p(c j|fi)p( fk|fi)
, (2.14)

which can be interpreted as the expected value of the logarithmic function of p(c j, fk|fi)

p(c j|fi)p( fk|fi)
,

a degree of correlation between the variables C and Fk once the features Fi are selected.

Mutual information as a selection criterion is very often used in feature selection algo-
rithms as it provides a natural measure of interdependence between features and the class,
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e. g. [Lewis, 1962; Quinlan, 1986; Battiti, 1994; Kwak & Choi, 2002a; Fleuret & Guyon,
2004; Peng et al., 2005], and it is invariant under invertible transformations of involved
variables [Rezā, 1961; Kraskov et al., 2004]. The major difficulties in using mutual infor-
mation concern its estimation. As the feature selection criterion proposed in this thesis is
based on Shannon entropy or analogously on the mutual information, a detailed discus-
sion of entropy-related issues will be presented later.

2.3.4 Gain ratio

The selection criterion based on mutual information has a practical problem when fea-
tures are discrete. There is a bias in selection towards features with many values. The
reason is the following. Since the mutual information is a symmetric measure, then
I(C;Fk|Fi) = H(Fk|Fi)−H(Fk|C,Fi). As a result, a feature with many values has a high
entropy H(Fk|Fi) that could lead to a high value of the mutual information.

An intuitive solution to this problem is to punish features with high entropy values. Thus,
the proposed modified uncertainty function, which is in the decision tree community
called “Gain ratio” [Quinlan, 1993], is a normalized form of (2.13), the selection criterion
using Shannon entropy as the uncertainty function:

S(C,Fi,Fk) =
U(C|Fi)−U(C|Fi,Fk)

H(Fk|Fi)
=

H(C|Fi)−H(C|Fi,Fk)

H(Fk|Fi)
=

I(C;Fk|Fi)

H(Fk|Fi)
. (2.15)

This expression measures the ratio between the informativeness of the feature Fk for clas-
sification and its entropy. However, the measure becomes unstable once the entropy of
some features starts approaching zero, i. e. when the feature has only one or very few val-
ues. Experiments using the gain ratio show that features with high entropy are punished
too much and almost never chosen [Mingers, 1987]. At the same time, a similar idea
has been successfully used for normalizing the mutual information between two features
I(Fi,Fj) as a component of the selection criterion (2.13) [Estevez et al., 2009]:

k = argmax
k

{
I(C;Fk)−

1
i

i

∑
q=1

I(Fk;Fq)

min{H(Fk),H(Fq)}

}
. (2.16)

Another example is the symmetrical relevance criterion which uses the joint entropy
H(C,Fαq,Fk) as a normalization factor for the multivariate mutual information I(C;FαqFk)
[Meyer & Bontempi, 2006]:

k = argmax
k

{
i

∑
q=1

I(C;FαqFk)

H(C,Fαq,Fk)

}
. (2.17)
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Both above-mentioned criteria are approximations of 2.13. A detailed overview of various
approximations of entropy-based selection criteria will be presented further in Section 2.6.
For a review on information-theoretical selection criteria using different normalization
techniques see [Duch, 2006].

2.3.5 Alpha-entropies

Shannon entropy assumes a certain trade-off between contributions from the main mass
and tails of a distribution and events that occur too often or too rare do not influence much
the entropy. So-called α-entropies, Rényi entropy [Rényi, 1961] and Tsallis entropy [Tsal-
lis, 1988], are generalized versions of Shannon entropy that give a possibility to control
this trade-off explicitly. The α-entropy of some variable X is a function of ∑X p(x)α,
where the parameter α corresponds to the degree of inhomogeneity in the structure of the
probability distribution of X [Holste et al., 1998]. That is, α controls a contribution of
events of different frequencies to the sum, i. e. for large α only the high-frequency events
contribute, whereas for small α all events are weighted more uniformly. Due to this flexi-
bility, α-entropies are widely used to describe behavior of complex systems in such fields
like statistical thermodynamics, e. g. [Ramshaw, 1995], nonlinear dynamical systems, e.
g. [Grassberger & Procaccia, 1983], evolutionary programming, e. g. [Stariolo & Tsallis,
1996] etc.

α-entropies are also used as uncertainty functions in feature selection. For the α-entropy
Hα(C|Fi), the parameter α allows to control a trade-off between the purity of the class
posterior distribution, which is considered to be the best criterion to optimize from the
Bayesian viewpoint [Duch, 2006], and reducing the average uncertainty. The less uniform
posteriors, i. e. when the posterior of one of the classes is around 1, can be achieved with
α→ 0. In this case, all events contribute to the entropy and it will be significantly reduced
only when p(c j|fi)→ 1. Both Rényi and Tsallis entropies are identical to Shannon entropy
for α→ 1. Let us take a closer look at these parameterized entropies.

The uncertainty function U(C|Fi) using the Rényi entropy is

HR(C|Fi) = ∑
F i

p(fi)

1−α
log

(
m

∑
j=1

p(c j|fi)α

)
, α > 0,α 6= 1, (2.18)

leading to the following feature selection criterion (note its resemblance to mutual infor-
mation):

S(C,Fi,Fk) = HR(C|Fi)−HR(C|Fi,Fk) = ∑
F i

∑
Fk

p(fi, fk)

1−α
log


m
∑
j=1

p(c j|fi)α

m
∑
j=1

p(c j|fi, fk)α

 (2.19)
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Rényi entropy has the first three desired properties of the uncertainty function but, in
contrast to the concave Shannon entropy, it is concave only for α ∈ (0,1) and neither
concave nor convex for α > 1. Figure 2.2 illustrates the behavior of the quantity HR(C|fi)
as a function of p(c1|fi) for different values of α for a two-class problem. One can see that
for small α the decrease in entropy will be significant only if p(c1|fi)→ 1 or p(c1|fi)→ 0.
However, for large α a slight move away from the uniform posterior, i. e. away from
p(c1|fi) = 0.5, causes noticeable entropy reduction.
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Figure 2.2: A: Rényi entropy as the uncertainty function plotted against p(c1|fi) for different
values of α for a two-class problem. B: Tsallis entropy as the uncertainty function plotted against
p(c1|fi) for different values of α for a two-class problem.

Tsallis entropy is a generalization of Boltzmann-Gibbs entropy from statistical mechanics
and for the distribution p(c|fi) it is defined as follows:

HT (C|Fi) =−∑
F i

p(fi)

1−α

(
1−

m

∑
j=1

p(c j|fi)α

)
, α > 0,α 6= 1. (2.20)

As Tsallis entropy is always concave, it satisfies all four desired features of the uncertainty
function. However, compared to Shannon entropy, it is nonadditive. Additivity is one of
the algebraic properties of the uncertainty measure requiring the joint entropy of two
independent events to be a sum of their marginal entropies, i. e. H(X ,Y ) = H(X)+H(Y )
[Aczél & Daróczy, 1975]. For Tsallis entropy, we have:

HT (X ,Y ) = HT (X)+HT (Y )+(1−α)HT (X)HT (Y ), (2.21)

where (1−α) indicates a degree of deviation from an additive system. Nonadditivity
can be useful if the system is known to have nonlinear long-range couplings between its
elements [Caruso & Tsallis, 2008].
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Figure 2.2 plots Tsallis entropy HT (C|fi) against p(c1|fi) for different values of α for a
two-class problem. For small α, as in case of Rényi entropy, HT vanishes only when
p(c j|fi)→ 1. For large values of α, the Tsallis entropy of the system does not change
much by moving away from the uniform posterior. Such immunity to small changes in
the class conditional probability distribution can help to achieve better generalization and
robustness against noise.

Using Tsallis entropy as the uncertainty function, the feature selection criterion has the
following form

S(C,Fi,Fk) = HT (C|Fi)−HT (C|Fi,Fk) =∑
F i

∑
Fk

p(fi, fk)

1−α

m

∑
j=1

(
p(c j|fi)α− p(c j|fi, fk)

α
)
.

(2.22)

As uncertainty functions in decision tree construction, Rényi and Tsallis entropies were
used for example by [Maszczyk & Duch, 2008; Lima et al., 2010]. It was reported that
due to the possibility to adjust to a structure of the probability distribution describing a
given problem, constructed trees are usually smaller and have better performance than
trees using the Shannon entropy. Moreover, this class of entropies is attractive for general
feature selection due to the reduced computational complexity compared to the Shannon
entropy [Liu & Hu, 2009; Lopes et al., 2009].

2.3.6 Correlation-based feature selection

The list of the selection criteria presented above is not exhaustive. Among others, there
are criteria that do not formally fit in the framework of uncertainty reduction. The first
class of such approaches are based on dependency measures between variables.

As an alternative to the selection criterion based on mutual information (2.13), it was
suggested to use the χ2-statistic instead [Hart, 1985]. Similarly to mutual information, χ2-
statistic measures a degree of dependence between a class and discrete features. However,
this measure is usually used only for ranking, which assumes evaluating relevance of each
feature alone and not together with other features. As a result, features that are relevant
only in combination with other features will not be selected and a resulting feature subset
will be likely redundant.

The χ2-statistic for a feature Fk after selecting i features is defined in the following way:

S(C,Fk,Fi) = χ
2(C,Fk) =

r

∑
l=1

m

∑
j=1

(Tl j−El j)
2

El j
, Fk ∈ F \{F1, . . . ,Fi}, (2.23)
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where r is a number of the discrete values of the feature Fk; Tl j is a number of training
samples belonging to the class c j and feature Fk taking the value fl . El j =

TlTj
T where Tl is

a number of samples with Fk equals fl , Tj is a number of samples belonging to the class
c j and finally T stands for a total number of the samples.

Using the determined χ2-statistic and the degrees of freedom, which is (m−1)(r−1) in
our case, one can define the p-value, the level of confidence about the feature Fk being
uninformative for a class variable C. Thus, the lower this value is, the more dependent
is the class on the feature under consideration. Note that this statistic naturally avoids
the problem of being biased towards features with many values because a number of
discrete values of the feature candidate Fk is taken into account via the degrees of freedom.
Moreover, a level of confidence about the class-feature independence is more intuitive to
interpret than a level of uncertainty, thus one can easily stop selecting features once the
confidence level exceeds a certain threshold.

On the negative side, the main problems of χ2-statistic that were discovered are unreliable
estimates due to noise and limited amount of training data [Mingers, 1987]. Further, as
was already mentioned, χ2-statistic is applicable only to discrete variables. In addition, as
χ2-statistic measures the pairwise association between a class and a single feature, it does
not capture high-order dependencies between features.

Another feature selection criterion based on dependency measures is a Pearson correlation
coefficient. It favors features that are highly positively or negatively correlated with the
class [Duch, 2006]:

S(C,Fk,Fi) = r(C,Fk) =

T
∑
j=1

( fk, j− f̄k)(c j− c̄)√
T
∑
j=1

( fk, j− f̄k)2
T
∑
j=1

(c j− c̄)2

, (2.24)

where fk, j and c j are the values of the feature Fk and the class variable on the jth training
sample, respectively, and f̄k and c̄ are the expectation values of the corresponding variable.
Like the χ2-statistics, the correlation is usually measured between a single feature and a
class. Therefore, this method is used for ranking features rather than for selecting a small
informative subset of them. As an alternative to the Pearson correlation coefficient, other
criteria such as Fisher score [Furey et al., 2000], Kolmogorov-Smirnov test or G-statistics
can be used [Press et al., 1988; Duch, 2006; Miyahara & Pazzani, 2000]. Despite the fact
that the ranking approach does not take into account high-oder dependencies between
features, it can still be useful for dimensionality reduction purposes. For example, it was
shown during the NIPS feature selection challenge [Guyon et al., 2004]. Therefore, such
techniques remain popular due to their simplicity.
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A more advanced feature selection criterion was proposed by Hall [Hall, 1999]. It looks
for a subset of features that are individually correlated with the class and at the same time
minimally pairwisely correlated with each other:

S(C,Fk,Fi) =
(i+1)r̄ f f√

i+1+ i(i+1)r̄c f
, (2.25)

where (i+ 1) indicates a number of feature in the considered feature subset and r̄ f f and
r̄c f are the average Pearson correlation coefficients between two features and between
a class and a feature, respectively. Comparing to the χ2-statistic, Hall’s CFS measures
redundancy between the features, however only pairwise. At the same time, an attractive
advantage of this selection criterion is that it can be easily applied to both classification
and regression problems. Note also that in contrast to mutual information, correlation-
based techniques are able to find only linear dependencies between variables.

2.3.7 Probabilistic distance measures

There is a class of feature selection criteria that utilize probabilistic distance measures in
order to select features which have the most distinct, i. e. minimally overlapping, class-
conditional distributions. Although this approach as well does not fit into the framework
of uncertainty reduction, we present it here for completeness.

Together with selection criteria based on the misclassification error, selection algorithms
using probabilistic distance measures are representatives of discriminative methods that
try to separate classes directly rather than model data. This approach can be a better
solution while building a classifier, especially if the amount of data is limited [Vapnik,
1998].

Considering a feature candidate Fk after i selection iterations, let us denote a distance
between two class-conditional distributions p( fk|c j, fi) and p( fk|c j′, fi) as di

k(c j,c j′). For a
two-class problem, a selection criterion is defined simply as maximization of this distance,
i. e.

αi+1 = argmax
k

S(C,Fi,Fk) = argmax
k

di
k(c1,c2), (2.26)

while for multiclass problems there are several ways of combining the pairwise distances
[Webb, 1999], for example:

S(C,Fi,Fk) = max
j 6= j′

di
k(c j,c j′), (2.27)

or

S(C,Fi,Fk) = ∑
j
∑
j′

di
k(c j,c j′)p(c j|fi)p(c j′|fi). (2.28)
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Similar to the notion of the uncertainty function, a distance between two distributions
should satisfy certain requirements:

1) di
k(c j,c j′) = 0 if the corresponding pdfs are identical, p( fk|c j, fi) = p( fk|c j′, fi);

2) di
k(c j,c j′)≥ 0;

3) di
k(c j,c j′) = max when the corresponding pdfs have disjoint support.

This list can be extended by the requirement of symmetry, di
k(c j,c j′) = di

k(c j′,c j), which
together with 1) and 2) are three standard necessary conditions for a function to be a
distance metric.

We provide some examples of probabilistic distance measures used in feature selection.
A more comprehensive list can be found for example here [Chen, 1976]:

• Kolmogorov variational distance:

di
k(c j,c j′) =

∫
F i

∫
Fk

|p( fk|c j, fi)p(c j, fi)− p( fk|c j′, fi)p(c j′, fi)|d fkdfi =

∫
F i

∫
Fk

∣∣p(c j| fk, fi)− p(c j′| fk, fi)
∣∣ p( fk|fi)d fkdfi,

(2.29)

which for a two-class problem has a direct relation to the Bayes error probability:

p(e| fk, fi) = 0.5

1−
∫
F i

∫
Fk

∣∣p(c1| fk, fi)− p(c2| fk, fi)
∣∣ p( fk|fi)d fkdfi

 .

• Chernoff distance:

di
k(c j,c j′) =− log

∫
F i

∫
Fk

ps( fk|c j, fi)p(1−s)( fk|c j′, fi)d fkdfi, s ∈ [0,1]. (2.30)

• Bhattacharyya distance:

di
k(c j,c j′) =− log

∫
F i

∫
Fk

(
p( fk|c j, fi)p( fk|c j′, fi)

) 1
2 d fkdfi, (2.31)

which is equivalent to the Chernoff distance with s = 1
2 . It also provides an upper

and lower bound of the Bayes error probability [Fukunaga, 1990].
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• Divergence:

di
k(c j,c j′) =

∫
F i

∫
Fk

(
p( fk|c j, fi)− p( fk|c j′, fi)

)
log

p( fk|c j, fi)

p( fk|c j′, fi)
d fkdfi =

DKL
(

p( fk|c j, fi)||p( fk|c j′, fi)
)
+DKL

(
p( fk|c j′, fi)||p( fk|c j, fi)

)
,

(2.32)

where DKL(·||·) is the Kullback-Leibler divergence between two pdfs (see the def-
inition (2.40) below). Although the Kullback-Leibler divergence can be used as
an asymmetric distance measure between two distributions alone, the summation
of two distances is used here in order to make the measure d symmetric, i. e.
d(x,y) = d(y,x), but DKL (p(x)||p(y)) 6= DKL (p(y)||p(x)).

• Patrick-Fischer distance:

di
k(c j,c j′) =


∫
F i

∫
Fk

(
p( fk|c j, fi)p(c j|fi)− p( fk|c j′, fi)p(c j′|fi)

)2
d fkdfi


1
2

(2.33)

Despite an intuitive utility of the presented distance metrics for feature selection, they are
rarely used in contemporary algorithms, see few examples [Papantoni-Kazakos, 1976;
Devijver & Kittler, 1982; Miller, 1990]. More attention is paid to the Bhattacharyya
distance due to its connection to the Bayes misclassification error [E. & C., 2003; Xuan
et al., 2006]. In one of the recent works, Bhattacharyya, divergence and Patrick-Fischer
metrics were employed for evaluating relevance of feature subsets in sequential search
[Somol et al., 2005]. However, it was reported that filters using such metrics do not
always select good feature subsets due to the difficulties in accurately estimating involved
pdfs. For this reason, usage of the probabilistic distance measures is usually limited to
the cases when the class-conditional pdfs come from known distributions and the metrics
can be calculated analytically [Webb, 1999].

2.4 Information-theoretical feature selection

2.4.1 Definitions

Let us recall definitions and some properties of the fundamental information-theoretical
concepts, Shannon entropy and mutual information. Entropy as a measure of uncertainty
of a random variable was introduced by Claude Shannon [Shannon & Weaver, 1949],
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though the closely related thermodynamical entropy was known before. Thus, for a ran-
dom discrete variable A, its entropy is defined as follows:

H(A) =−∑
A

p(a) log p(a), (2.34)

where p(a) is the probability mass function of A.

A high level of entropy means that before observing a variable, we are highly uncertain
about its future value. Therefore, as was already stated while describing different un-
certainty functions, the entropy is maximal for uniform distributions and minimal if one
of the possible outcomes of the variable appears with probability 1. Though the entropy
was originally proposed for discrete variables, there is its analog for continuous variables
called differential entropy:

H(A) =−
∫
A

p(a) log p(a)da, (2.35)

where p(a) refers to the probability density function. From now on, when referring to
entropy, the differential entropy will be meant unless stated otherwise.

In case of two variables A and B, the uncertainty about the variable A once the variable B
is known is quantified by the conditional entropy:

H(A|B) = H(A,B)−H(B) =
∫
A

∫
B

p(a,b) log p(a|b)dbda, (2.36)

where p(a,b) is the joint probability density function of A and B and H(A,B) is the joint
entropy of two variables:

H(A,B) =
∫
A

∫
B

p(a,b) log p(a,b)dbda. (2.37)

Usually the logarithm with base 2 is used and entropy is measured in bits. Then, one can
interpret the entropy of a variable as a number of bits necessary for its coding.

There are defining properties of Shannon entropy that are worth to be mentioned [Cover
& Thomas, 1991]:

• the entropy is nonnegative, H(A)≥ 0;

• conditioning reduces the entropy, H(A|B)≤ H(A);

• H(A1, . . . ,An) ≤
n
∑

i=1
H(Ai), with equality only if the variables A1, . . . ,An are inde-

pendent;



26 2. CONVENTIONAL FEATURE SELECTION

A B

0 0.25 0.5 0.75 1
0

0.5

1

p(a=0)

H(A)
p(a=0)=0.5
p(a=1)=0.5

p(a=0)=0
p(a=1)=1

p(a=0)=1
p(a=1)=0

Figure 2.3: A: Entropy of the binary variable A ∈ {0,1} plotted against p(a = 0). It is shown
that entropy reaches its maximum value at p(a = 0) = p(a = 1) = 0.5 and its minimum value
at p(a = 0) = 1 and p(a = 0) = 0. B: Diagram of the relation between mutual information of
two variables I(A;B) and their marginal, joint and condition entropies, H(A) and H(B), H(A,B),
H(A|B), respectively.

• H(A) is a concave function of p(a).

The mutual information of two continuous random variables A and B measures the degree
of their dependence is defined as follows:

I(A;B) = H(A)−H(A|B) = H(B)−H(B|A) = H(A)+H(B)−H(A,B) =∫
A

∫
B

p(a,b) log
p(a,b)

p(a)p(b)
dbda. (2.38)

In other words, mutual information quantifies a change in the uncertainty about one vari-
able after the second variable is observed. Note that the entropy H(A) or H(B) can be
infinite as da→ 0 or db→ 0, respectively. However, the mutual information is always
finite because it is defined as a difference of entropies, thus, the infinite terms will vanish
[Haykin, 1999].

Among the important properties of the mutual information, one can distinguish the fol-
lowing:

• the mutual information is symmetric, I(A;B) = I(B;A);

• it is nonnegative, I(A;B) ≥ 0, with equality only if the variables A and B are inde-
pendent.
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Conditional mutual information I(A;B|C) measures the amount of information of two
variables A and B conditioned on the variable C:

I(A;B|C) = H(A|C)+H(B|C)−H(A,B|C) =∫
A

∫
B

∫
C

p(a,b,c) log
p(a,b|c)

p(a|c)p(b|c)
dcdbda. (2.39)

Conditional mutual information is a key element of sequential information-theoretical
feature selection. Recall that on every iteration we look for a feature Fk that maximizes
I(C;Fk|Fα1 , . . . ,Fαi), the mutual information with the class variables C conditioned on the
already selected features Fα1, . . . ,Fαi .

Another central concept of information theory is the relative entropy or Kullback-Leibler
divergence, which for two probability distributions p(a) and q(a) measures a distance
between them:

DKL(p(a)||q(a)) =
∫
A

p(a) log
p(a)
q(a)

da. (2.40)

However, the Kullback-Leibler divergence is not a true metric because it is not symmetric
and the triangle inequality does not always hold. Using the definition of the Kullback-
Leibler divergence, one can represent the mutual information and get its interpretation in
terms of the distance between two distributions:

I(A;B) =
∫
A

∫
B

p(b)DKL(p(a|b)||p(a))ba. (2.41)

Then, the mutual information measures how much on average the distribution of A changes
if it is conditioned on B. Obviously, if A and B are independent, conditioning on B will
not have any effect on A and the average Kullback-Leibler distance will be zero.

For further reading on information theory, refer to [Shannon & Weaver, 1949; Cover &
Thomas, 1991; Mackay, 2003].

2.4.2 Use in solving classification tasks

Already in 1962 Lewis proposed mutual information between a class variable and a fea-
ture as a statistic measuring “goodness” of this feature for classification [Lewis, 1962].
The statistic had to reflect a degree of correlation between the feature and the class vari-
able and it was derived with an objective to reduce a misclassification error. Lewis showed
experimentally that the accuracy of the classification was higher when using features with
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higher value of the mutual information. Therefore, it was concluded that it is indeed use-
ful for selecting features that are relevant for classification. Similar finding appeared also
in the field of visual neuroscience, where Ullman and colleagues showed that features
maximizing mutual information with a class are optimal for use in visual classification
tasks [Ullman et al., 2002].

A more formalized justification for using mutual information as a criterion for selecting
discriminative features is based on inequalities relating the Bayes error probability to the
conditional entropy p(c| f ) and consequently to the mutual information I(C;F).

For example, the Fano weak lower bound on the conditional entropy [Fano, 1961] states
the following:

H(C|F)≤ 1+ pe log2(m−1), (2.42)

where pe is the Bayes error probability when using the feature F for classification and
m is a number of the classes. However, this bound becomes degenerated for two-class
problems. Fano also introduced a strong lower bound on this quantity [Fano, 1961]:

H(C|F)≤ H(pe)+ pe log2(m−1). (2.43)

And the upper Hellman-Raviv bound [Hellman & Raviv, 1970] is given by the following
expression:

H(C|F)≥ 2pe. (2.44)

As I(C;F) = H(C)−H(C|F), it is obvious that a feature F , which maximizes the mu-
tual information I(C;F) or equivalently minimizes H(C|F), assures a small classification
error.

Recently Brown and colleagues showed that selection criteria based on mutual informa-
tion can be derived from the formulation of the conditional likelihood maximization prob-
lem [Brown et al., 2012]. Let us review their analysis.

In our standard classification framework, the goal is to estimate a posterior probability
p(c|f). Assuming that some features are redundant, we want to select only relevant fea-
tures for classification. Suppose that there is an N-dimensional binary vector θ indicating
selected features. Thus, θi = 1 if a feature Fi is in the subset of the relevant features and
θi = 0 otherwise. We want to find the optimal parameter θ∗ ensuring the best possible
classification accuracy, which is ideally provided by using all features F = {F1, . . . ,Fn}.
Thus, we look for such θ∗ that p(c|F) = p(c|Fθ∗).

Suppose also that a true posterior p(c|Fθ) is approximated by the model q(c|Fθ,τ), where
τ represents parameters necessary for classification. Within such setup, our goal is to find



2.4. INFORMATION-THEORETICAL FEATURE SELECTION 29

the parameters (θ,τ) that maximize the conditional loglikelihood of the class labels given
the data D:

l(θ,τ|D) =
1
T

T

∑
i=1

logq(ci|fθ
i ,τ)≈ Ep(f,c)

[
logq(ci|fθ

i ,τ)
]
, (2.45)

where Ep(f,c) [·] is the expectation w. r. t. the distribution p(f,c) and 1
T

T
∑

i=1
(·) is its finite

sample estimate. After adding and subtracting both p(c|fθ) and p(c|f), 2.45 can be written
in the following form:

−l ≈ Ep(f,c)

[
log

p(c|fθ)

q(c|fθ,τ)

]
+Ep(f,c)

[
log

p(c|f)
p(c|fθ)

]
−Ep(f,c) [log p(c|f)] . (2.46)

The first and the third terms are DKL(pθ||qθ) and H(C|F), respectively. Let us look at the
second term:

Ep(f,c)

[
log

p(c|f)
p(c|fθ)

]
= Ep(f,c)

[
log p(c|f)− log p(c|fθ)

]
=

Ep(f,c)

[
log

p(c, f)
p(c)p(f)

+ log p(c)− log
p(c, fθ)

p(c)p(fθ)
− log p(c)

]
=

Ep(f,c)

[
log

p(c, f)
p(c)p(f)

]
−Ep(f,c)

[
log

p(c, fθ)

p(c)p(fθ)

]
.

(2.47)

Let Fθ̃ denote the non-selected features. Then, the variable F can be represented as a joint
variable, F = {Fθ̃,Fθ}. Taking this into account, we have:

Ep(f,c)

[
log

p(c, fθ)

p(c)p(fθ)

]
= Efθ̃,fθ,c

[
log

p(c, fθ)

p(c)p(fθ)

]
= Efθ,c

[
log

p(c, fθ)

p(c)p(fθ)

]
, (2.48)

as the function whose expectation is calculated does not depend on F θ̃. Plugging this into
(2.47), we get:

Ep(f,c)

[
log

p(c, f)
p(c)p(f)

]
−Efθ,c

[
log

p(c, fθ)

p(c)p(fθ)

]
= I(C;F)− I(C;Fθ). (2.49)

Finally, the minimization problem (2.46) under the assumption that a number of training
samples T tends to infinity can be rewritten as:

− lim
T→∞

l ≈ DKL(pθ||qθ)+ I(C;F)− I(C;Fθ)+H(C|F). (2.50)
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Following [Brown et al., 2012], we interpret all components of the conditional loglikeli-
hood. DKL(pθ||qθ) is the Kullback-Leibler divergence between the true and approximated
probability of the class labels given the selected features. In other words, it measures how
good the approximation of the model q is, which in turn depends on the model parame-
ters τ. Note that though DKL(pθ||qθ) formally depends on θ, it does not tell much about
optimality of θ but only about the quality of approximation given some fixed θ. The dif-
ference I(C;F)− I(C;Fθ) shows the amount of information that is left between the class
variable C and non-selected features. If the optimal parameter θ∗ is found, this difference
will be 0. The last term can not be reduced by optimization and represents the intrinsic
uncertainty of the classification problem at hand, i. e. the uncertainty about the class
labels which is left after observing all features.

As the goal of feature selection is to find the optimal parameter θ∗, the minimization prob-
lem (2.50) can be reduced just to maximizing I(C;Fθ), as other terms are not influenced
by θ. This proves again that features maximizing the mutual information with the class are
good candidates to be included in a classifier. Note that sequential feedforward techniques
form a subset of relevant features sequentially. Therefore, they maximize I(C;Fθ) by iter-
atively maximizing I(C;Fk|Fα1, . . . ,Fαi). Then, the above statement can be reformulated
in the following way: on every iteration a feature Fk maximizing I(C;Fk|Fα1, . . . ,Fαi) will
decrease the classification error more than other feature candidates.

2.5 Estimation of mutual information

Despite theoretical attractiveness of mutual information, its practical use is complicated.
The reason is that usually mutual information is not known a priori and therefore it should
be estimated from data at hand. As mutual information can be decomposed into a sum of
marginal and joint entropies, I(C;F) = H(C)+H(F)−H(C,F), its estimation is usually
reduced to the problem of estimating these entropies. Although entropy estimation has
been massively studied already for several decades, it is still considered to be a difficult
task. Moreover, in situations when the amount of data is limited, there exists no unbiased
entropy estimator [Panzeri et al., 2007].

Methods for entropy estimation can be divided into plug-in and nonplug-in types [Beirlant
et al., 1997]. Recall the differential entropy of a random variable:

H(X) =−
∫
X

p(x) log p(x)dx. (2.51)

Then, according to the plug-in approach, first a probability density p(x) is estimated and
then this estimate p̂(x) is plugged into the expression of the entropy definition (2.51). In
turn, the nonplug-in methods estimate the entropy function directly.
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Before introducing different estimation techniques, let us formally define the notion of the
accuracy of an estimator. An estimation error can be decomposed into two components:
the bias and the variance. The former is the error due to the difference between the
expectation value of the estimate and the true value, whereas the latter is the error due to
the variability of estimates build on different data subsamples. Therefore, given T i.i.d.
samples x1, . . . ,xT , an estimator p̂(x) of a function p(x) has no error if both the bias and
the variance are equal to zero:

lim
T→∞

Ep(x)[p̂(x)]− p(x) = 0, lim
T→∞

Varp(x)[p̂(x)] = 0. (2.52)

2.5.1 Plug-in approaches

In case there is no knowledge about a structure of the probability density function p(x), the
differential entropy as it is given by the expression (2.51) requires numerical integration.
Note that (2.51) is nothing but the expectation of the logarithmic function w. r. t. the
distribution p(x):

H(X) = Ep(x)[log p̂(x)]. (2.53)

In order to avoid integration, the expectation value can be approximated by the average of
log p̂(x) over all samples. Given a training set {x1, . . . ,xT}, such approximation leads to
the following resubstitution estimator [Beirlant et al., 1997]

H(X) =− 1
T

T

∑
i=1

log p̂(xi). (2.54)

Another plug-in estimator is based on the idea of leave-one-out cross-validation and there-
fore is less prone to overfitting [Ivanov & Rozhkova, 1981; Hall & Morton, 1993]:

H(X) =− 1
T

T

∑
i=1

log p̂i(xi), (2.55)

where the estimate of the probability density p̂i(xi) in the point xi is built using all samples
excluding the sample xi, which is used for validation.

2.5.1.1 Density estimation.

Now we turn to estimation of a probability density function which can be plugged in the
estimators presented above. Stating the problem formally, given a finite number of i.i.d.
n-dimensional samples, we want to model a density p(x).



32 2. CONVENTIONAL FEATURE SELECTION

Depending on the assumptions about a form of the density function used for its estimation,
one distinguishes parametric and nonparametric estimation techniques. The parametric
estimators assume that a density function can be described by a certain model. Then, the
estimation problem is reduced to fitting parameters of the assumed model to observed
data. The nonparametric techniques do not use such assumptions and estimation is driven
purely by the observations. On the one hand, such a dependence on the data obviously
implies a higher variance compared to the parametric methods. On the other hand, the
bias of the nonparametric estimators vanishes asymptotically as more data are observed,
while the parametric estimators will be always biased if the wrong model of the underly-
ing density function is assumed [Scott, 2004]. One of the advantages of the parametric
methods is that the mean integrated squared error is of the order O(T−1) and does not
depend on the dimension of a model, whereas convergence of the nonparametric methods
becomes slow in higher dimensions [Scott, 1992].

The main representatives of parametric techniques are maximum likelihood, maximum
a-posteriori and bayesian parametric methods.

As was mentioned before, within this approach one assumes that the estimated density
can be modeled as a function of a certain form. Let this function be characterized by a
parameter vector θ. Then, the goal of the maximum likelihood estimator (MLE) is to find
such θ∗ that maximizes the likelihood of the observed data:

θ
∗ = argmax

θ

p(x|θ) = argmax
θ

T

∏
i=1

p(xi|θ).

The main drawback of this method is a high possibility of overfitting, since the value θ∗

is the best fit on the observations used for learning.

At the same time, MLE provides the easiest way of estimating the probability mass of
discrete variables. Suppose a variable x has N possible outcomes {r1, . . . ,rN}. Assuming
that the outcomes are multinomially distributed, p̂MLE(x = ri) is just a frequency count ti

T ,
where ti is a number of the observations with the outcome ri. Plugging such counts into
the resubstitution estimator (2.54), we obtain the simplest plug-in estimate of the entropy
of a discrete variable x

ĤMLE(X) =−
N

∑
i=1

ti
T

log
ti
T
. (2.56)

This estimate is known to have a negative bias that depends on the number of observations
[Antos & Kontoyiannis, 2001].
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Another example of the plug-in estimator based on the ML density estimate is the jack-
knifed ML entropy estimate, which is the asymptotic correction of MLE [Efron & Stein,
1981]:

ĤJK = T ĤMLE(X)+
T −1

T

T

∑
i=1

ĤMLE−i(X), (2.57)

where ĤMLE−i(X) is the estimate based on the all training samples except the ith one. The
jackknife estimate of a function is known to be consistent, i. e. it converges in probability
to the true value of this function1.

Bayesian methods tackle the problem of overfitting by imposing a prior on the distribution
of the parameter vector θ. The observations are used to update a posterior distribution on
the parameter values which is expressed in terms of the prior p(θ) and data likelihood
p(x|θ) according to the Bayes rule [Lee, 2004; Robert, 2001]:

p̂(θ|x) = p(θ)p(x|θ)∫
p(θ)p(x|θ)dθ

. (2.58)

Then, for any new observation ξ, a value of the density function p(ξ|x) is estimated by
marginalizing the likelihood at this point over the learned posterior of θ:

p̂(ξ|x) =
∫

p(ξ|θ)p(θ|x)dθ. (2.59)

As more data are observed, the posterior of θ moves towards its true distribution and
consequently the estimate p̂(ξ|x) moves towards the real value p(ξ|x).

Note that, unlike MLE, the bayesian methods do not look for the single best parameter
vector θ but rather learn its posterior distribution. Moreover, the final posterior is not
purely data-driven as it depends on the chosen prior, which helps to avoid overfitting.
Therefore, bayesian estimates are usually quite accurate if a sufficient amount of training
data is available. At the same time, in situations when a number of observations is not
large, the estimate p̂(ξ|x) can be highly biased if the specified prior is far from the real
distribution p(θ). In addition, the bayesian techniques are computationally expensive as
they require integration over the parameter space.

In order to estimate Shannon entropy or mutual information, the most popular Bayesian
methods infer directly the entropy rather than pdfs for plug-in estimators. Therefore,
they will be reviewed further while discussing the nonplug-in techniques, see Subsection
(2.5.2).

1An estimator f̂ (x) converges in probability if lim
T→∞

p(| f̂ (x)− f (x)| ≥ ε) = 0 for some small ε.
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Maximum a-posteriori techniques represent some sort of a mixture of the maximum like-
lihood and the Bayesian methods. Here, the modeled density is estimated using a single
value of θ, which is equal to the mode of its posterior distribution:

θ = argmax
θ

p̂(θ|x).

Such approach does not require normalization and consequently integration as in (2.58),
because the value of θ maximizing p̂(θ|x) is the same as maximizing p(θ)p(x|θ). Some
examples of using the maximum a-posteriori method for probability density estimation
include [Gauvain & Lee, 1994; Premus & Alexandrou, 1995; Anzai & Hara, 2010].

As the name suggests, nonparametric techniques do not use any assumptions about the
form of the estimated density functions, these densities are rather inferred purely from
observations.

Let us introduce a formal framework for the nonparametric density estimation. For a
random variable x, in order to find its probability density function p(x), we want to build
an estimator p̂(x) using T i.i.d. samples drawn from the distribution p(x). For this, we
define a small region R containing x and say that k out of T samples fall in this region, i. e.
k
T is the probability of a sample to fall in R . Then, the density p(x) can be approximated
by:

p̂(x) =
k

TV
, (2.60)

where V is a volume of the region R . In order to converge, this estimator should satisfy
the following conditions

lim
T→∞

V = 0, lim
T→∞

k = ∞, lim
T→∞

k/T = 0. (2.61)

The first condition requires that the region R shrinks with a number of the samples. The
second condition makes sure that in case p(x) 6= 0, k

T converges in probability to the true
probability of x being in R And according to the third condition, k → ∞ slower than
T → ∞.

Histograms. One-dimensional histograms represent the simplest nonparametric density
estimation technique [Pearson, 1895; Tukey, 1977; Scott, 1979, 1992]. Imagine that a
domain of definition of a continuous variable x is partitioned in N bins of equal size.
Then, the probability density p(x) is estimated by counting a number of the observations
that fall in the same bin as x and then properly normalizing it:

p̂(x) =
k j

T h
,
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A B

Figure 2.4: Histogram estimators with different bin widths h = 1 and h = 2 (subplots A and
B, respectively). The histogram bins are depicted in blue and the estimated probability density
function is in red.

where k j is a number of the samples in the jth bin where x falls and h is a bin width.
Within the general approach described by the expression (2.60), the region R is defined
by the jth bin, and the volume of this region V is the bin width h.

In multidimensional case, the volume of the n-dimensional bin is V = hn. Although gen-
eralization to multivariate histograms is straightforward, their application is limited. The
reason is that the number of bins grows exponentially with the number of dimensions, that
is in n-dimensional case one needs Nn bins, which can obviously cause memory problems.
Moreover, as in higher dimensions data become sparse, most of the univariate bins across
the different dimensions will be empty resulting in zero values of the density function. To
solve this issue, one needs a large number of observations for constructing a histogram
estimator, otherwise the tails of the pdf will be estimated rather poor [Scott, 1992].

The error of a density estimator is often measured by the mean integrated squared error
which can be decomposed into the integrated variance and the integrated squared bias:

MISE(p̂(x)) = Ep(x)

[∫
X
(p̂(x)− p(x))2 dx

]
=

∫
X

Var [p̂(x)]dx+
∫

X
Bias [p̂(x)]2 dx,

(2.62)

where Var [p̂(x)] = Ep(x)

[(
p̂(x)−Ep(x) [p̂(x)]

)2
]

and Bias [p̂(x)] = Ep(x) [p̂(x)− p(x)].

For the equally-spaced histogram estimator, the former is proportional to 1
T h and the latter

is about h2

12
∫

p′(x)2dx [Scott, 2004]. Thus, in order to keep both components of the error
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low, the following conditions should be met, which are related to the general convergence
conditions of nonparametric density estimators (2.61):

lim
T→∞

h→ 0, lim
T→∞

T h→ ∞. (2.63)

Due to discontinuities at the boundaries of the histogram bins, the estimated densities are
not smooth. As a solution, a frequency polygon estimator was developed [Scott, 1985;
Beirlant et al., 1999]. This extension to the histograms performs a linear interpolation
based on the middle points of the equally-sized equally-spaced histogram bins. Another
extension assigns every data point to several bins with weights given by B-spline functions
[Daub et al., 2004].

There are some examples of using histograms in plug-in estimators of entropy and mutual
information [Györfi & van der Meulen, 1987; Hall & Morton, 1993; Battiti, 1994; Kwak
& Choi, 2002b]. However, note that the resubstitution histogram entropy estimate is in
fact the maximum likelihood estimate of entropy of the discretized continuous distribu-
tion. Therefore, it is also negatively biased. For this reason, contemporary histogram-
based entropy estimators usually try to find a way to cancel this bias, e. g. [Moddemeijer,
1989; Paninski, 2003]. Since they no longer fit in the framework of the plug-in approach,
such estimators will be reviewed later in Subsection 2.5.2.

Kernel density estimation. To construct a probability density estimate, the kernel tech-
nique, which was developed by Rosenblatt [Rosenblatt, 1956] and Parzen [Parzen, 1962],
specifies a set of small regions centered at every training sample xi. These regions are
shaped by some kernel functions that assign an observation x to the corresponding region
depending on the distance between the kernel center xi and x. Then, for a training set
consisting of T i.i.d. one-dimensional samples, the kernel density estimate (KDE) of the
pdf p(x) is

p̂(x) =
1

T h

T

∑
i=1

K
(

x− xi

h

)
, (2.64)

where K(x−xi
h ) is a kernel function with a bandwidth parameter h that specifies the width

of the kernel. Note that a sum of the kernel responses gives an estimate for k from the
expression (2.60), a number of points around x.

In order to assure that the estimate p̂(x) satisfies the necessary conditions for a probability
density function, i. e. p(x) ≥ 0 and

∫
p(x)dx = 1, there are the following constrains that

should be imposed on the kernel function K(w):

K(w)> 0,
∫

K(w)dw = 1,
∫

wK(w)dw = 0. (2.65)
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That is the kernel should be positive, a density function itself and centered at zero.
There are several commonly used kernels such as rectangular, triangular, normal, Barlett-
Epanechnikov, cosine etc. However, practical investigations showed that the choice of the
particular kernel function is not crucial for estimation accuracy [Webb, 1999].

A B

Figure 2.5: Kernel density estimators using Gaussian kernels with the different bandwidth param-
eters h≈ 0.6 and h≈ 1.2 (subplots A and B, respectively). Blue dashed curves represent the single
kernel functions centered at the training points and the red curves depict the estimated pdf.

For n-dimensional observations {x1, . . . ,xn}, the multivariate generalization of the kernel
density estimate is

p̂(x) = (T |H|)−1
T

∑
i=1

K(H−1(x−xi)), (2.66)

here K(·) is a n-dimensional kernel function and H is a symmetric positive definite n×
n matrix of kernel smoothing parameters, also called a bandwidth matrix. Usually for
simplicity a diagonal form of the matrix H is assumed. In this case, the multivariate
kernel function is a product of the univariate kernels and the above expression simplifies
to

p̂(x) = (T
n

∏
j=1

h j)
−1

T

∑
i=1

n

∏
j=1

K(
x j− x j,i)

h j
), (2.67)

where (h1, ...,hn) are the diagonal elements of the matrix H, and x j,i is the value of the jth

feature of the sample xi. If the data is prerotated, i. e. correlations between the dimensions
are removed, the product kernel is equivalent to the KDE with the full bandwidth matrix.
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The convergence of this technique was proven under the following conditions [Duda et al.,
2001]:

lim
T→∞

V = 0, lim
T→∞

TV = ∞, (2.68)

where V is a volume of the region defined by the kernel, so V = |H| or V = ∏
n
j=1 h j

depending on the type of the bandwidth matrix. The plug-in entropy estimator based
on one-dimensional kernel density estimates was shown to be asymptotically normal 2

with an error of the rate T−1/2, however, for the multivariate case the estimator is just
consistent, i. e. converges in probability [Eggermont & LaRiccia, 1999].

Scott [Scott, 1992] states that in theory for a number of dimensions n > 5 it is not possible
to obtain accurate estimates using kernel density method. However, he mentions practical
examples showing reasonable results, for example in case of a 10-dimensional space with
225 training samples. His conclusion is that in such situations it is possible to find at least
the structure of the pdf, though with a large estimation error, which is still acceptable in
higher dimensions.

Due to their simplicity, natural extension to the multivariate pdfs and satisfactory accu-
racy which depends on the amount of data available, kernel density estimates are widely
used in practical applications. Among them, there are examples of using KDE in estima-
tion of entropy [Dmitriev & Tarasenko, 1973; Ahmad & Lin, 1976; Ivanov & Rozhkova,
1981; Ahmed & Gokhale, 1989; Joe, 1989], mutual information in general [Moon et al.,
1995; Zhou et al., 2005; Lin & Tang, 2006; Xu et al., 2008; Qiu et al., 2009] and mutual
information for feature selection [Kwak & Choi, 2002a; Ozertem et al., 2006; Carmona
et al., 2011; Zhang & Hancock, 2011].

k-nearest neighbor density estimation. In contrast to the discussed above histogram and
kernel estimators, in order to approximate a probability density p(x) the k-nearest neigh-
bor technique [Fix & Hodges, 1951; Loftsgaarden & Quesenberry, 1965] does not directly
specifies a volume of the the region R where x falls but rather fixes a number k of the sam-
ples contained in this region. That is, an estimate p̂(x) is based on the k direct neighbors
of the observation x and can be thought as to have a data-adaptive nature.

For x ∈ Rn, the k-NN density estimate is an already familiar expression with fixed k:

p̂(x) =
k

TV (x)
, V (x) =

rn
k(x)π

n/2

Γ(n/2+1)
, (2.69)

where V (x) is the volume of the n-dimensional hypersphere with the radius rk(x) =
d(x,xi) being the n-dimensional Euclidean distance between x and its kth neighbor xi.

2Asymptotic normality of an estimate implies that lim
T→∞

T 1/2(Ĥ(X)−H(X)) = N (0,σ2).
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The estimator converges in probability, if the followings conditions are satisfied [Devroye
& Wagner, 1977]:

lim
T→∞

k = ∞, lim
T→∞

k
T

= 0, lim
T→∞

k
logT

= ∞. (2.70)
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Figure 2.6: k-nearest neighbor density estimators with different number of neighbors k = 1 and
k = 3 (subplots A and B, respectively).

In practice, k-NN density estimates are not very popular since they are heavy-tailed, noise-
sensitive and discontinuous due to the fact that rk(x) is not differentiable. However, this
approach is closely related to the widely used k-NN entropy estimators which will be
reviewed later in Subsection (2.5.2).

Guided by the same idea of fixing the number of the observations falling in R , Scott
proposed histograms with an equal number of points in every bin. This modification was
meant to improve inaccurate estimates in the tails occurring due to lack of data [Scott,
1992].

Selection of a smoothing parameter. All nonparametric techniques discussed above have
a primary parameter which has to be tuned: a bin width for histograms, a kernel bandwidth
for KDE and a number of neighbors for k-NN. All these parameters control the smooth-
ness of the estimated density and therefore we will refer to all of them as “smoothing
parameters”. Setting it too large, all details of the density structure are lost, whereas set-
ting it too small will lead to a highly variable estimate with many false peaks around every
sample point. This also illustrates the known bias-variance trade-off: undersmoothed es-
timators will have the large variance but the low bias, whereas the situation is opposite for
the oversmoothed estimates [Kraskov et al., 2004].
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For the k-NN estimator, the optimal value of k for should be usually tuned for the partic-
ular data at hand. However, k =

√
T was reported to show good results [Loftsgaarden &

Quesenberry, 1965].

For the plug-in estimator of the mutual information using histograms, it was shown that
the difference between the estimate Î(X ,Y ) and the true value I(X ,Y ) depends on the
number of bins NX and NY of both variables [Li, 1990]:

Î(X ,Y )− I(X ,Y )≈ 1
2T

(NX NY −NX −NY ). (2.71)

The approximation can be used for correcting an estimation error if ratios of true counts
txy/txty are approximately the same for different bins of x and y. However, in the extremely
undersampled regime, this correction is inaccurate [Battiti, 1994]. The difference between
Î(X ,Y ) and I(X ,Y ) is usually greater than zero and it can be decreased by reducing the
number of bins, i. e. setting the bin widths larger. However, as was already stated, too
wide bins will not capture the data structure. Therefore, the proper smoothing parameter
acting as a compromise is important. See Figures 2.4 and 2.5 for examples of histograms
and kernel density estimates with different smoothing parameters.

For the histogram estimator, there are a lot of suggestions how to choose a bin width,
see [Scott, 1992] for a good review. For a general case, Tukey suggested a number of
equally-spaced bins being N =

√
T [Mosteller & Tukey, 1977]. For normal data, there

is the Sturges’ rule: N = 1+ log2 T , however, it produces too few bins and the data is
heavily oversmoothed [Scott, 1992]. A more robust rule gives an expression in terms of
the interquartile range (IQR): h = 2(IQR)T−

1
3 [Freedman & Diaconis, 1981].

Using the normal density as a reference while minimizing the asymptotic mean integrated
squared error of the estimate, the optimal width of the n-dimensional histogram can be
expressed in terms of the standard deviation of the sampled data [Scott, 1979]

hi = 2 ·3
1

n+2 π
n

2n+4 σiT−
1

n+2 . (2.72)

Such expression is called the normal reference rule. Following the analogous procedure,
one can also derive the optimal bandwidth for kernel density estimate [Silverman, 1986].
For the n-dimensional product kernel, the optimal bandwidth parameter for the ith dimen-
sion is:

hi = (
4

n+2
)

1
n+4 σiT−

1
n+4 , (2.73)

where σi is the standard deviation of the data points along ith dimension. The method pro-
duces good estimates for univariate densities but tends to oversmoothing for multivariate
cases.
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There is a number of bandwidth selection techniques based on cross-validation optimizing
different criteria such as the Kullback-Leibler loss function [Rudemo, 1982; Bowman,
1984] or usual asymptotic mean integrated squared error [Hall et al., 1991]. Bootstrapping
was also used to find the optimal bandwidth for univariate [Taylor, 1989] and multivariare
data [Sain et al., 1992]. Among more sophisticated methods that can be easily extended
to the multivariate densities are Markov chain Monte Carlo methods. They estimate a
bandwidth matrix through the data likelihood using cross-validation and are reported to
have a good performance, e. g. see [Zhang et al., 2004]. For further review on bandwidth
selection methods, see [Turlach, 1993].

Instead of looking for the globally best bandwidth vector, it can be defined adaptively
[Scott, 2004]. One of the approaches is to change the bandwidth value pointwise to adjust
to varying density of data in different regions of the input space [Breiman et al., 1977; Hu
et al., 2012]. Another approach assumes the bandwidth that depends on the estimation
point [Scott, 1992]. In this case, the width of the kernel varies to catch a certain number
of the neighboring points. In fact, this technique can be called k-nearest neighbor kernel
density estimate. Though, asymptotically this is the best possible estimate of h, similarly
to k-NN, the resulting density estimate is not a true density function.

The problem of finding an optimal width of histogram bins can also be solved adaptively.
The Fraser-Swinney algorithm hierarchically divides the plane into bins until they be-
come uniform [Fraser & Swinney, 1986]. Alternatively, the bins with the equal number
of samples can be constructed [Scott, 1992; Cellucci et al., 2005]. The latter estimator
was reported to have similar performance to the more complicated Fraser-Swinney algo-
rithm, which in turn was reported to perform worse than the kernel method [Silverman,
1986; Moon et al., 1995]. There are techniques which address adaptive partitioning in the
multidimensional space for estimating the entropy and the mutual information [Darbellay
& Vajda, 1999; Stowell & Plumbley, 2009] providing faster convergence with respect to
the sample size compared with non-adaptive case [Trappenberg et al., 2006].

2.5.2 Nonplug-in approaches

Methods, which are classified as nonplug-in, usually directly solve a problem of estimat-
ing entropy rather than a probability density function, though both approaches are often
related.

One of such examples is k-nearest neighbor entropy estimation which can be seen as
an extension of the plug-in approach using k-nearest neighbor density estimation. The
entropy estimator for multivariate densities and k = 1 was first introduced by Kozachenko
and Leonenko [Kozachenko & Leonenko, 1987]. Its generalization for multiple nearest
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neighbors, i. e. for k > 1, was developed later and it has the following form [Singh et al.,
2003; Leonenko et al., 2008]:

ĤkNN(X) =−N
T

T

∑
i=1

log
1

TV (xi)
−Ψ(k), (2.74)

where V (xi) is a volume of N-dimensional sphere with a radius defined as a distance from
xi to its kth nearest neighbor (2.69) and Ψ(·) is the digamma function, Ψ(z) = Γ′(z)

Γ(z) . Note
that this is in fact the resubstitution plug-in entropy estimator with k-NN density estimate,
whose bias is corrected by (−Ψ(k)+ log(k)). With this correction the estimator is proven
to be asymptotically unbiased [Singh et al., 2003].

There is a related estimator based on k spacings, which is however applicable only to
one-dimensional variables [Vasicek, 1976; Dudewicz & van der Meulen, 1981]:

Ĥsp(X) =− 1
T − k

T−k

∑
i=1

log
k

T (xi+k:T − xi:T )
−Ψ(k)+ logk, (2.75)

where x1:T ≤ x2:T ≤ ·· · ≤ xT :T are ordered statistics of x1,x2, . . . ,xT .

While estimating mutual information using k-NN entropy estimates, it was noted that a
fixed value of k for H(X), H(Y) and H(X,Y) leads to biased results because distances
to the kth neighbor in marginal and joint spaces are different [Kraskov et al., 2004]. As
a solution, Kraskov and colleagues proposed the following scheme. A distance rk to the
kth nearest neighbor is defined in the joint space Z = (X,Y) with the maximum norm
d(zi,z′) = max{||xi,x′||, ||yi,y′||}. Then, in the marginal spaces, instead of setting k and
measuring the distances from xi and yi to their kth neighbors, one counts the neighbors
tx(i) and ty(i) within the radius rk defined in their joint space. The resulting estimator of
mutual information is

I(X,Y) = Ψ(k)− 1
k
− 1

T

T

∑
i=1

[Ψ(tx(i))+Ψ(ty(i))]+Ψ(T ), (2.76)

with the following generalization to the N-variate mutual information:

I(X1, . . . ,XN)=Ψ(k)−N−1
k
− 1

T

T

∑
i=1

[Ψ(tx1(i))+ · · ·+Ψ(txN (i))]+(N−1)Ψ(T ). (2.77)

The authors numerically proved that the proposed modification reduces the bias, espe-
cially for a small number of training samples. Comparative studies report good accuracy
of Kraskov’s nearest neighbor algorithm and KDE in contrast to simple and adaptive
histograms for estimating pairwise mutual information for general purpose [Khan et al.,
2007; Schaffernicht et al., 2010]. In the case of information-based feature selection, not
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the absolute values of the multivariate mutual information estimates but the correct rank-
ing of features according to their mutual information with the class is important. Within
such setup, Kraskov estimator was shown to outperform KDE. It was also noted that both
methods are quite sensitive to the choice of their smoothing parameters, which results in
selecting different feature subsets for different parameter settings [Doquire & Verleysen,
2012].

ML-based estimators. As was already mentioned, the entropy estimator HMLE based on
the ML density estimates has a negative bias [Harris, 1975]:

E[ĤMLE(X)] = H(X)− N−1
2T

+
1

12T 2

(
1−

N

∑
i=1

1
p(x = ri)

)
+O(T−3). (2.78)

An attempt to reduce this bias has led to various correction techniques based for example
on a series expansion of the bias [Miller, 1955; Carlton, 1969; Treves & & Panzeri, 1995;
Victor, 2000; Hacine-Gharbi et al., 2012]. Their classical representative is the Miller-
Madow estimator that provides the O(T−1) correction term of the form L−1

2T , where L
is a number of discrete values of x with observed non-zero probabilities [Miller, 1955].
Unfortunately, such correction does not fully cancel the bias. An alternative approach is
to fit the O(T−1) and O(T−2) from the data [Strong et al., 1998]. For the undersampled
regime, Paninski has proposed an estimator based on a polynomial approximation of the
entropy with the O(T−2) bias [Paninski, 2003]. The key idea is to find the expansion
coefficients that provide the best trade-off between the variance and the bias.

With an assumption that possible outcomes ri of x follow the Poisson distribution, the
Grassberger estimator [Grassberger, 1988] and its later improvement [Grassberger, 2003]
were shown to be asymptotically unbiased for large T and to be less biased than Miller-
Madow estimator in the undersampled regime.

Wolpert and Wolf proposed a bayesian method of estimating entropy of discrete variables
[Wolpert & Wolf, 1995]. Suppose there are T observations of a variable x that can take N
different values {r1, . . . ,rN}. Let xi denote the number of the samples with the outcome

ri,
N
∑

i=1
xi = T , and let ρi denote the probability of observing this outcome. Then, the vector

of counts x = (x1, . . . ,xN) is said to be multinomially distributed.

A quantity of interest is the entropy H(ρ) which is estimated from the data by Ĥ(ρ|x).
For this estimate, we need a posterior probability p(ρ|x) that can be specified according
to the Bayes rule as p(ρ|x) ∝ p(x|ρ)p(ρ) with the data likelihood:

p(x|ρ) = T !
N

∏
i=1

ρ
xi
i

xi!
.
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and the Dirichlet prior, which is a conjugate prior of the multinomially distributed likeli-
hood 1:

p(ρ) =
1

B(β)

N

∏
i=1

xβi
i =

Γ(∑i βi)

∏i Γ(βi)

N

∏
i=1

xβi
i . (2.79)

Here, B(·) and Γ(·) are the beta and the gamma functions, respectively, and β is a param-
eter vector of the Dirichlet distribution.

It was suggested that instead of estimating the entropy of the distribution p(ρ|x), it is
easier to estimate its moments [Wolpert & Wolf, 1995]. For the uniform prior with βi = 1,
the kth moment of the entropy can be found as follows:

Ĥk(ρ|x) =
∫

Ĥk(ρ|x)p(ρ|x)dρ =
Γ(T +N)

∏i Γ(xi +1)

∫
Ĥk(ρ|x)p(ρ)∏

i
ρ

xi
i dρ. (2.80)

For k = 1, the Bayesian estimator of the entropy mean Ĥ(ρ|x), which is the best guess in
terms of the mean squared error, is:

Ĥ(ρ|x) =−∑
i

xi +1
T +N

(Ψ(xi +2)−Ψ(T +N +1)) . (2.81)

Following the same procedure, one can estimate moments of any function of p(ρ|x).
Thus, for f (p(ρ|x)) = p(ρ|x), we have

p(ρ|x) = xi +βi

T +Nβi
. (2.82)

Note that for β = 0, this corresponds to the maximum likelihood estimate discussed be-
fore. β = 1

2 gives the Jeffreys’ or Krichevsky-Trofimov probability estimator [Jeffreys,
1946; Krichevsky & Trofimov, 1981] and β = 1

N gives the Schürmann-Grassberger prob-
ability estimator [Schürmann & Grassberger, 1996].

As was already mentioned, the bayesian estimates are quite sensitive to the choice of
the prior distribution in the undersampled regime. For example, it was shown that a
fixed value of the parameter β almost uniquely defines the entropy and as a remedy the
improved estimator was suggested [Nemenman et al., 2002]. The Nemenman-Shafee-
Bialek estimator specifies a near flat prior distribution pNSB(ρ), which is a mixture of
Dirichlet priors with different β:

pNSB(ρ) ∝

∫ dξ

dβ
pβ(ρ)dβ. (2.83)

1A prior is called a conjugate prior for the likelihood if it belongs to the same family of distributions as
the posterior.
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Here, pβ(ρ) is the prior defined in the expression (2.79) for the fixed value of β and

ξ := Eβ[H(ρ)]. Acting as mixing coefficients, the fractions
dEβ[H(ρ)]

dβ
make the contribu-

tion of every pβ(ρ) depend on the degree of peakedness of the average entropy for the
current value of β. Utilizing this prior, we obtain the Nemenman-Shafee-Bialek entropy
estimator:

ĤNSB(ρ|x) =
∫

Ĥβ(ρ|x)q(ξ,x)dξ∫
q(ξ,x)dξ

, (2.84)

with q(ξ,x) = p(β(ξ)) Γ(Nβ(ξ))
Γ(T+Nβ(ξ))

N
∏
i=1

Γ(xi+β(ξ))
Γ(β(ξ))

and Ĥβ(ρ|x) is the Bayesian entropy esti-

mate defined by (2.81) for the fixed β. The NSB-estimator shows good performance in
terms of bias and robustness compared to ML-based entropy estimators and it is one of
the most popular entropy estimators for discretized data. However, it is computationally
expensive due to the necessity of averaging over β or ξ [Panzeri et al., 2007; Montani
et al., 2007].

Estimators of differential entropy and mutual information using cumulant expansions are
popular in the field of independent components analysis. On the one hand, they are quite
simple, but on the other hand, their estimates are rather rough [Amari et al., 1996; Hyväri-
nen et al., 2004; Steuer et al., 2002]. Recently an extension of one of such techniques for
multivariate entropy based on Edgeworth expansion has been proposed. The authors re-
ported the accuracy comparable with Kraskov’s multivariate variant of k-NN [Van Hulle,
2005].

2.6 Approximated schemes

All probability density and entropy estimation techniques, which are described above, re-
quire considerable amount of training data in order to achieve good accuracy. As was al-
ready stated, in case of multivariate data, the necessary amount of data is even larger. The
feature selection criterion based on mutual information is of the form I(C;Fk|Fα1 , . . . ,Fαi).
It means that a dimensionality of the involved entropies or equivalently pdfs grows itera-
tively with selecting new features. Therefore, there have been a lot of attempts to approx-
imate the multivariate conditional mutual information using only pairwise or triplewise
estimates. The conditional mutual information selection criterion can be rewritten as:

S(C,Fα1, . . . ,Fαi,Fk) = I(C;Fk|Fα1, . . . ,Fαi) =

I(C;Fk)− I(Fk;Fα1, . . . ,Fαi)+ I(Fk;Fα1, . . . ,Fαi|C).
(2.85)

Two assumptions have to be introduced in order to reduce the dimensionality of the mutual
information terms: the already selected features are independent of the feature-candidate
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and they are independent of the feature-candidate and the class. Incorporating these as-
sumptions, after some transformations we obtain the following simplified scheme [Brown
et al., 2012]:

Iappr(C;Fk|Fα1, . . . ,Fαi) = I(C;Fk)−
i

∑
q=1

{
I(Fk;Fαq)− I(Fk;Fαq|C)

}
. (2.86)

Such approximation was used as a criterion for both feature selection [El Akadi et al.,
2008; Guo & Nixon, 2009] and feature extraction [Lin & Tang, 2006]. While the first
term measures the relevance of the feature-candidate for classification, the second term
represents the approximated redundancy of this feature with respect to the selected fea-
tures. Some schemes introduce a weight parameter β for the redundancy term:

Iappr(C;Fk|Fα1, . . . ,Fαi) = I(C;Fk)−β

i

∑
q=1

{
I(Fk;Fαq)− I(Fk;Fαq|C)

}
. (2.87)

It can be shown that with β = 1
i , maximization of (2.87) corresponds to the maximization

of
i

∑
q=1

I(FkFαq;C), which is the so-called joint mutual information (JMI) selection crite-

rion [Yang & Moody, 1999]. Intuitively, as i grows, such β expresses the belief that the
redundancy term becomes less significant [Brown et al., 2012].

Substituting the summation in the redundancy term with the maximum operator, after
some trivial transformations one obtains the following selection criterion known as con-
ditional mutual information maximization (CMIM) [Fleuret & Guyon, 2004]:

SCMIM(C,Fα1, . . . ,Fαi,Fk) = min
q=1,...,i

{
I(Fk;Fαq|C)

}
. (2.88)

Obviously, in order to get rid of triplewise information terms, further simplifying as-
sumptions should be introduced. Assuming that the relation

I(Fαi ;Fk|C)

I(Fαi ;Fk)
=

H(Fαi |C)

H(Fαi)
holds,

I(Fk;Fαq|C) can be represented as

I(Fk;Fαq|C) =
H(Fαq|C)

H(Fαq)
I(Fk;Fαq),

The assumption is true for the cases when Fk is uniformly informative for all classes. The
final approximation is

SMIFS−U(C,Fα1 , . . . ,Fαi,Fαq) = I(Fk;C)−β

i

∑
j=1

I(C;Fα j)

H(Fα j)
I(Fk;Fα j), (2.89)



2.7. CONCLUSION 47

which is used by MIFS-U algorithm (mutual information feature selection uniform) [Kwak
& Choi, 2002b]. Here, the parameter β is not fixed but tunable.

Instead of the uniformity assumption, Battiti assumed that all features are pairwise inde-
pendent given the class [Battiti, 1994]. As a result, the last term I(Fk;Fαq|C) in (2.87)
turns to zero and Battiti’s MIFS criterion becomes:

SMIFS(C,Fα1 , . . . ,Fαi,Fk) = I(Fk;C)−β

i

∑
j=1

I(Fk;Fα j). (2.90)

The minimum redundancy maximum relevance (MRMR) feature selection algorithm is
identical to MIFS with one difference that it uses the adaptive value of β = 1

i [Peng et al.,
2005].

Finally, the assumption that features are independent gives the simple ranking criterion
based on the mutual information

SMIM(C,Fα1, . . . ,Fαi,Fk) = I(Fk;C), (2.91)

which is known as the mutual information maximization [Lewis, 1962].

There are many other algorithms that approximate the conditional mutual information
with low-order information and entropy terms in the way to obtain good classification per-
formance with the selected features [Duch, 2006; Vidal-Naquet & Ullman, 2003; Meyer &
Bontempi, 2006; Estevez et al., 2009; Cheng et al., 2011; Yu & Lee, 2012]. Efficiency of
different approximations depends on dependencies between features in a given problem.
However, it is not surprising that more complex schemes that take into account higher
order interactions between features perform better than simpler algorithms. For example,
JMI criterion demonstrated better results than CMIM, MRMR and MIFS [Brown, 2009].
In turn, Liu and colleagues showed that CMIM outperforms MIM, MIFS and MIFS-U
[Liu et al., 2008]. Among the schemes, only CMIM employs a mutual information of
three variables, while MIM, MIFS and MIFS-U use only pairwise terms in their approx-
imations. Along the same lines are results presented by Kwak and Choi who used kernel
density method to estimate the original conditional mutual information criterion. Their
algorithm was shown to outperform MIFS and MIFS-U [Kwak & Choi, 2002a]. Despite
such results, in practice, simple approximate schemes are usually preferred due to the
reduced computational complexity.

2.7 Conclusion

In this section, we presented the conventional approach to feature selection that assumes
reducing dimensionality of the input space before building a classifier. As a result, a learn-
ing problem is significantly simplified and a classification rule has better generalization
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ability. This is especially important in the undersampled regime, i. e. when a number
of features is larger than the number of training samples. Moreover, performing feature
selection improves interpretability of data by highlighting the important input dimensions.

An emphasis of the presentation was put on feature selection algorithms of the filter type
whose selection criteria are independent of a classifier to be used. The problem of feature
selection was introduced within a framework of the sequential uncertainty reduction that
assumes iterative selection of features informative with respect to a class variable but non-
redundant with respect to the previously selected features. This framework was adopted
to preserve an analogy to the sequential process of the hypothesis checking mechanism in
the human visual system, which serves as an inspiration for the feature selection scheme
proposed later in this thesis.

Feature selection algorithms have two key components, a search strategy and a selection
criterion. As the search strategy is set to the sequential feedforward search by design,
we reviewed possible uncertainty functions that can make up a selection criterion in the
uncertainty reduction framework. For example, the misclassification error is an intuitive
choice for selecting features that can be useful for classification. The Gini index for fea-
ture selection was initially derived heuristically as an uncertainty function corresponding
to the certain requirements, though it is widely used in statistics as a diversity measure. In
contrast, Shannon entropy is a fundamental measure of uncertainty in information theory
and therefore it is a natural candidate for the uncertainty function. Moreover, mutual in-
formation, the entropy-based selection criterion, is able to measure nonlinear interactions.
It was also shown that the entropy-based selection criterion favors features that can dis-
criminate well between classes. Two generalizations of Shannon entropy, namely Rényi
and Tsallis entropies, give an additional possibility to adjust an uncertainty measure to
the structure of data and therefore they can be useful in feature selection for complex sys-
tems. There are other popular selection criteria that however do not fit in the framework
of the sequential uncertainty reduction. Among them are different statistical tests of inde-
pendence used for feature ranking and probabilistic distance measures that select features
ensuring maximal distance between distributions of different classes.

Shannon entropy as an uncertainty function and mutual information as a corresponding
selection criterion are widely used in feature selection due to the above-mentioned ad-
vantages like information-theoretical interpretation and usefulness for classification. The
feature selection algorithm proposed in this thesis employs mutual information as well.
However, estimation of mutual information is known to be a difficult problem. We pre-
sented a review of various estimation techniques ranging from relatively simple plug-in
schemes utilizing nonparametric density estimators to complex algorithms trying directly
to build unbiased estimators of entropy and mutual information. Kernel density method
can be named as one of the successful representatives of the fist group, whereas among the
second group one can distinguish Kraskov’s modification of k-NN and the Nemenman-
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Shafee bayesian estimator. Since the estimation problem becomes even harder in higher
dimensions, there are a lot of selection criteria that use low-order approximations of mu-
tual information. Their efficiency of course depends on whether simplifying assumptions
used in approximations contradict data describing a problem at hand.

Despite all difficulties with estimating entropy and related concepts, information-theoretical
feature selection is popular in practice and it remains an active area of research. More-
over, using mutual information as a selection criterion, one does not need its precise
values. Therefore, even if an estimator is biased, it is only important to have the right
ordering of features according to their mutual information with a class. This peculiarity
significantly reduces requirements to the quality of estimates.
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Chapter 3

Adaptive feature selection

3.1 Biological motivation

The human visual system is characterized by a large number of connections going back-
wards along its hierarchy. Moreover, feedback is observed even on the lowest levels of
visual processing. These facts gave rise to numerous investigations of functional roles of
the top-down information flow in visual perception.

For example, feedback connections exist already in the retina, an inner tissue of the eye
that analyzes spatial and time variations of light and sends this information further to the
brain. Though, possible functions of the feedback from higher retinal layers and from the
brain are not well-understood, it is hypothesized that it may influence adaptation processes
of neurons in the retina [Kolb, 2011].

The primary visual cortex (V1), where the analysis of color, shape and orientation occurs,
is a key component of many feedforward-feedback loops in the visual system. V1 sends
the feedforward signal to and receives the excitatory feedback from areas of both dor-
sal and ventral visual pathways, which process information about location and complex
characteristics of a stimulus, respectively [Mishkin & Ungerleider, 1982].

It is known that a size of receptive fields grows successively as one goes up along the
hierarchy of the visual areas. Hence, feedback to a cell from the higher area is usually
integrated over the larger region of the visual field compared to the visual region visible
by this cell [Livingstone & Hubel, 1987; Van Essen et al., 1990]. The complexity of
features to which cells are tuned on the subsequent levels grows successively as well. It
means that cells on the higher levels are usually sensitive to different combinations of
features, to which cells on the preceding layers respond. As a result, the higher-level
cells extract more abstract representations that are invariant under scale, orientation and
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shift transformations. Therefore, by sending feedback to the cells on the lower levels,
they provide context, i. e. more global information. In this way, the feedback enhances
activation of cells tuned to simple features in order to improve their further binding into
more complex structures on the higher levels [Desimone & Duncan, 1995; Murphy et al.,
2000; Sillito et al., 2006]. This function is also performed by long-range excitatory lateral
connections operating within one visual layer. While such connections enhance grouping
for many complex features at the same time, it is important to note that only a small
fraction of feedback connections are active simultaneously. The reason for this is limited
processing resources of the visual system that force high-level concepts to compete for
representation [Van Essen et al., 1991]. Therefore, only few winners of such competition
send their modulating feedback to the lower levels at once [Macknik & Martinez-Conde,
2009]. Let us look at the two main examples of the feedforward-feedback loops in which
V1 is involved.

On the early stages of visual processing, the area V1 receives its feedforward input from
the lateral geniculate nucleus (LGN) in the thalamus, which processes a visual scene
based on the retinal output. At the same time, the primary visual cortex sends the massive
excitatory feedback to LGN, which constitutes about 30% of its input. For comparison,
LGN receives only about 10% of its input from the retina [Montero, 1991; Wilson, 1993;
Sherman, 2001]. It is known that almost all feedback connections from V1 to LGN orig-
inate from orientation- and direction-selective cells [Grieve & Sillito, 1995]. Moreover,
within the dorsal pathway, the same cells in V1 receive their excitatory feedback from
the higher area MT, which is responsible for motion analysis [Rosa, 2002]. It should be
noted that MT itself depends on the activity in V1, which is sent to it via feedforward cir-
cuits. Thus, the signal going from MT to V1 and further to LGN facilitates movement and
orientation processing as well as contrast perception. Therefore, such feedback plays an
important role in the contextual and spatial attentional modulation [Murphy et al., 1999;
Jones et al., 2000; Hupe et al., 2001; Sillito et al., 2006].

Within the ventral pathway, the known feedforward-feedback loop consists of the areas
V1, V2, V4 and the inferior temporal cortex (IT). The first three areas analyze such stimu-
lus characteristics like size, shape, color with increasing complexity, whereas IT responds
already to complex objects and therefore it is supposed to be involved in object recogni-
tion and identification, as well as in formation of the visual memory. Activity in IT is in
turn modulated by the feedback signal from the prefrontal cortex, which is important for
decision making, behavioral planning and where the working memory might be formed
[Chelazzi et al., 1993; Schall et al., 1995; Yang & Raine, 2009]. Therefore, it is believed
that feedback going along this pathway back to LGN modulates binding of high-level fea-
tures that are relevant for a current task, such as recognition [Chelazzi et al., 1998; Miller
& Cohen, 2001; Herd et al., 2006]. This feedback modulation is also called object-based
attention [Fink et al., 1997; Valdes-Sosa et al., 1998].
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Based on these facts, there is a hypothesis that the area V1 together with the subsequent
area V2 act as an active blackboard, which integrates the results of information process-
ing from the preceding and subsequent areas and sends it further along the feedforward
circuits [Mumford, 1991; Bullier, 2001].

In line with this idea, Lee and Mumford suggested a theory describing the nature of in-
formation processing in the ventral pathway [Lee & Mumford, 2003]. Inspired by the
hierarchical Bayesian inference, it states that higher areas of the visual system generate
a hypothesis about a visual scene on the basis of information sent from the lower areas
via bottom-up circuits. If this information is not enough for unambiguous recognition,
i. e. there are several competing hypotheses about a visual scene, the feedback or top-
down signal is sent back to enhance processing of those pieces of the visual input that
can help to reduce the uncertainty. The whole process can be seen as inference which
is based on the scene-specific bottom-up information integrated with the top-down con-
textual prior. It is important to note that neither bottom-up nor top-down components are
static. A feedback signal modulates processes on the preceding levels, which in turn influ-
ence the refinement of the current hypotheses about a visual scene. There is experimental
evidence that such iterative and bidirectional interactions happen in parallel between the
adjacent areas as sending information back and forth along several areas would take long
[Bichot & Schall, 1999; Lee et al., 2002]. In the computational literature, this hypothesis
refinement mechanism is known as “adaptive resonance” of Grossberg [Grossberg, 1976],
which inspired also neural models of cortical interactions, e. g. LAMINART [Raizada &
Grossberg, 2003].

Although many studies demonstrated that object recognition and categorization could be
done purely in the feedforward fashion [Riesenhuber & Poggio, 1999; Serre et al., 2007;
VanRullen, 2007], it is obvious that feedback is important if the information sent via
bottom-up circuits is ambiguous or imprecise [Wyatte et al., 2012]. This fact is also
supported by neurophysiological experiments showing that later activity in V1 and V2
as well in the prefrontal cortex have influence on recognition [Bar et al., 2006; Koivisto
et al., 2011], hence the feedback is involved in this process. Studies using such psy-
chophysical experimental paradigm as object substitution masking also demonstrate that
visual perception involves bidirectional interactions between the lower and higher areas
of the visual system. Masking experiments show that perception of a stimulus can be
impaired by another stimulus, a so-called mask, if the latter is presented shortly after the
first stimulus [Di Lollo et al., 2000; Enns & Di Lollo, 2000; Elze et al., 2011]. This phe-
nomenon suggests that while the first stimulus is not yet fully recognized and the higher
areas have to send a top-down signal to request the additional information, the lower areas
are already activated by the second stimulus. As a result, the next portion of the visual
input will correspond to the later stimulus and the inference of the first stimulus will be
interfered. Moreover, Elze and colleagues in their masking experiment showed that the
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prior information influences very early stages of visual perception, which is likely to be
sent by a feedback signal from the higher brain areas [Elze et al., 2011].

To conclude, one of the most prominent functions of the extensive feedback from the
higher brain areas within and outside of the visual cortex is attentional modulation. While
in the dorsal or “where” pathway top-down signals are involved in the spatial modula-
tion, the feedback within the ventral or “what” pathway helps the brain to concentrate
its resources on visual features that are relevant for recognition or categorization. Such
feedback iteratively selects certain aspects of the visual scene for refined processing by the
lower areas until the inference process in the higher areas converges to a single hypothesis
about this scene.

3.2 Adaptive feature selection

Obviously, it is desirable to minimize a number of required selection-refinement iterations
before the final recognition of a visual scene. For this, one has to find a short sequence
of maximally informative portions of the visual input. As was already mentioned, the
feedback is not static and therefore the selection process is adapted to a visual scene
that should be recognized. To find a scene-specific subset of informative patches, the
adaptive selection process on every iteration utilizes results of previous processing in
order to reduce the remaining uncertainty about the visual scene. Therefore, every next
portion of the input is chosen as the most informative for the current hypothesis space,
which is refined based on information extracted on preceding iterations.

Let us think about a visual input divided into patches as an object described by a set of its
features. Then, the mechanism deciding which portion to process next is nothing else but
a feature selection algorithm. Further, suppose that for a certain classification problem
there is a preselected set of informative features. That is, feature selection is performed
during the learning phase before actual classification starts. And once learning is finished,
the resulting set of informative features is fixed and it will be used for classification of all
samples in the future. Obviously, within such setup features are selected to be on average
discriminative for all samples. Though, the selected subset includes only a part of all
available features, it can still be large especially if the data has inhomogeneous structure.

Now, suppose that we are classifying a particular sample. Already after the first itera-
tion, there is partial knowledge about the testing sample, which is formed as the result
of processing the first features. This sample-specific information is then used to refine
the initial hypotheses about the possible class label, i. e. to update the prior uncertainty
about the class. Intuitively, it would be reasonable to select next features that can reduce
the uncertainty for this particular sample rather than for some average representative of
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the training set. In such case, as we do not try to generalize, it is likely to end up with a
smaller number of relevant features required to make a confident classification decision.
This way of selecting features we call adaptive. The conventional approach will be fur-
ther called “static” as a subset of relevant features remains fixed during the classification
process.

Thus, adaptivity in feature selection means the following. For a certain testing sample,
every selected feature should yield the maximum reduction in uncertainty about the class,
which is iteratively updated with the values of already selected features observed on this
testing sample. Then, according to the adaptive approach, every testing sample is classi-
fied with the unique subset of discriminative features. On the one hand, this is obviously
more computationally demanding compared to selecting a single static feature subset. On
the other hand, the adaptive methods have the potential to produce smaller feature subsets.

When do feature subsets selected in the static and the adaptive way differ significantly
in their size? As was already mentioned, conventional feature selection methods can fail
to select a small number of relevant features when data are heterogeneous. That is, the
structure of the data can vary in different subregions of the input space and therefore every
subregion is characterized by different features. For example, one may need different
features to discriminate between classes, or even different objects belonging to one class
may have different discriminative features. One can partially overcome this problem by
forming a collection of all relevant feature subsets. This, however, will lead to an increase
in the classifier complexity, which in turn increases the amount of data necessary for
training [Raudys & Jain, 1991]. Thus, conventional feature selection schemes, which
select a fixed subset of features before they are handed to a classifier, can be inefficient.

In addition, we suggest that the adaptive approach to feature selection is advantageous in
situations when the amount of data is limited, especially if the number of features exceeds
the number of training samples, hence, a classification problem is difficult. The reason
for this is the following. It is known that a small sample size impairs the estimation
accuracy of estimates of a selection criterion [Raudys & Jain, 1991]. Recall that the
static scheme tries to generalize and therefore it selects features that are informative for
the whole input space, reconstructed from a training set. At the same time, the adaptive
scheme performs local feature selection, i.e. selects features that should be discriminative
for a certain subregion of the input space. Moreover, this subregion is iteratively refined
using values of the previously selected features, which simplifies a classification problem
on every iteration. Thus, the adaptive scheme usually evaluates relevance of features
only in the small input subregion for a small subset of classes to which a testing sample
can belong. Therefore, in the undersampled regime, when the training set does not fully
represent the true data distribution, we expect estimates of the local feature relevance
used by the adaptive approach to be more accurate compared to estimates of the global
relevance utilized by static selection schemes. Consequently, as a quality of adaptively
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selected features is higher, a smaller subset of them will be enough to achieve the same
classification performance compared to a subset of statically selected features.

Thereby, in cases when it is difficult to find a small fixed subset of relevant features, we
propose to use different features for every testing sample, i. e. select relevant features
in the “adaptive” manner. In addition, by analogy with the visual processing, adaptive
feature selection can be useful for systems where evaluation of every additional feature is
associated with considerable costs, which might be much higher compared to additional
computations due to the adaptive selection.

3.3 Framework

Let us adjust the standard feature selection framework presented in the previous chapter to
the adaptive approach. Suppose that we have a testing sample ξ. Suppose also that after
i steps we have selected the features Fα1, . . . ,Fαi and observed their values ξα1, . . . ,ξαi

on this testing sample. Then, for this testing sample the next feature Fαi+1 is selected
according to the adaptive criterion:

αi+1 = argmax
k

S(C,Fα1 = ξα1, . . . ,Fαi = ξαi,Fk). (3.1)

In contrast to the static criterion (2.1), the adaptive criterion takes also into account the
values of the already selected features, which are observed on the current testing sample.
That is, every next feature should be relevant w. r. t. the class variable whose distribution
is updated with the values of the already selected features observed on the current testing
sample. In other words, the selected feature should be both relevant for classification and
non-redundant w. r. t. the previously selected features taking values observed on the
current testing sample.

Recall that the selection criterion was expressed in the form of uncertainty reduction:

αi+1 = argmax
k
{U(C|Fi)−U(C|Fk,Fi)}, (3.2)

however, the selected features now takes particular values from the testing sample and
therefore Fi = {Fα1 = ξα1, . . . ,Fαi = ξαi}. In order to differentiate between Fi for static
and adaptive schemes, let us introduce ξi = {Fα1 = ξα1, . . . ,Fαi = ξαi}.

It is necessary to make a remark regarding the difference in estimating the uncertainty
function for the static and adaptive schemes. In the adaptive case, since we observe a
certain realization of the selected features on the testing sample ξ, the uncertainty depends
on the class posteriors only w. r. t. to this testing sample ξ:

U(C|ξi) =
m

∑
j=1

U(c j| fα1 = ξα1, . . . , fαi = ξαi) (3.3)
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At the same time, the static scheme aims for features useful for classification of all sam-
ples in general. Therefore, the uncertainty function has to be averaged over the joint space
of the involved features:

U(C|Fi) = ∑
Fα1 ,...,Fαi

m

∑
j=1

p( fα1, . . . , fαi)U(c j| fα1, . . . , fαi). (3.4)

But note the uncertainty updated by the feature-candidate Fk:

U(C|Fk,ξ
i) = ∑

Fk

m

∑
j=1

p( fk|ξi)U(c j| fk,ξ
i),

U(C|Fk,Fi) = ∑
Fk,Fα1 ,...,Fαi

m

∑
j=1

p( fk|fi)U(c j| fk, fi),

(3.5)

where the adaptive scheme averages also over the space of the feature Fk because it has
not yet seen values of the unselected features on the testing sample ξ.

3.3.1 Relation to complex adaptive systems

Our adaptive feature selection framework is inspired by the definition of complex adap-
tive systems given by Jost [Jost, 2004]. According to this definition, while operating an
adaptive system tries to increase its external complexity and at the same time to decrease
its internal complexity. In other words, the goal of the adaptive system is extracting as
much information as possible from its environment, which is described by data X , and
representing this information internally in the most efficient way using some model θ.
Then, formally one can express an adaptation problem in the following way:

min
θ
{−e(θ)+ i(θ)}= min

θ

{
−Ep(X |θ)[log2 p(X |θ)]− log2 p(θ)

}
, (3.6)

where e(θ) and i(θ) correspond to the external and internal complexities, respectively,
which are however optimized on different time scales. Here, p(X |θ) is the probability
of data X given a model θ and p(θ) is the probability of this model itself. Then, the
first term, −e(θ) =−Ep(X |θ)[log2 p(X |θ)], is nothing else but the Shannon entropy of the
data once they are processed by the model θ. It means that a model that we are looking
for should maximally reduce our uncertainty about the environment. This is exactly the
adaptive selection criterion proposed here, see the expression (3.2) together with (3.3).
That is, if we take U(C|ξi) as the current uncertainty of the system on the iteration i, then
the next feature Fk should minimize U(C|Fk,ξ

i), which would be the uncertainty about
the environment on the next iteration (i+1) if this feature was selected.
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The second term i(θ) = − log2 p(θ) in (3.6) controls complexity of the model θ and can
be seen as a regularization parameter. The simpler model is, the higher its probability is.
Complexity of a model can be measured by a number of its parameters, e. g. like in the
Akaike information criterion used in model selection [Akaike, 1974]. Recall that the aim
of any feature selection algorithm is to find a minimal number of informative features,
i. e. to find a model with a minimal number of parameters that efficiently describes the
given data.

As a result, on every iteration, an adaptive feature selection algorithm within the proposed
framework modifies a classification model1 by adding a feature that can minimize the
current uncertainty about the environment, i. e. a testing sample. In addition, but on
the longer time scale, the adaptive algorithm tries to keep the structure of a classifier as
simple as possible and therefore a number of selected features is minimized.

3.4 Existing algorithms

3.4.1 Local feature selection by decision trees

The idea of adaptive feature selection has some similarities with the so-called local feature
selection. For situations when available training data are inhomogeneous and of high
complexity, i. e. when there exists no unique relationship between features in all parts of
the input space, algorithms performing local feature selection use the following approach.
They divide the input space into homogeneous regions and then for every such region
construct a separate classifier that catches local dependencies between features. Usually
the same type of the classifier is used, however, for every region of the input space, this
classifier is built using different features.

Classification decision trees are an example of models implementing this idea. The goal of
the tree classifier is to partition the input space into pure regions with a minimal number of
splits. However, for a multiclass problem, finding the smallest possible tree that partitions
the training samples with a minimal error is proven to be a NP-complete problem [Tu &
Chung, 1992]. Therefore, similar to sequential feedforward feature selection methods,
decision trees perform the greedy local search. That is, instead of looking for globally
the best set of splits, they start from the initial input space and recursively partitions it so
that every selected split reduces maximally the impurity of the current partition. The most
used decision tree algorithms are ID3 [Quinlan, 1986], its improvement C4.5 [Quinlan,
1993] and CART [Breiman et al., 1984].

1As the adaptive feature selection framework is rather general, here by a classifier we mean any estimator
of the class posterior distribution.
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yes no

yes no yes no

yes no

Figure 3.1: A binary decision tree where every split of the nonterminal node corresponds to some
binary function, e. g. t1 : fk > 0.5, and terminal nodes correspond to the class labels.

A decision tree consists of a root, internal and terminal nodes. It is constructed by re-
cursive partitioning of the input feature space into several descendant subspaces. That is,
starting from the root, every nonterminal node ti partitions the current feature space into
further subspaces according to a test function associated with this node. The terminal
subspaces correspond to the final partitions of the input space and have associated class
labels c1, . . . ,cm. Thus, all data points falling into the certain final partition are assigned
to one class. It is usually the most common class among the samples in the partition or it
is chosen to minimize the cross-validation classification error [Breiman et al., 1984].

Test functions of the internal nodes are usually binary functions of one argument. Then,
the corresponding models are called univariate binary decision trees, see Figure 3.1 for an
example of such a tree.

One of the main issues that should be addressed while constructing a decision tree is
selection of splits, i. e. tests for every internal node. For univariate decision trees, the
problem of split selection is nothing else but the previously introduced sequential feature
selection, however for certain subregions of the input space defined by branches. Hence,
it is called local feature selection.

Note that partitioning and associated with it feature selection are done during the learning
phase. Therefore, the final partitioning should be general enough to achieve good classi-
fication performance. For this reason, decision trees need a rather large amount of data in
order to define robust partitions of the input space corresponding to different classes.
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In contrast, our adaptive approach to feature selection assumes the incremental refine-
ment of that part of the input space where a testing sample lies and defines the subset
of relevant features appropriate for this region. That is, we are not bounded to the fixed
decision boundaries that are constructed offline using only training data. Instead, feature
values observed on the testing sample are used to influence construction of the accurate
classification rule with the minimal number of features.

3.4.2 Active testing model

There exists an adaptive scheme that selects features for every testing sample proposed by
Geman and Jedynak [Geman & Jedynak, 1996]. Their so-called “Active testing model”
(ATM) was developed specifically for online road tracking. Interestingly, the idea of
adaptivity was also motivated by selective attention in the visual system which can be
observed on the example of eye movements. The authors as well make a parallel to
decision tree classifiers performing the local feature selection. For the problem of road
tracking with a large number of possible roads, they claim that offline learning of such
classifier based on the training data would lead to deep and bushy decision trees. Thus, the
adaptive approach allows avoiding complex and lengthy learning and gives a possibility
to build only those tree branches that are necessary for the testing samples.

The estimation of the feature (or tests as the original work states) selection criterion is
based on the statistical model specific for their problem. Given one point on the road,
the aim of the system is to extract this road from the satellite image based on small line-
like segments called arcs. It is supposed that if all arcs are known, then the road ξ can
be unambiguously tracked. However, a number of all possible segments on the satellite
image is very large and evaluating all of them is not feasible for online tracking. As a
solution, iterative testing is suggested, which is the same as sequential adaptive feature
selection for a particular road ξ. That is, the arcs are sequentially selected and evaluated
on the satellite image, and then this information is used to form hypotheses about the
location of the road ξ. Obviously, the selected arcs should bring as much information as
possible about the true hypothesis.

Formally, the problem is described by two classes c∈ C = {c1,c2} representing roads and
background and features f ∈ F = { f1, . . . , fn} representing the arcs. Every feature has N
discrete values, fi ∈ { fi,1, . . . , fi,N}. The selection criterion is formulated as follows. For
the road ξ, every feature selected on the iteration αi+1 should minimize the uncertainty
about the road location updated after evaluating i previously selected features. This un-
certainty is defined as the entropy of the class conditioned on the feature candidate Fk and
the already selected features taking the values observed on ξ:

αi+1 = argmin
k

{
H(C|Fk,ξ

i)
}
, ξ

i = { fα1 = ξα1, . . . , fαi = ξαi}. (3.7)
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Note that as mutual information between the class and the feature candidate Fk given
already observed features is I(C;Fk|ξi) = H(C|ξi)−H(C|Fk,ξ

i), maximizing I(C;Fk|ξi)
w. r. t. Fk is equivalent to minimizing H(C|Fk,ξ

i).

In order to simplify the estimation of the selection criterion, the features are assumed to

be conditionally independent given a class, i. e. p( f1, . . . , fn|c) =
n
∏
i=1

p( fi|c). So the main

consequence of this assumption is a possibility to estimate the multidimensional joint pfs
of the features using their marginals. Applying the probability chain rule, this leads to the
following form of the selection criterion:

αi+1 = argmin
k

{
H(C|Fk,ξ

i)
}
= argmin

k

{
H(Fk|ξi,C)+H(C|ξi)−H(Fk|ξi)

}
=

argmin
k

{
H(Fk|ξi,C)−H(Fk|ξi)

}
=

argmin
k

{
m

∑
j=1

∑
Fk

p(c j|ξi)p( fk|c j)
(
log p( fk|c j)− log p( fk|c j)p(c j|ξi)

)}
.

(3.8)

The same independence assumption allows to estimate the class posterior p(c j|fi) recur-
sively based on the estimates from the previous iterations:

p(c j|fi) =
p(fi|c j)p(c j)

p(fi)
=

p( fi = ξi|c j)p(fi−1|c j)p(c j)
m
∑

j′=1
p( fi = ξi|c j′)p(fi−1|c j′)p(c j′)

(3.9)

The authors report efficiency of selected features. In addition, the model has compara-
tively good speed due to the introduced simplifying assumption about interdependencies
of the features. Although this assumption is in reality violated also for the considered
problem domain, it makes it possible for the active testing model to operate fast in online
mode.

The active testing model with the Gini index as the uncertainty function was also suc-
cessfully applied to face detection and localization [Sznitman & Jedynak, 2010]. Since a
scale of a face is not known in advance, theoretically the whole image has to be inspected
with filters of all possible sizes. Adaptivity in selecting tests allows a so-called coarse-
to-fine face detection, i. e. starting with large-scale filters and further refining them only
in locations where the posterior probability of face presence is high enough. Comparing
to the exhaustive search, such adaptive approach gave an exponential gain in speed while
preserving the detection performance.
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3.4.3 Jiang’s sequential feature selector

The idea of adaptive sequential feature selection based on mutual information was also
used by Jiang [Jiang, 2008]. According to Jiang, systems implementing adaptive feature
selection are better suitable for working in non-stationary conditions when the character-
istics of the process change over time. As a subset of the informative features is defined
during the testing stage, the selection process can incorporate changes in the statistics of
the training data without additional efforts. While the general idea is within the intro-
duced framework of the adaptive feature selection, the exact algorithm uses very rough
approximation of the posterior probabilities of the classes which can negatively influence
its performance for complex problems. Let us look at the algorithm in the details.

The general form of the selection criterion is the following:

S(C,ξi, fk = ξk) = H(C|ξi)−H(C| fk = ξk,ξ
i), (3.10)

from which we see that the values of the feature-candidate on the testing sample ξk is
known already during the selection process. This is in contrast to our idea stating that it
is necessary to spend system resources to evaluate a feature value only if this feature is
relevant for the task to be solved. This is crucial when the precise evaluation of features
is costly as in the hierarchy of the human visual system.

Now consider the components of the selection criterion, namely H(C|ξi) and H(C| fk =
ξk,ξ

i). There is a particular way of estimating the class posterior distribution p(c|ξi)
which is used for further selection. Suppose we have selected the first feature Fα1 . Then,
if the posterior of some class p(c j| fα1 = ξα1) is below a certain threshold, then this class
is excluded from the pool of the possible classes for the next selection iterations. And
accordingly, the relevance of the features candidates on the next iteration is tested for the
reduced set of the classes, which are reset to be uniformly distributed.

Formally, on the iteration i, there is a set of the currently active classes C i with

p(c j|ξi) =
1
|C i|

, ∀c j ∈ C i,

which implies that H(C|ξi) = log(|C i|). H(C| fk = ξk,ξ
i) is defined in the following way:

H(C| fk = ξk,ξ
i) =− ∑

c j∈C i

p(c j| fk = ξk) log p(c j| fk = ξk),

which together with the equiprobable classes gives:

H(C| fk = ξk,ξ
i) =− ∑

c j∈C i

p( fk = ξk|c j)

∑
cl∈C i

p( fk = ξk|cl)
log

p( fk = ξk|c j)

∑
cl∈C i

p( fk = ξk|cl)
.
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Note that the previously selected features Fα1, . . . ,Fαi do not directly appear in the esti-
mation of H(C| fk = ξk,ξ

i).

The final form of the selection criterion is then the following:

αi+1 = argmax
k
{S(C,ξi, fk = ξk)}=

argmax
k
{log(|C i|)+ ∑

c j∈C i

p( fk = ξk|c j)

∑
cl∈C i

p( fk = ξk|cl)
log

p( fk = ξk|c j)

∑
cl∈C i

p( fk = ξk|cl)
},

Fk ∈ {F1, . . . ,Fn}\{Fα1, ...,Fαi}.

(3.11)

Once the feature Fαi+1 maximizing this selection criterion is found, the set of the classes
is updated, i. e.

C {i+1} = {c j}, ∀c j, s.t. c j ∈ C i and p(c j| fαi+1 = ξαi+1)> b,

where b is a threshold value.

One can see that the features selected on the previous iterations are used only to threshold
the unlikely classes. Since the remaining classes are set to be uniformly distributed, the
precise values of their posterior distribution are not further used. This iterative threshold-
ing can be seen as a rough and greedy approximation to the multivariate class posteriors.
Moreover, once the class is eliminated, it cannot be recovered again. And this decision is
based on the value of the single feature that makes the scheme sensitive to the noisy data.

The suggested scheme in combination with the 1−NN classifier was used for classifi-
cation of discrete data. The author reports its efficiency compared to the 1−NN with
the arbitrary sequence of the available features for neural decoding problem. There, the
assumptions that features are independent results in a good approximation due to the rel-
atively large distance between electrodes with respect to the size of the recorded neurons.
Taking this into account and the fact that the proposed way of estimating the selection cri-
terion is oversimplified, we believe that for complex problems with many interdependent
features the performance can be poor.
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3.5 Adaptive conditional mutual information feature se-
lector

In Section 3.3, we introduced the general framework of the adaptive feature selection. It
was suggested that for classification problems with heterogeneous or small training sets
it is advantageous to select features adaptively because it is possible to find a smaller
number of discriminative features compared to the static approach. Heterogeneous data
are likely to be described by different features in different subregions of the input space.
Thus, adaptive selection gives a possibility to define a small subset of informative features
depending on the location of a testing sample. In the case of limited training data, we
expect estimates of local relevance of a feature, i. e. relevance for a small subregion of
the input space defined by a certain testing sample, to be more accurate than estimates
of global feature relevance, which is used by static schemes. As a result, the adaptive
scheme would select features of better quality. Consequently, in order to reach the same
classification accuracy, one would need a smaller number of adaptively selected features
comparing to static selection schemes.

Thus, one does not predefine a single subset of relevant features but rather selects a spe-
cific one for every new testing sample. The proposed approach assumes a sequential
feedforward feature selection where every next feature added to the subset should be dis-
criminative and non-redundant w.r.t the already selected features, which take particular
values observed on the current testing sample [Avdiyenko et al., 2012c,b].

3.5.1 Model

Now, we present a particular algorithm realizing the idea of adaptive sequential feature
selection. The proposed method uses a selection criterion based on the mutual information
of the features and class variables [Cover & Thomas, 1991]. As a subset of informative
features is formed sequentially, the method iteratively looks for a feature Fk that has the
maximal mutual information with the class variable conditioned on the outcomes of the
selected features, which are observed on the testing sample. The selection criterion is
defined as I(C;Fk|ξi), which is mutual information of C and Fk conditioned on the values
of previously selected features ξi. Therefore, the method is called adaptive conditional
mutual information feature selector (ACMIFS).
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Formally, according to ACMIFS every selected feature should satisfy the following:

αi+1 = argmax
k
{S(C,Fα1 = ξ1, . . . ,Fαi = ξαi,Fk)}= argmax

k

{
I(C,Fk|ξi)

}
=

argmax
k

{∫
Fk

∑
c∈C

p( fk,c|ξi) log
p( fk,c|ξi)

p( fk|ξi)p(c|ξi)
d fk

}
,

(3.12)

where the variable C represents the classes, C∈{c1, . . . ,cm}, and ξi = {Fα1 = ξα1, . . . ,Fαi =
ξαi} is the usual shorthand for the set of values observed on the selected features of the
sample ξ. One can also think about ξi as being the partial information about the testing
sample ξ available after i iterations.

As the adaptive feature selection framework states, the expression (3.12) is not conven-
tional conditional mutual information (CMI). We do not average over all possible out-
comes of the features Fα1 , . . . ,Fαi , but rather condition on their certain values that we
observe on the testing sample ξ. In this way, we specify a region of the input space where
the testing sample lies and look for a feature Fk that is discriminative for this particular
region. During the early steps of the iteration, this region is typically large and it gets
iteratively refined with newly observed feature values until the testing sample is assigned
to the certain class.

Using the definition of the Kullback-Leibler divergence for two distributions (2.40), the
proposed selection criterion (3.12) can be rewritten as follows:

αi+1 = argmax
k

{
∑
c∈C

p(c|ξi)D(p( fk|c,ξi)||p( fk|ξi))

}
. (3.13)

This is the average distance between the pdf of the feature Fk given a certain class and
its marginal pdf, where both pdfs are updated after observing the current feature subset
on the sample ξ. Thus, the selection criterion favors features with distinctive posterior
distributions for data drawn from the different classes, that is, features that on the (i+1)th

step are expected to discriminate best between the classes.

As feature values are not known before these features are selected, the first feature is de-
fined independently of the testing sample ξ and should maximize the mutual information
with the classes:

α1 = argmax
k

I(C;Fk), Fk ∈ {F1, . . . ,Fn}. (3.14)

The scheme becomes adaptive only after the first feature is selected and the value it takes
on the testing sample is observed.

Ideally, the algorithm can be stopped when one of the classes has been unambiguously
identified. In practice, this is rarely possible and other stopping criteria have to be used.
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Table 3.1: A toy dataset X consisting of four samples which are described by three features
{F1, . . . ,F3} and can belong to one of four classes {c1, . . . ,c4}.

F1 F2 F3 C
x1 0 1 1 c1
x2 0 1 0 c2
x3 1 0 1 c3
x4 1 1 1 c4

A usual choice is simply a fixed number of features that should be selected, which is
decided either by design or optimized using cross-validation. Another approach is to
use a threshold for minimum additional information that a selected feature should bring.
Theoretically, such stopping criterion is attractive because the selection process can be
stopped adaptively. But its practical use is complicated due to the fact that one needs
absolute values of mutual information whose estimates are likely to be inaccurate. Here,
we do not study the question of stopping criteria in details. However, while introducing
the combined adaptive selection scheme in Chapter 4, we suggest that a heuristic based on
the idea of a degenerated selection criterion can also be used as a stopping criterion. For a
review on advanced stopping rule, an interested reader is referred to [Guyon & Elisseeff,
2003].

3.5.1.1 Adaptive vs static selection

Let us consider a toy classification problem to demonstrate advantages of the adaptive ap-
proach. Table 3.1 shows a dataset consisting of four samples X = {(x1,c1), . . . ,(x4,c4)}.
The training samples lie in 3-dimensional binary feature space F = F1×F2×F3 and can
belong to one out of four possible classes c ∈ {c1,c2,c3,c4}.

Let us start selecting features adaptively. As was mentioned above, the first feature is
selected according to I(C;F) without any knowledge about a testing sample ξ:

α1 = arg max
k=1,2,3

I(C,Fk) = arg max
k=1,2,3

{
4

∑
j=1

∑
fk={0,1}

p(c j, fk) log
p(c j, fk)

p(c j)p( fk)

}
.

Estimating pdfs using frequency counts from the training set, we have

I(C,F1) = 1, I(C,F2)≈ 0.81, I(C,F3)≈ 0.81.

As F1 has the highest mutual information with the class variable C, this feature is chosen
on the first iteration, i. e. Fα1 = F1. To proceed with the adaptive scheme further, we need
a value of the first selected feature on the testing sample.
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Case 1. Suppose ξ1 = 1. The feature value is used to update the posterior of the classes:

p(c1| f1 = 1) = 0, p(c2| f1 = 1) = 0, p(c3| f1 = 1) = 0.5, p(c4| f1 = 1) = 0.5.

That is, after selecting and evaluating the first feature, the number of hypotheses is halved.
But since there are still two candidates, the selection proceeds.

The selection criterion on the second iteration is of the following form:

α2 = arg max
k=2,3

I(C;Fk|F1 = ξ1)= ∑
j=3,4

∑
fk={0,1}

p(c j, fk| f1 = 1) log
p(c j, fk| f1 = 1)

p(c j| f1 = 1)p( fk| f1 = 1)
,

I(C;F2|F1 = 1) = 1, I(C;F3|F1 = ξ1) = 0,

then Fα2 = F2, i. e. the feature F2 is selected. For both possible values F2 = 1 and F2 = 0 a
testing sample would be unambiguously classified as c4 and c3, respectively. That is, the
uncertainty about the class once the F2 will be known is

H(C|F1 = 1,F2) = ∑
j=3,4

∑
f2={0,1}

p(c j, f2| f1 = 1) log p(c j| f2, f1 = 1) =

∑
j=3,4

∑
f2={0,1}

p(c j, f1 = 1, f2)

p( f1 = 1)
log

p(c j, f1 = 1, f2)

p( f1 = 1, f2)
= 0.

Therefore, the selection terminates with two selected features {F1,F2}.

Case 2. Let us consider a scenario when the first selected feature F1 = 0. Then,

α2 = arg max
k=2,3

I(C;Fk|F1 = ξ1)= ∑
j=3,4

∑
fk={0,1}

p(c j, fk| f1 = 0) log
p(c j, fk| f1 = 0)

p(c j| f1 = 0)p( fk| f1 = 0)
,

I(C;F2|F1 = 1) = 0, I(C;F3|F1 = ξ1) = 1.

Therefore, the second selected feature is F3. Similarly to the case 1, independent of the
value of F3 on the testing sample ξ, its class label will be unambiguous, c1 and c2 for
F3 = 1 and F3 = 0, respectively. Thus, there is no need to select more features and the
final feature subset is {F1,F3}. We can conclude that all samples from the considered
dataset can be classified with two adaptively selected features, either {F1,F2} or {F1,F3}.

If we consider a static feature selector, we still have Fα1 = F1. However, in order to select
the second feature, we have to average over all possible values of F1 while conditioning
on this feature:

α2 = arg max
k=2,3

I(C;Fk|F1) = arg max
k=2,3

∑
f1={0,1}

p( f1)I(C;Fk|F1).
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According to this criterion, both features F2 and F3 are equally informative after select-
ing F1, I(C;F2|F1) = I(C;F3|F1) = 0.5. Suppose that Fα2 = F2 is selected. Then, as
H(C|F1,F2) = 0.5, knowing values of the features F1 and F2 is not enough for unambigu-
ous classification and further features are needed. Thus, the selection proceeds and the
third feature should be added to the subset of the relevant features. Similarly, if on the
second step F3 is chosen, Fα2 = F3, there will be still uncertainty about the class since
H(C|F1,F3) = 0.5. And again the third feature has to be selected. As a result, in both
cases, the final subset of the relevant features selected according to the static approach
consists of three features, {F1,F2,F3} or {F1,F3,F2}.

This toy example demonstrates that compared to the static feature selection the adaptive
approach is able to produce feature subsets of smaller size while ensuring the same clas-
sification accuracy.

It is necessary to note that a general version of the algorithm does not remove the classes
with the low posteriors from the pool of the candidates. As there is always a possibility
that the values of the selected features are noisy, it is better to update (reevaluate) the
posterior of all classes once the value of the next selected feature is observed on the
testing sample.

3.5.2 Estimation

3.5.2.1 Density estimation

A selection criterion of ACMIFS is in fact the mutual information of a class and a feature-
candidate conditioned on previously selected features. The only difference to the classical
conditional mutual information is that the ACMIFS selection criterion has to be estimated
not on the full input space but on its subregion defined by the values of the already selected
features. On the one hand, for ACMIFS any estimation method of mutual information
can be used. On the other hand, note that the set of selected features grows iteratively.
Therefore, the corresponding input subregion, for which the discriminative features are
sought, and its dimensionality change from iteration to iteration as well. Obviously, in
order to have a computationally feasible scheme performing feature selection during the
actual classification, one needs an estimator with the minimum number of parameters
learned from the data. Otherwise, these parameters have to be reestimated every time the
input subregion under the consideration is refined with the feature values from a testing
sample ξ. The most natural choice is a non-parametric estimator which helps us also to
present a rather general selection scheme without any problem-specific assumptions.

Among such entropy and mutual information estimation techniques, there are plug-in
and nonplug-in approaches based on non-parametric density estimation methods such as
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histograms, kernel and k-nearest neighbor density estimators (see Section 2.5 for details).
Let us analyze suitability of these techniques for estimating the selection criterion of
ACMIFS.

The k-nearest density estimator has the problem that a concept of neighborhood strictly
depends on the input space under consideration. That is, if two points are the nearest
neighbors in i-dimensional space, there is no guarantee that in the (i+ 1)-dimensional
space they remain neighbors. In the context of ACMIFS, it means that a testing sample
might have a completely different set of neighbors on every iteration. As no points fur-
ther than kth neighbor influence the estimate of the class posterior, this posterior might
change drastically. That is, for example, on one iteration, one can look for a feature that
discriminates between the classes c1 and c2 and on the next iteration the pool of possi-
ble class-candidates might be {c3,c4,c5}, i. e. there might be no overlap at all with the
previous set of the class-candidates. As a result, features selected on the early iterations
might become irrelevant in combination with later selected features. Following the idea
of Kraskov [Kraskov et al., 2004], one may think about fixing a distance to ξ that captures
at least k neighbors along every dimension. However, for our problem it would mean that
in order to learn this distance we need to know values of all features of the testing sample
before selecting them. Although it is not critical for many applications, it does not go
along with our framework that assumes evaluating a feature value only if this feature is
discriminative.

As was already mentioned, histograms and related techniques are not very popular for
multivariate density estimation. In the continuous case, data have to be discretized and
advanced methods using data-driven binning, such as equiprobable or adaptive, would
need to repartition data on every iteration as relations between the data points change in
the space of higher dimensionality. However, even if continuous data are discretized in
uniform bins, these bins have to be rebuilt on every iteration as well. The reason is that a
smoothing parameter, i. e. the width of bins, should be adjusted to the dimensionality of
the input space and as it increases, a number of bins and their origins change as well.

The kernel density estimation technique with a diagonal bandwidth matrix is quite conve-
nient for estimating the selection criterion of ACMIFS. First of all, the product structure of
the multivariate kernel function simplifies the evaluation of the kernel response if different
feature combinations should be considered. Second, although, similar to the uniform his-
tograms, the width parameter of the one-dimensional kernels should be widened on every
iteration, this results only in a slight change of their responses compared to the previous
iterations, and no other changes are necessary. Let us look at the estimation procedure in
details.
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Pursuing the plug-in approach to estimating mutual information, the selection criterion
(3.12) can be rewritten as

αi+1 = argmax
k

{
m

∑
j=1

p(c j|ξi)
∫

p( fk|ξi,c j) log
p( fk,ξ

i|c j)p(c j)p(ξi)

p(c j,ξi)p( fk,ξi)
d fk

}
. (3.15)

The pdfs under the logarithm, that do not depend on fk and therefore do not contribute to
argmax

k
, can be dropped. Thus, we obtain

αi+1 = argmax
k

{
m

∑
j=1

p(c j|ξi)
∫

p( fk|ξi,c j) log
p( fk,ξ

i|c j)

p( fk,ξi)
d fk

}
=

argmax
k

{
m

∑
j=1

p(c j|ξi)Ep( fk|ξi,c j)[log
p( fk,ξ

i|c j)

p( fk,ξi)
]

}
.

(3.16)

Using a kernel method, we would like to estimate probability density functions of differ-
ent feature combinations. However, we assume that data belonging to different classes
have different structures and therefore every class-conditional pdf p( f1, . . . , fn|c j) will be
modeled separately.

Using the class-conditional estimates, the pdf p( fk,ξ
i) in the denominator of the logarithm

can be found by marginalizing out the class variable from its joint pdf with these features:

p( fk,ξ
i) =

m

∑
j=1

p( fk,ξ
i,c j) =

m

∑
j=1

p( fk,ξ
i|c j)p(c j). (3.17)

The posterior of the classes after observing values of the selected features can be derived
using the Bayes rule in the following way:

p(c j|ξi) =
p(c j,ξ

i)

p(ξi)
=

p(ξi|c j)p(c j)

p(ξi)
=

p(ξi|c j)p(c j)
m
∑

j′=1
p(ξi|c j′)p(c j′)

. (3.18)

Plugging (3.17) and (3.18) in (3.16) and omitting p(ξi) in the denominator of (3.18) be-
cause it does not influence the maximization over k, the selection criterion is:

αi+1 = argmax
k


m

∑
j=1

p(ξi|c j)p(c j)Ep( fk|ξi,c j)

log
p( fk,ξ

i|c j)
m
∑

j′=1
p( fk,ξi|c j′)p(c j′)


 . (3.19)



3.5. ADAPTIVE CONDITIONAL MUTUAL INFORMATION FEATURE SELECTOR 71

In addition to estimating multivariate pdfs, the expression (3.19) requires estimating the
conditional expectation over multivariate pdf. We propose to solve this problem with the
kernel method as well.

Since the quality of the kernel density estimation does not particularly depend on the
choice of a kernel function defining its shape, for convenience we restrict ourselves to
Gaussian kernels K(w) = 1√

2π
exp(−w2

2 ). Taking p( fk,ξ
i|c j) as an example, an estimate

of the multivariate pdf using the Gaussian product kernel is the following:

p( fk,ξ
i|c j) =

(
Tjhk

i

∏
q=1

hαq

)−1

∑
xs∈X j

K
(

xr,k− xs,k

hk

) i

∏
q=1

K
(

ξαq− xr,αq

hαq

)
=

(
√

2π
(i+1)

Tjhk

i

∏
q=1

hαq

)−1

∑
xs∈X j

exp
(
−
(xr,k− xs,k)

2

h2
k

) i

∏
q=1

exp

(
−
(ξαq− xr,αq)

2

h2
αq

)
,

(3.20)

where (hα1, ...,hαi,hk) is a bandwidth vector of the multivariate kernel, where each entry
is a bandwidth parameter of the one-dimensional kernel for the features Fα1, ...,Fαi,Fk,
respectively; X j is a subset of the training samples belonging to the class c j and Tj =
|X j|. Further, in order to simplify the notation, Kk(xr,xs) will denote the response of the

kernel along the kth dimension K
(

xr,k−xs,k
hk

)
, and K(ξi,xr) will denote the product kernel

i
∏

q=1
Kαq(ξ,xr).

In contrast to the kernel function, the bandwidth or smoothing parameters h should be cho-
sen with care since they strongly influence the accuracy of the estimates. Effective tech-
niques for defining a vector of the optimal smoothing parameters assume solving some
optimization problem. However, as was already discussed, on every iteration we have
to estimate pdfs of different dimensionality. Moreover, within one iteration, p( fk,ξ

i|c j)
should be estimated for different feature candidates Fk. It means that for every distinct
combination of features in the multivariate pdf, one has to look for its own vector of ap-
propriate kernel widths. To simplify this process, we adopt the simple normal reference
rule that assumes an estimated density being normally distributed. For the multivariate
kernel with the product structure, it gives a closed-form expression for the optimal width
of the one-dimensional kernel along every dimension depending on the dimensionality of
the estimated pdf. Then, the bandwidth for some feature Fk on the iteration i is defined as

hk,i = (
4

di +2
)

1
di+4 σkT−

1
di+4 , (3.21)

where di is the dimension of the estimated multivariate density on the iteration i, σk is the
standard deviation of the data points and T is the number of all training samples. Further,
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while referring to the smoothing parameters, the iteration subscript i will be skipped in
order to simplify the notation. However, it is still meant that the bandwidth parameters
are changed on every iteration to adjust to the growing dimensionality of the input space.
It is necessary to note that theoretically the bandwidth vector should be chosen for every
class as we model them separately. Similar to the authors of the Parzen window feature
selector, which can be seen as a static analog of ACMIFS [Kwak & Choi, 2002a], we use
the same bandwidth parameters for all classes. On the one hand, this is due to the small
amount of data for every class, which is not enough to infer the optimal bandwidth. On
the other hand, this simplification is done for computational reasons.

Extension to the discrete case. The presented estimation scheme of ACMIFS is devel-
oped for continuous data. However, it can also be directly applied to discrete data using
discrete kernels. As an extension to the multivariate continuous kernel function, a multi-
variate binary kernel was proposed by Aitchison and Aitken [Aitchison & Aitken, 1976].
It has also a product structure and its univariate component along the kth dimension is of
the following form:

Kk(x,y) = λ
(1−d(x,y))
k (1−λk)

d(x,y), (3.22)

where d(x,y) is the Hamming distance between two variables x and y and λk is a smooth-
ing parameter associated with the feature Fk, λk ∈ [1

2 ,1]. Setting λ = 1
2 leads to the uni-

form probability mass function whereas λ close to 1 gives a simple maximum likelihood
estimate.

For variables with more than two values, we suggest the following generalization:

Kk(x,y) = λ
(1−d(x,y)/dk)
k (1−λk)

d(x,y)/dk , (3.23)

where d(x,y) is the Euclidean distance between the discrete variables x and y and dk acts
a a normalization constant, which is a distance between the maximum and the minimum
possible value of the variable Fk.

Similar to the continuous analog, the accuracy of the discrete kernel method depends on
the choice of the smoothing parameter λ, which can be found using methods developed
for the standard kernel density estimation.

3.5.2.2 Conditional Expectation

We estimate the conditional expectation over the multivariate pdf p( fk|ξi,c j) using a
kernel-based estimator as well. Let us consider a training set X = {(x1,y1), ...,(xT ,yT )},
where xi and yi are realizations of nx− and ny−dimensional continuous random variables
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x and y, respectively. Suppose, one needs to estimate the expectation of some function
g(x) over the conditional distribution p(x|y = a), where a is a particular observation of
the variable y. Then, using the nonparametric kernel regression estimator proposed by
Nadaraya [Nadaraya, 1964] and Watson [Watson, 1964], the conditional expectation of
g(x) is:

Ep(x|y=a)[g(x)] =
(T

ny

∏
j=1

h j)
−1

T
∑

i=1

ny

∏
j=1

K j(a,yi)g(xi)

(T
ny

∏
j=1

h j)−1
T
∑

i=1

ny

∏
j=1

K j(a,yi)

, (3.24)

where (h1, ...,hny) is a bandwidth vector of the kernel for the variable y and K j(a,yi) =

K(
a j−yi, j

h j
). Note that the denominator is the kernel density estimate of p(y = a).

Plugging (3.24) for Ep( fk|ξi,c j) [log(·)] into the selection criterion (3.19), we have:

αi+1 = argmax
k

{
m

∑
j=1

p(ξi|c j)p(c j)

p(ξi|c j)
(Tj

i

∏
q=1

hαq)
−1×

∑
xr∈X j

i

∏
q=1

Kαq(ξ,xr) log
p( fk = xr,k,ξ

i|c j)
m
∑

j′=1
p( fk,ξi|c j′)p(c j′)

=

argmax
k


m

∑
j=1

p(c j)T−1
j ∑

xr∈X j

i

∏
q=1

Kαq(ξ,xr) log
p( fk = xr,k,ξ

i|c j)
m
∑

j′=1
p( fk,ξi|c j′)p(c j′)

 ,

(3.25)

where X j is a set of training samples that belong to the class c j. Note that (
i

∏
q=1

hαq)
−1 can

be dropped since it is just a multiplicative constant for the value of the selection criterion
of all features-candidates within the iteration (i+1).
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Finally, using the kernel method to estimate densities, the expression (3.25) is of the form:

αi+1 = argmax
k

{
m

∑
j=1

p(c j)Tj
−1×

∑
xr∈X j

K(ξi,xr) log

(Tjhk
i

∏
q=1

hαq)
−1

∑
xs∈X j

Kk(xr,xs)K(ξi,xs)

m
∑

j′=1
p(c j′)(Tj′hk

i
∏

q=1
hαq)

−1

∑
xu∈X j′

Kk(xr,xu)K(ξi,xu)

=

argmax
k


m

∑
j=1

p(c j)Tj
−1

∑
xr∈X j

K(ξi,xr) log

T−1
j ∑

xs∈X j

Kk(xr,xs)K(ξi,xs)

m
∑

j′=1
p(c j′)T

−1
j′ ∑

xu∈X j′
Kk(xr,xu)K(ξi,xu)

 .

(3.26)

If the prior probabilities of the classes are estimated from the training set, i. e. p(c j) =
Tj
T ,

then the expression in the denominator under the logarithm can be estimated as an average
over the kernel responses in all training points:

m

∑
j′=1

p(c j′)T
−1
j′ ∑

xu∈X j′

Kk(xr,xu)K(ξi,xu) =
m

∑
j′=1

Tj

T
T−1

j′ ∑
xu∈X j′

Kk(xr,xu)K(ξi,xu) =

T−1
∑

xu∈X
Kk(xr,xu)K(ξi,xu).

3.5.2.3 Smoothing

The expression under the logarithm in (3.25) measures a ratio between values of the class-
conditional and marginal joint densities of Fk and ξi in the training point xr, i. e. between
the feature-candidate and already selected features taking values observed on the testing
sample ξ:

zk,r = log
p( fk = xr,k,ξ

i|c j)

p( fk = xr,k,ξi)
= log

T−1
j ∑

xs∈X j

Kk(xr,xs)K(ξi,xs)

T−1 ∑
xu∈X

Kk(xr,xu)K(ξi,xu)
. (3.27)

There could be a situation when the values of these densities are close to zero. On the
one hand, it could indicate that for the subregion of the input space where fk = xr,k (either
conditioned on c j or not, p( fk = xr,k,ξ

i|c j) or p( fk = xr,k,ξ
i), respectively) a probability of
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observing the testing sample ξi is very low. On the other hand, recall that in the situations
of small training sets the estimates of the joint pdfs p(·,ξi) are unreliable in general and in
particular they get worse as the dimension of ξi grows. Thus, the small values of p(·,ξi)
could be just due to lack of the training data in this particular subregion to estimate the
high-dimensional densities.

In order to reduce an influence of the possible unreliabilities on the estimation of the
selection criterion, we suggest to ignore fine differences between values of the pdfs in the
numerator and denominator of (3.27). For example, if at some iteration αi+1 we have
the ratios like 10−1

10−2 and 10−5

10−6 , it might be better to make their contributions different and
moreover not to differentiate at all between two values, if their absolute difference is
relatively small, i. e. |10−1−10−2| � |10−5−10−6| and |10−5−10−6| ≈ 0.

To achieve this, we suggest to smooth both pdfs in the log-ratio (3.27).

The smoothing methods considered here are inspired by smoothing techniques used in
language modeling (for a detailed review see [Chen & Goodman, 1998; Zhai, 2008]).
There, smoothing is used for estimating probability mass functions of word sequences,
which are called n-grams, i. e. sequences consisting of n words. For example, for a
bigram {wi−1,wi} one wants to estimate a probability p(wi|wi−1), i. e. a probability with
which the word wi follows the word wi−1 in the collection of documents. When these
probabilities are estimated from sparse training sets, it may happen that some n-grams are
not observed. Then, smoothing is applied to avoid zero probabilities.

An additive smoothing introduced by [Lidstone, 1920; Johnson, 1932; Jeffreys, 1948]
is one of the simplest smoothing methods used in probability estimation. In order to
avoid zero values when estimating probabilities, it assumes that every event occurs one
time more than it was observed. A generalized version of this method used by [Chen &
Goodman, 1998] for language modeling pretends that an event occurs δ times more than
it was observed, where the smoothing parameter δ is usually set to be some small value,
δ ∈ (0,1).

Note that the additive smoothing adds δ to a count of the event and then applies a renor-
malization to obtain a proper probability density. As we work with continuous variables,
we suppose that δ is added not to a count but directly to the probability value, which is
then renormalized. Thus, according to this method the smoothed version of (3.27) is:

zsm
k,r = log

psm( fk = xr,k,ξ
i|c j)

psm( fk = xr,k,ξi)
= log

a j,i+1 p( fk = xr,k,ξ
i|c j)+δ j,i+1

a′i+1 p( fk = xr,k,ξi)+δ′i+1
, (3.28)

where the superscript sm stands for “smoothed”, δ j,i+1 and a j,i+1 are the smoothing pa-
rameter and the normalization factor on the (i+1)th iteration for the density conditioned
on the class c j, respectively; δ′i+1 and a′i+1 correspond to the parameters for the uncondi-
tional density.
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In order for p( fk = xr,k,ξ
i|c j) and p( fk = xr,k,ξ

i) to be the proper densities, the following
should hold:∫

Fk

psm( fk|ξi,c j)d fk = 1,
∫

Fk

psm( fk|ξi)d fk = 1. (3.29)

Approximating the integrals by the sum over the samples and using the expressions of the
smoothed densities from (3.28), we have:

∑
xs∈X j

a j,i+1 p( fk = xs,k,ξ
i|c j)+δ j,i+1

p(ξi|c j)
= 1, ∑

xu∈X

a′i+1 p( fk = xu,k|ξi)+δ′i+1

p(ξi)
= 1,

which gives the following expressions for the normalization factors:

a j,i+1 = 1−
Tjδ j,i+1

p(ξi|c j)
, a′i+1 = 1−

T δ′i+1

p(ξi)
(3.30)

with the requirement lim
T→∞

δ→ 0.

However, as we would like to simplify the estimation, we assume that the smoothing
parameters δ j,i+1 and δ′i+1 are small enough, so that we can set a j,i+1 ≈ 1 and a′i+1 ≈
1. Therefore, formally the expressions (3.29) do not hold any more and the smoothing
becomes improper. Such a simplification, which we call here an improper smoothing,
should not cause problems because the smoothed densities appear only in the place where
we measure a ratio between them.

Nevertheless, it is still possible to preserve the marginalization property for the smoothed
class-conditional densities appearing in the log-ratio:

psm( fk = xr,k,ξ
i) =

m

∑
j=1

psm( fk = xr,k,ξ
i|c j)p(c j). (3.31)

This expression can be rewritten as follows

p( fk = xr,k,ξ
i)+δ

′
i+1 =

m

∑
j=1

(
p( fk = xr,k,ξ

i|c j)+δ j,i+1
)

p(c j),

giving

δ
′
i+1 =

m

∑
j=1

δ j,i+1 p(c j). (3.32)

Without loss of generality, we take the same smoothing parameter δ j,i+1 for every class
c j (further denoted as just δi+1). Then, the statement (3.32) and as a result the statement
(3.31) hold if δ′i+1 = δi+1.
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There is also a practical reason for the condition δ′i+1 = δi+1. In order to cancel the
difference between the small values of the pdfs, one has to make sure that as psm( fk =
xr,k,ξ

i|c j)→ 0 and psm( fk = xr,k,ξ
i)→ 0, the ratio between the values of the smoothed

pdfs equals to 1, i. e. psm( fk=xr,k,ξ
i|c j)

psm( fk=xr,k,ξi)
= δi+1

δ′i+1
≈ 1, so that log δi+1

δ′i+1
≈ 0. As a result, we need

a condition that both pdfs in the ratio are smoothed with the same smoothing parameter,
i. e. δi+1 = δ′i+1.

Then, the final form of the smoothed log-ratio according to the additive method is:

zsm
k,r = log

p( fk = xr,k,ξ
i|c j)+δi+1

p( fk = xr,k,ξi)+δi+1
(3.33)

Now, the question is how to define the appropriate value of δi+1. As prompted by the
subscript i+1, we suggest that it should be adapted on every iteration and give heuristic
justifications for this choice below.

It was mentioned before that as we select features the dimensionality of the pdfs in (3.27)
grows. Consequently, values of the joint pdfs of increasing number of variables decrease
iteratively, i. e. p(Fα1, . . . ,Fαi−1)≥ p(Fα1, . . . ,Fαi−1,Fαi). Thus, first of all, the smoothing
parameter should be adjusted to the current dimension of the pdf. Second, since both pdfs
are joint pdfs of the selected features taking the values observed on the testing sample
ξ, we suggest that it should be adjusted to p(ξi), i. e. to the current probability of the
testing sample. By doing this, we adapt the value of the smoothing parameter to the
“level of surprise” associated with observing the values ξα1, . . . ,ξαi given the training
set. This adjustment ensures that in situations when the testing sample ξ is very unlikely
the smoothing parameter does not oversmooth the pdfs. The oversmoothing can lead to
degeneration of the selection criterion, i. e. a situation when its value is the same or equals
zero for all remaining features. As a result, the selection will be random. In our particular
situation, this can happen if the smoothing value is fairly larger than all smoothed values
of the pdfs leading to zsm

k,r = 0 for all features-candidates k in all training points r.

Note that at the same time the smoothing parameter is constant within every iteration and
all pdfs are smoothed uniformly independent of their values.

Thus, the smoothing parameter can be defined as follows:

δi+1 = αp(ξi), (3.34)

where α is a small adjustable constant, which controls a degree of the applied smoothing.
The optimal value of α can be chosen using cross-validation method, i. e. using the error
of a classifier built on features selected using different values of α.
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However, in our simulations we used δi+1 proportional to the maximum response of the
product kernel K(ξi,xu) over all training points xu, i. e. to the kernel response in the
training point that is the closest to the current testing sample ξ:

δi+1 = α max
xu∈X

{
(

i

∏
q=1

hαq)
−1K(ξi,xu)

}
. (3.35)

This means that we decide how likely the testing sample ξ is based not on the whole
training set, as in (3.34), but on the closest neighbor. This approximation is similar to
an idea of the k-nearest neighbor algorithm, where decisions are based on the k nearest
training samples (in our case, k = 1).

The obvious advantage of the additive smoothing is its simplicity. Nevertheless, it is
heavily criticized in the language modeling community due to its poor performance [Gale
& Church, 1994]. This is caused by the fact that all n-grams, which consist of words of
different frequencies, are smoothed uniformly. However, such a simple smoothing is fine
for our problem, since we do not need precise values of the selection criterion, but rather
want to find a feature that maximizes it.

Another smoothing method, which we consider here, assumes interpolation with some
background distribution. The idea is similar to the Jelinek-Mercer smoothing [Jelinek
& Mercer, 1980] for language modelling. There, an n-gram model is interpolated with a
low-order model, i. e. an (n−1)-gram. For example, for a bigram {wi−1,wi}, a smoothed
version of p(wi|wi−1) is estimated as a mixture of p(wi|wi−1) and p(wi). Thus, instead
of assigning a zero probability to the unobserved word sequence {wi−1,wi}, some small
value proportional to the probability of the word wi alone is used.

Formally, a smoothed pdf is a mixture of the original and background distributions:

psm(wi|wi−1) = (1−λ)p(wi|wi−1)+λp(wi), (3.36)

where λ is a mixing coefficient, λ ∈ [0,1].

In fact, the general idea of the interpolation with a background distribution is similar to the
one of the additive smoothing. The difference is only in the definition of the smoothing
value δ.

Then, using this definition of smoothing, the log-ratio under consideration is:

rsm
k,r = log

(1−λ1,i+1)p( fk = xr,k,ξ
i|c j)+λ1,i+1δ1,i+1

(1−λ2,i+1)p( fk = xr,k,ξi)+λ2,i+1δ2,i+1
, (3.37)

where δ1,i+1 and δ2,i+1 are the background distributions on the iteration (i+ 1) for the
p( fk = xr,k,ξ

i|c j) and p( fk = xr,k,ξ
i), respectively.
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In contrast to approaches in language modeling, which use interpolation with low-order
models, as the background distributions δ1,i+1 and δ2,i+1 we suggest to use the corre-
sponding (i+1)-dimensional prior densities in the considered training point xr:

δ1,i+1 = p( fk = xr,k, fα1 = xr,α1, . . . , fαi = xr,αi|c j),

δ2,i+1 = p( fk = xr,k, fα1 = xr,α1 , . . . , fαi = xr,αi).
(3.38)

This choice of δ·,i is justified as follows. If xr lies in the region with many training points,
it is highly probable to observe there a testing sample ξ. Therefore, the estimates of
p( fk = xr,k,ξ

i|c j) are mixed with the large prior. Accordingly, in the sparser regions of
the input space where a priori any data point is not likely, the pdf estimates are smoothed
less. Thus, in contrast to the additive technique where smoothing is uniform, here we
have a locally adaptive smoothing which is adjusted to the prior probability of data in that
subregion of the input space where the point xr lies. This technique can be considered as
a way of improving noisy adaptive pdf estimates by mixing with prior.

Plugging (3.38) in (3.37) and canceling out (hk
i

∏
q=1

hαq)
−1 in both numerator and denom-

inator, we have:

zsm
k,r = log

T−1
j

(
(1−λ1,i+1) ∑

xs∈X j

Kk(xr,xs)K(ξi,xs)+λ1,i+1 ∑
xs∈X j

Kk(xr,xs)
i

∏
q=1

Kαq(xr,xs)

)

T−1

(
(1−λ2,i+1) ∑

xu∈X
Kk(xr,xu)K(ξi,xu)+λ2,i+1 ∑

xu∈X
Kk(xr,xu)

i
∏

q=1
Kαq(xr,xu)

) .

(3.39)

To proceed further, let us have a look at the behavior of the unnormalized smoothing back-
ground densities in (3.39). For small training sets as the dimension of the corresponding
pdfs grows we have the following:

lim
i→n−1

∑
xs∈X j

Kk(xr,xs)
i

∏
q=1

Kαq(xr,xs) = 1, xr ∈ X j

lim
i→n−1

∑
xu∈X

Kk(xr,xu)
i

∏
q=1

Kαq(xr,xu) = 1,

(3.40)

because due to data sparsity it is very likely that the multidimensional kernel responds
only to the training sample in which it is centered:

lim
i→n

i

∏
v=1

Kv(xr,xu)→

{
1, if r = u
0, otherwise.

(3.41)
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Therefore, for the cases where p( fk = xr,k,ξ
i|c j)→ 0 and p( fk = xr,k,ξ

i)→ 0, the log-ratio
(3.39) iteratively converges to the following constant:

lim
i→n−1

zsm
k,r = log

T−1
j ((1−λ1,i+1)×0+λ1,i+1×1)

T−1 ((1−λ2,i+1)×0+λ2,i+1×1)
= log

T−1
j λ1,i+1

T−1λ2,i+1
. (3.42)

The relation between λ1,i+1 and λ2,i+1 should be defined depending on the “default” value,
which one wants to assign to the log-ratio between two small values. For example, set-
ting λ1,i+1 = λ2,i+1 will eventually lead to the log-ratio appearing in the analogous static
selection criterion:

lim
i→n−1

zsm
k,r = log

p( fk = xr,k, fα1 = xr,α1, . . . , fαi = xr,αi|c j)

p( fk = xr,k, fα1 = xr,α1, . . . , fαi = xr,αi)
= log

T
Tj
.

On the one hand, this idea seems attractive. In points where there is no possibility to
use posteriors for making decisions, one calculates discriminability of a feature based
exclusively on the prior information. On the other hand, there is a danger that after few
adaptive steps the whole selection scheme becomes static. It is very likely that the ratios
between non-zero values are much smaller than those between the priors. Thus, already
after few iterations we will favor the features that are discriminative with respect to the
prior information and not with respect to the testing sample.

Therefore, the log-ratio between two small values is suggested to be around 0. I.e. we
would like to have a contribution to the selection criterion only from those subregions
of the input space where the observed values of the selected features ξi are likely. And
smoothing should be used in order to correct the estimates for these subregions and cancel
the contribution from the rest of the input space.

As a result, to achieve zsm
k,r = 1, we have the following dependency between λ1,i+1 and

λ2,i+1:

λ2,i+1 =
T λ1,i+1

Tj
. (3.43)

So far, the smoothing expressions λ·,i+1 and δ·,i+1 were independent of the testing sam-
ple ξ. Since as the background distributions we use priors, by definition they cannot be
influenced by ξ. However, we can adjust the mixing parameters λ1,i+1 and λ2,i+1 to the
probability of observing a certain testing sample. Therefore, similar to a way of defining
the smoothing parameter for the additive method, we suggest to adjust the λ’s on every it-
eration and in particular to make them dependent on p(ξi). Here, as an approximation we
use again the maximum response of the product kernel K(ξi,xu) over all training points
xu. Denoting λ1,i+1 on the (i+1)th iteration as λi+1, we define it as follows:

λi+1 = α max
xu∈X

{
(

i

∏
q=1

hαq)
−1K(ξi,xu)

}
, (3.44)



3.5. ADAPTIVE CONDITIONAL MUTUAL INFORMATION FEATURE SELECTOR 81

where α is a small adjustable constant. This global adjustment of the smoothing parameter
prevents oversmoothing and as a result degeneration of adaptivity in the selection process.

Thus, the ratio zk,r is smoothed according to the expression (3.39) with the adaptive λ1,i+1
defined in (3.44). Recall that λ2,i+1 depends on λ1,i+1 and can be defined using (3.43).

Similar to the additive method, the optimal value of α can be defined using cross-validation.
We followed this approach as well while performing experimental investigations of ACMIFS.
At the same time, as it is done in language modeling (e. g., see [Jelinek & Mercer, 1980;
Baum, 1972]), one can look for an optimal mixing parameter maximizing likelihood of
some validation data using smoothed pdfs.

The efficiency of both presented smoothing techniques depends on the parameter α con-
trolling the degree of smoothing. Despite the fact that α should be optimized for a specific
problem at hand, there is a general principle that pdfs estimated from smaller training sets
require larger smoothing.

The simulations presented in Section 4.2 demonstrate the influence of different degrees of
smoothing on the classification performance, as well as its general utility for very small
training sets.

Complexity of ACMIFS. Computational complexity of selecting i features according
to ACMIFS for every testing sample is O(iNT 2) which is due to the kernel method used
for estimation. On the one hand, the algorithm is obviously costly. On the other hand, an
adaptively selected feature subset has usually a smaller number of features. Thus, i can
be small. Moreover, as was already suggested and as we show later experimentally, the
adaptive approach to feature selection is especially advantageous for small training sets.
In such cases, the factor T 2 should not be critical.
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Chapter 4

Experimental investigations of ACMIFS

In this chapter, we present experimental investigations of ACMIFS. In particular, we ana-
lyze the ability of the proposed scheme to select informative features in high dimensional
input space from a limited amount of training data. By providing small training sets for
estimating the selection criterion and building a classifier, we model a situation when
there is not enough data to infer its general structure. Therefore, these data can be seen
as heterogeneous and according to our proposal one should profit from adaptive feature
selection in terms of a number of informative features necessary for classification.

First, we show the impact of smoothing on the quality of selected features, which is mea-
sured by the accuracy of a classifier built using these features. Further, we provide a
comparison of ACMIFS with the two most related information-based static and adap-
tive algorithms, the Parzen window feature selector [Kwak & Choi, 2002a] and the active
testing model [Geman & Jedynak, 1996], respectively. Results of this comparison demon-
strate general advantages of adaptive feature selection as well as the ability of ACMIFS
to make use of high-order dependencies between features during the selection process.
Finally, aiming to reduce computational complexity of ACMIFS, a hybrid adaptive fea-
ture selection scheme is proposed. It suggests that ACMIFS can switch to ATM after
some iterations. That is, at some point ACMIFS can adopt an assumption that features
are class-conditionally independent to simplify the estimation problem.

Most of the investigative experiments are run on the artificially constructed data set of
pixel-based images of digits. However, the comparison with the competitive feature se-
lection schemes is also performed on MNIST, the real-world benchmark data set of hand-
written digits.
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4.1 Data sets

4.1.1 Artificial data set

For investigating properties of the proposed adaptive feature selection scheme, we ar-
tificially constructed a data set for image classification. There are 11× 11 pixel-based
black-and-white images of digits belonging to 10 different classes. First, we construct
four distinct examples of every class (see Appendix A.2). From this data set we generate
a new one with 1000 samples by randomly adding 5 pixels of noise to the original images
(Fig. 4.1). Further, we form 20 training sets with 30, 90, 300 and 800 samples in each.
Every training set has its associated non-overlapping validation set containing 20 samples.
Thus, one can think about the original training sets of the size T = 30+20, T = 90+20,
T = 300+ 20 and T = 800+ 20, which are then divided to the non-overlapping subsets
for learning the model and for validating it. This technique is called the holdout cross-
validation method [Kohavi, 1995] and is usually used to avoid overfitting. Finally, there is
one testing set containing 100 samples, which is formed by randomly selecting an equal
number of samples from each class.

Figure 4.1: Examples of original and noisy digits.

Further, we developed an artificial neural network consisting of three consequent layers: a
layer of simple feature neurons, a layer of complex feature neurons and a layer of category
neurons (see Fig. 4.2). Thus, we assume that each image is described by a vector of the
complex features, which in turn are functions of simple features of the image. Our simple
features are inspired by the complex cells in the primary visual cortex discovered by
D. Hubel and T. Wiesel in the 1960s [Hubel & Wiesel, 2005]. Both are responsive to
primitive stimuli that are independent of their spatial location.

Here, each simple feature corresponds to a 3× 3 image patch and the feature neuron is
activated proportional to the frequency with which the corresponding patch occurs in the
image. For normalization and smoothing purposes, patch frequencies are squashed in the
interval [−1,1] via a sigmoid function. Thus, the activation function of the simple feature
neuron is:

si =
a1

1+ e−a2(νi−a3)
−a4, (4.1)

where νi is a frequency of the patch corresponding to a feature Fi and {a1,a2,a3,a4}
are parameters of the sigmoid. The parameters are set in the following way: a1 = 2
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Figure 4.2: A neural network representing two layers of simple and complex feature neurons and
an output layer of category neurons.

and a4 = 1 to assure that si ∈ [−1,1], a2 and a3 control the form and the position of the
function and should be chosen to achieve the desired degree of sensitivity to the feature
frequency, which can vary depending on the expected noise level. In our experiments,
we used a2 = 2 and a3 = 0.3. The behavior of the activation function depending on the
patch frequency is shown on the Fig. 4.3. One can see that with such parameter setting
the output of the feature neuron saturates after observing the corresponding patch more
than 2 times. That is, we believe that the feature is present on the image if its frequency
is larger than 2.

The complex features correspond to 3× 3 image patches as well. Their activation o is
computed as a weighted sum of the activations of the simple features:

o j = α

ns

∑
i=1

wi jsi, (4.2)

where ns is a number of the simple features, α ∈ (0,1] is a normalization constant to
ensure that the output of the complex feature neuron is in the range [−1,1] and wi j is the
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Figure 4.3: Activation function of the simple feature depending on its frequency

weight of the connection between the ith simple feature neuron and jth complex feature
neuron. If the simple and complex feature neurons respond to the same patch, the weight
wi j between them is 1. For the others, it drops in the number of pixels that differ between
the corresponding image patches according to the Gaussian. For example, consider two
features from the Fig.4.4: the simple feature Fs1 and the complex feature Fc2. Their
preferred patches could be represented as strings containing 0s and 1s for white and black
pixels, respectively, i. e. ps1 = {′010010010′} and pc2 = {′001010010′}. The difference
in the number of pixels is calculated using Hamming distance, that is h(ps1, pc2) = 2.

={'010010010'} ={'001010010'}

Figure 4.4: Example of two image patches and their representations as strings.

Then wi j = e−
h(ps1,pc2)

2

σ2 . As a result, the complex features are activated not only in response
to their preferred patches but also to similar ones, which makes them more robust against
pixel noise compared to the simple features.

To conclude, a simple feature is activated only if its preferred patch is present somewhere
on an image. In turn, a complex feature respond to possible noisy representations of its
preferred patch, which is done by aggregating responses of the simple features that are
tuned to similar patches. Thus, making a parallel to complex cells in the visual cortex, we
have two layers of cells with receptive fields of increasing complexity, which in our case
is measured by resistance to noise.
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Since there are 9 binary pixels in each 3×3 patch, both simple and complex feature layers
have 29 = 512 neurons. Feature selection is done on the complex feature layer, thus every
image is described by a vector of 512 complex feature values.

As a classifier, we used the weighted k-nearest neighbor algorithm (wk-NN). It assigns
a class to a testing sample based on a distance-weighted vote of the k-nearest training
samples. The wk-NN is one of the simplest classifiers, but the fact that it does not need
learning is useful because the adaptive scheme requires multiple running of the classifier
with different features. Here, we used k=20 hand-tuned using validation sets.

Since we are interested not in the absolute classification accuracy but in its relative dif-
ference between classifiers built on different feature subsets, the choice of the particular
classifier is not critical. However, on every iteration, the updated class posterior is also
estimated by KDE since it is used in the selection criterion. Therefore, one could use a
classifier based on this posterior estimate, which is known as the Parzen window classifier
[Parzen, 1962]. Nevertheless, in all simulations only wk-NN is used as a classifier to em-
phasize the fact that ACMIFS is a feature selector of the filter type and selected features
can be further fed in any classifier.

4.1.2 MNIST data set

In addition to the artificially constructed data set, experiments where ACMIFS is com-
pared to related static and adaptive feature selectors are performed also on a real-world
data set of handwritten digits MNIST [LeCun & Cortes, nd]. MNIST contains images that
are 28× 28 pixel, black and white, size-normalized and centered. The original training
and testing sets consist of 60,000 and 10,000 samples, respectively.

The features are learned by LeNetConvPool [Bergstra et al., nd], an implementation of
the convolutional neural network based on the LeNet5 architecture, which was originally
proposed by LeCun [LeCun et al., 1998]. The convolutional networks are biologically
inspired multilayered neural networks. In order to achieve some degree of location, scale
and distortion invariance, they imitate arrangement and properties of simple and complex
cells in primary visual cortex by implementing local filters of increasing size, shared
weights and spatial subsampling.

LeNetConvPool consists of 6 layers: 4 successive convolutional and down-sampling lay-
ers (C- and S-layers), a hidden fully-connected layer and a logistic regression as a clas-
sifier, see Figure (4.6). C-layers consist of several feature maps with overlapping 5× 5
linear filters. So every filter receives an input from the 5×5 region of the previous layer,
computes its weighted sum and passes it through a sigmoid function. The S-layers per-
form max-pooling with 2× 2 non-overlapping filters. That is, an output of such filter is
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Figure 4.5: An example of the images from the MNIST dataset.

the maximum activation of units from 2×2 region of the corresponding feature map in the
previous C-layer. For both types of the layers, all filters share the same weight parameters
within one feature map. The first C- and S-layers have 20 feature maps, the next ones
have 50. The succeeding hidden layer, which is fully-connected to all units of all feature
maps in the previous S-layer, has 500 units with a sigmoid activation function. The last
classification layer consists of 10 units, according to the number of classes, and performs
a logistic regression. The weight parameters of all layers are learned using the gradient
descent [LeCun et al., 1998]. For all implementation details see [Bergstra et al., nd].

convolution 
layer

down-sampling
layer

fully-connected
layer

convolution
layer

down-sampling
layer

Figure 4.6: LeNetConvPool network [Bergstra et al., nd].

LeNetConvPool was trained on 15 training sets with 5,000 samples each. After that,
the last classification layer was removed and the resulting 15 networks with 500 output
units were used as feature extractors. These units are initial features for feature selec-
tion. Then, from every training set we formed 2 sets of different size, with T = 100 and
T = 300 samples, which were used for feature selection and for classification. We use
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a different amount of training data for feature extraction and for further feature selection
and classification to model a situation, when one has good features but there is not enough
training data to build an efficient classifier. As a classifier, we used an unweighted k-NN
with k = 5 (again, hand-tuned on validation sets), which in contrast to wk-NN uses a sim-
ple majority vote. For computational reasons, the testing set was reduced to 500 samples,
which were randomly selected from the original MNIST testing set, with an equal number
of samples per class.

4.2 Smoothing

In Subsection 3.5.2.3, we presented two techniques for smoothing densities in the ratio
under the logarithm (3.27):

zk,r = log
p( fk = xr,k,ξ

i|c j)

p( fk = xr,k,ξi)
.

Smoothing was proposed to account for unreliable pdf estimates in higher dimensions.
Using the artificial data set, we experimentally investigate the influence of these smooth-
ing methods on the quality of selected features measured in terms of their discriminability.
In order to evaluate discriminability of the selected features, we run a classifier using these
features and measure its misclassification error.

4.2.1 Additive smoothing

Let us consider the first technique, namely additive smoothing (3.33) with an adaptive
smoothing parameter δi+1:

zsm
k,r = log

p( fk = xr,k,ξ
i|c j)+δi+1

p( fk = xr,k,ξi)+δi+1

Recall that δi+1 depends on p(ξi), i. e. the probability of the testing sample ξ after observ-
ing values of i selected features. In particular, δi+1 is proportional to the response of the
product kernel K(ξi,xu) in the closest training point xu with the factor of proportionality
α, as defined by the expression (3.35):

δi+1 = α max
xu∈X

{
(

i

∏
q=1

hαq)
−1K(ξi,xu)

}
.
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The value of α controls a degree with which these densities are smoothed. As was already
mentioned, the optimal value of α should be adjusted to the problem at hand as well as to
the amount of the available training data.

In order to inspect the influence of different degrees of smoothing on the classification
performance and to choose the optimal α, we run our ACMIFS with α = 0, α = 0.0001,
α = 0.001, α = 0.05. Feature selection were run for all four different sizes of the training
sets, i. e. T = 30, T = 90, T = 300 and T = 800 to see the dependence between the
number of training samples and the necessary degree of smoothing. The classification
accuracy was measured on the validation sets.

Figure 4.7 shows the misclassification error against the number of features that were se-
lected using different degrees of the additive smoothing controlled by α. First of all, for
the training sets with a small number of samples (see subplots A and B for T = 30 and
T = 90, respectively) we observe a huge decrease in the classification error when the pdf
estimates are smoothed. Thus, any reasonable smoothing with α different from zero im-
proves the estimate of the selection criterion and as a result helps to select better features.

For the middle-sized training sets (see subplots C and D for T = 300 and T = 800, respec-
tively), it is important not to oversmooth. One can see that for α = 0.05 the classification
error is higher compared to the unsmoothed case (α = 0).

For the training set with 300 samples, we still observe a significant improvement when
pdfs are smoothed, however, now with the smaller value of α. Thus, the smoothing is still
useful, though the difference between the cases where α = 0 and α = 0.0001 is not as
prominent as for the small training sets. Finally, when there is enough training data for
estimating pdfs, as in the case with 800 training samples, smoothing is not beneficial and
can even impair the estimates by introducing noise.

Next, we would like to investigate on which phase of the selection process smoothing
becomes crucial. I.e. whether it is at the beginning when the number of the selected
features is still small or on the later iterations when one has to deal with high-dimensional
pdfs.

For this, we constructed the following experiment. Using the unsmoothed version of
ACMIFS , with α= 0, we preselected subsets consisting of N0 = 10, N0 = 20 and N0 = 50
features. Then, we let the smoothed ACMIFS , with α 6= 0, select features further. Fig-
ure 4.8 shows an error rate against a number of the features selected by different setups
for the training sets, (T = 30;α = 0.001) and (T = 90;α = 0.0001). These values of
the smoothing parameter were chosen as those that showed the best results for the corre-
sponding data sets (see Figure 4.7).
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Figure 4.7: Classification error against a number of features that are selected using different degree
of the additive smoothing controlled by α.

We have to note that there is no claim about the importance of the smoothing after a
certain number of iterations. Our aim is rather to show the influence of smoothing after
the first few iterations for training sets of different size.

One can observe the general tendency for the small datasets: smoothing starts improving
the estimates already after several iterations. For both T = 30 and T = 90, there is no
difference in classification performance of the smoothed and the unsmoothed ACMIFS
up to first 10− 15 iterations. It is not surprising that ACMIFS smoothed after the 10th

iteration gives almost as good features as the algorithm where smoothing was applied
from the beginning (see red and green curves on the Figure 4.8). However, if smoothing
is introduced after 20 iterations, there is an evident difference in the accuracy. This fact
suggests that those few features, which are selected approximately after 10−15 iterations
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Figure 4.8: Influence of smoothing ACMIFS introduced after N0 = 10/20/50 iterations. The
initial feature subsets were preselected by the unsmoothed ACMIFS, further selection is performed
by the smoothed version of the algorithm. The red curves on both subplots present a setup when
ACMIFS is smoothed from the first iteration.

with smoothing, are able to eliminate some wrong hypotheses, i. e. set the posterior of
some “wrong” classes close to 0. In this way, further selection can be simplified as one
tries to discriminate between a smaller number of the classes.

It is worth noting that ACMIFS smoothed after 20 and 50 iterations for T = 90 can still
improve the classification accuracy compared to the unsmoothed version (see magenta
and blue error curves). However, if the dataset is very sparse, the first features are more
crucial and ACMIFS obviously fails to recover if it gets smoothed only after 50 iterations.

This analysis gives us a hint about the dimension of pdfs when the proposed way of
additive smoothing starts improving the estimates depending on the size of a training
set. For example, if one decides to select few features, it is not so crucial to smooth the
estimates. And correspondingly, if the final feature subset should be large, then smoothing
can help to select better features on the later iterations.

4.2.2 Interpolation with a prior distribution

Now, we turn to the second smoothing technique, interpolation with a background dis-
tribution. As the background, we use a prior distribution of the smoothed density, see
(3.39). As defined by the expression (3.44), the mixing parameter λi+1 is proportional
to the maximum response of the product kernel K(ξi,xu) over all training points with a
factor of proportionality α.



4.2. SMOOTHING 93

Similar to the additive method, efficiency of smoothing with a prior is assessed by the
classification performance achieved with features that are selected using different degrees
of smoothing controlled by the parameter α. Figure 4.9 plots the error rate against a
number of features selected with α = 0, i. e. no smoothing, α = 0.0001, α = 0.001 and
α = 0.05.
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Figure 4.9: Classification error against a number of features that are selected using different de-
grees of smoothing with a prior controlled by α.

In general, the behavior of the error curves for different degrees of smoothing resembles
the situation observed when using the additive method. Thus, one can select better fea-
tures if pdfs estimated from small training sets are smoothed. And the pdfs estimated
from the middle-sized datasets should be smoothed less or not at all.

Taking into account that there is no substantial difference between the results of the pre-
sented smoothing methods, we suggest that one can profit from smoothing the pdf es-



94 4. EXPERIMENTAL INVESTIGATIONS OF ACMIFS

timates in general. At the same time, in order to prevent oversmoothing, the smoothing
values should be adjusted to the dimensionality of the smoothed pdfs and adapted to prob-
ability of observing a testing sample. However, the exact way of smoothing does not seem
to be essential.

Recall that the additive smoothing is improper because smoothed densities are not renor-
malized. At the same time, densities smoothed with a prior, i. e. according to the second
method, are proper densities. Since we do not observe degradation of the classification
performance with the features selected using the improper smoothing, this simplification
is indeed not crucial for estimating the selection criterion of ACMIFS.

Having both smoothing methods almost equivalent, in further simulations we will use the
additive smoothing due to its simplicity.

4.3 Comparison with PWFS and ATM

Here, we experimentally compare our method with two feature selection algorithms based
on CMI: Parzen window feature selector (PWFS) [Kwak & Choi, 2002a] and active test-
ing model (ATM) [Geman & Jedynak, 1996]. To make a fair comparison, all criteria are
estimated using kernel density estimation with a bandwidth vector chosen by the normal
reference rule (3.21).

In our terminology Parzen window feature selector is a static selection scheme (2.1). It
is based on the conventional CMI, which in the original paper was also estimated with the
kernel method:

αi+1 = argmax
k

{
I(C,Fk|Fi)

}
=

argmax
k

{
m

∑
j=1

T−1
j ∑

xr∈X j

log
p( fk = xr,k,c j|fi = xi

r)

p( fk = xr,k|fi = xi
r)p(c j|fi = xi

r)

}
=

argmax
k


m

∑
j=1

T−1
j ∑

xr∈X j

log
p( fk = xr,k, fi = xi

r|c j)
m
∑

j′=1
p( fk = xr,k, fi = xi

r|c j′)p(c j′)

 ,

(4.3)
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where (fi = xi
r) stands for { fα1 = xr,α1, . . . , fαi = xr,αi}. Using KDE and estimating prior

class probabilities from a training set, PWFS is estimated according to the following
expression:

αi+1 = argmax
k


m

∑
j=1

T−1
j ∑

xr∈X j

log

T−1
j ∑

xs∈X j

Kk(xr,xs)
i

∏
q=1

Kαq(xr,xs)

T−1 ∑
xu∈X

Kk(xr,xu)
i

∏
q=1

Kαq(xr,xu)

 . (4.4)

Active testing model is a feature selector based on the adaptive CMI which uses a simpli-
fying assumption that features are conditionally independent given a class (see Subsection
3.4.2 for details). Since estimation of the selection criterion, proposed by Geman and Je-
dynak, was problem-specific, here we use just the general idea of their method. Although
the assumption that features are class-conditionally independent does not hold, similar to
methods described in Subsection 2.6, we adopt this simplifying assumption as an approx-
imation of the multivariate conditional mutual information.

That is, in our experiments ATM selects features according to the following criterion:

αi+1 = argmax
k

{
I(C,Fk|ξi)

}
= argmax

k

{
m

∑
j=1

p(c j)
i

∏
q=1

p( fαq = ξαq|c j)T−1
j ×

∑
xr∈X j

log
p( fk = xr,k|c j)

i
∏

q=1
p( fαq = ξαq|c j)

m
∑

j′=1
p(c j′)p( fk = xr,k|c j′)

i
∏

q=1
p( fαq = ξαq|c j′)

 .

(4.5)

If we cancel out
i

∏
q=1

p( fαq = ξαq|c j) in the numerator under the logarithm as it does not

influence argmax
k

and estimate p(c j) as Tj
T , the estimate of the ATM selection criterion

using KDE is:

αi+1 = argmax
k

{
T−1

i

∏
q=1

[
T−1

j ∑
xs∈X j

Kαq(ξ,xs)

]
×

∑
xr∈X j

log

T−1
j ∑

xs∈X j

Kk(xr,xs)

m
∑

j′=1
T−1

[
∑

xs∈X j′
Kk(xr,xs)

]
i

∏
q=1

[
T−1

j′ ∑
xs∈X j′

Kαq(ξ,xs)

]
 .

(4.6)
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4.3.1 General comparison on the artificial data set

To investigate the usefulness of the proposed ACMIFS we ran experiments on training
sets with T = 30 and 300 samples. Note that all sets have fewer training samples than
features, which easily leads to overfitting. The classification errors were evaluated on
separate testing samples and compared with the cases when feature selection was done
using PWFS, ATM and when the classifier was run on the full feature vector, i. e. without
feature selection (Fig. 4.10). All results are averaged over 20 runs with the different
training sets.

One clearly sees the advantage of using an adaptive scheme for feature selection. Not only
does the error rate drop very quickly with an increasing number of features, it goes even
below the error that the classifier achieves when using all available features. In all our
simulations, this effect never occurred for the static scheme PWFS and was particularly
pronounced when using an extremely small number of training samples (T = 30), i. e.
when the classifier is prone to overfitting. Furthermore, our algorithm outperforms the
ATM scheme, which assumes conditional independence of the features. The authors of
ATM argue that adaptive algorithms not assuming the class-conditional independence of
features require large datasets in order to provide reliable estimates of multivariate pdfs.
While this is true in general, our results show that especially at the beginning, i. e. when
selecting the first few features, it is beneficial to take into account high-order dependencies
between features.

Figure 4.10: Error against the number of features for digits classification, the black markers indi-
cate regions where AMIFS is significantly better than ATM according to the Wilcoxon signed-rank
test at the p-level= 0.05.
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4.3.2 General comparison on MNIST

Figure 4.11: Error against the number of features for MNIST classification. k-NN was run on
the same set as feature selection, the black markers indicate regions where AMIFS is significantly
better than ATM according to the Wilcoxon signed-rank test at the p-level= 0.05.

In the first part of the comparative experiments, ACMIFS, PWFS and ATM were run
on a training set with T = 100 and T = 300 samples. Overall, all algorithms show a
similar behavior as on the artificial data set (see Fig. 4.11). The smaller differences can
be attributed to the better available features, as reflected in the much lower error rates,
which have been tuned by the LeNetConvPool. Again, ACMIFS outperforms ATM on
the first selected features and both adaptive schemes provide some robustness against
overfitting.

Further, to see whether feature selection is as beneficial when the classifier is well-trained,
we repeated the experiments with a training set of 5,000 samples. However, as in the
previous experiment, the feature selection was done on the small sets of 100 and 300
samples for computational reasons.

Fig. 4.12 shows that for this particular example one needs approximately 200 features to
achieve the minimum error. However, there is no advantage of using any sophisticated
feature selection algorithm, and one can see that the size of the training set used for
selecting features does not have much influence as well. Moreover, even the random
selection works about as well as other methods. We do not want to generalize results of
this test by saying that for large data sets one can always select features randomly. We
rather emphasize that for small data sets one can achieve better performance with features
selected adaptively with our ACMIFS.
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Figure 4.12: Error against the number of features for MNIST classification. k-NN was run on
5,000 training samples, feature selection on A: 100 and B: 300 training samples.

4.3.3 Behavior in higher dimensions

Further, we test the ability of the considered schemes to select informative features in
high dimensions. For this, simulations are run on artificial data for training sets with
T = 30 and T = 300 samples. We start with initial feature subsets containing 50 and 100
features, which are preselected by PWFS, and then select further 100 features according
to the different algorithms. The initial features are selected by the static scheme in order
to exclude any influence of adaptivity on the early iterations. Instead of PWFS, the initial
subsets could be as well selected randomly and then fed to the tested selection schemes.

It is necessary to note that when the adaptive schemes, i. e. ACMIFS and ATM, receive
preselected features, values of these features are known and used for further selection.

The results presented on Figure 4.13 show that both adaptive schemes find additional
features that are markedly better than the statically selected ones. However, the differ-
ence between the static and both adaptive algorithms is less prominent when adaptivity in
feature selection is introduced on later iterations as in case with N0 = 100. This can be
explained by the fact that ACMIFS and ATM search discriminative features for the class
posterior which is updated using a larger number of suboptimal features 1 compared to
the case with N0 = 50.

For T = 300, one can see that at some point ATM, the adaptive scheme assuming con-
ditional independence of the features given a class, starts outperforming ACMIFS. As

1We refer to features which are selected statically as suboptimal ones because both adaptive schemes
were shown to select better features (see results in Subsection 4.3).
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Figure 4.13: Comparison of the ability to add informative features to subsets of 50 and 100 features
preselected by PWFS.

before, this fact suggests that after a certain dimension ACMIFS is not able anymore
to estimate correctly high-order dependencies between the features. Interestingly, when
ACMIFS selects the features from the beginning (see Fig. 4.10), it performs better than
ATM almost up to 200 features, meaning that the first good features can compensate for
unreliable pdf estimates further in higher dimensions. Based on this observation, one
could think of a combined scheme that starts with ACMIFS and after selecting some fea-
tures switches to ATM.

At the same time, for a very small training set with T = 30, we observe that ACMIFS
after some iterations “recovers” and starts performing better than ATM. Moreover, Fig-
ure 4.10 demonstrates that the relative difference in classification performance of these
two adaptive selection schemes is much larger for the case where T = 30 as well. In
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order to understand a possible connection between an amount of the training data and the
accuracy of ATM, let us look at a toy example illustrated by Figure 4.14.
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Figure 4.14: Illustration of a situation when a testing sample ξ is close to some samples from the
class c j along each of the dimensions F1 or F2 separately but not along both of them simultane-
ously. Blue curves indicate one-dimensional Gaussians centered at x1 and x3 along F1 and F2,
respectively.

The gray ellipsoid on Figure 4.14 indicates a region of the input space belonging to some
class c j. Assume there are two training sets of a different size describing this class: a
small set consisting of three samples X j = {x1,x2,x3} and the extended one with six
samples X ext

j = {x1, . . . ,x6}. Suppose that we have to estimate the probability of the
testing sample ξ given the class c j after observing the values of the selected features F1
and F2. Also suppose that the testing sample ξ is located in the way that it is close to one
point in the dimension F1 and to another point in the dimension F2. In our example, these
are the points x1 and x3, respectively. Here, we have a situation when the features F1 and
F2 are not independent given c j since the axes of the ellipsoid which describes the region
of the class c j are not parallel to the axes of the features. Thus, the assumption of ATM
that features are class-conditionally independent is violated.

Obviously, the probability of ξ given the class c j estimated by ACMIFS from the training
set X j with the Gaussian kernels will be close to 0:

p(ξ|c j)
ACMIFS =

1
Tjh1h22π

(K1(ξ,x1)K2(ξ,x1)+K1(ξ,x2)K2(ξ,x2)+K1(ξ,x3)K2(ξ,x3))≈

1
Tjh1h22π

(1∗0+0∗0+0∗1) = 0,

(4.7)



4.4. COMBINED SELECTION SCHEME 101

which holds for the estimate from the extended training set X ext
j as well. However, this is

not the case for ATM. p(ξ|c j) estimated by ATM from the small training set X j is:

p(ξ|c j)
AT M = p(ξ1|c j)p(ξ2|c j) =

1
Tjh1
√

2π
(K1(ξ,x1)+K1(ξ,x2)+K1(ξ,x3))

1
Tjh2
√

2π
(K2(ξ,x1)+K2(ξ,x2)+K2(ξ,x3))≈

1
T 2

j h1h22π
(1+0+0)(0+0+1)≈ 0.16

T 2
j h1h2

(4.8)

Remember that a bandwidth h defined by the normal reference rule depends on the number
of the training samples (see the expression (3.21)). Since ATM works with the univariate
pdfs, taking d = 1 we have

p(ξ|c j)
AT M =

0.16

T 2
j (1.06σ1T−1/5

j )(1.06σ2T−1/5
j )

=
0.16

σ1σ2(1.06T 4/5
j )2

. (4.9)

Without loss of generality, we suppose that the standard deviations of features σ1 and σ2
do not change much for different sizes of training sets or at least (σ1σ2) decreases slower
than (1.06T 4/5

j )2 increases.

Then, for the given example, it is obvious that the degree of overestimation of p(ξ|c j)
AT M

will grow as the number of the training samples decreases. For comparison, the estimates
based on small and extended training sets are approximately 0.024

σ1σ2
and 0.008

σ1σ2
, respectively.

This example demonstrates a possible reason of ATM being much worse than ACMIFS
for very small training sets. Although in such situations estimates of high-dimensional
pdfs used by ACMIFS are not accurate, the estimates of ATM can get contaminated
already on the very first iteration due to the wrong assumption of features being class-
conditionally independent.

4.4 Combined selection scheme

The above presented experiments for T = 300 provided the evidence that ATM can select
better features in higher dimensions. This suggests that at some point the pdf estimates can
be improved if we adopt the assumption of features being class-conditionally independent.
Since ATM is less computationally expensive, such switching would bring an additional
advantage by reducing the amount of the computational resources needed for the selection
procedure.
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However, ACMIFS shows better performance for early iterations. Thus, it is important to
understand when is the right moment to switch. Intuitively, ACMIFS stops being useful
as its selection criterion S degenerates, i. e. its value is the same for all features candi-
dates, thus the further selection gets random. This happens when either ACMIFS cannot
estimate properly the current multivariate pdfs or there are no informative features left,
if the full feature set is known to contain uninformative features. Of course, within the
sequential feature selection framework, there is always a danger that there exists a combi-
nation of the remaining features reducing the remaining uncertainty even if these features
alone are not informative. But since there is no guarantee that this subset exists at all,
we suppose that in case of the degenerated selection criterion we would not lose much by
switching to any other reasonable selection scheme.

Thus, as soon as the selection criterion of ACMIFS is degenerated, the scheme switches to
ATM. We define the selection criterion (3.12) as degenerated when its standard deviation
is below a certain adjustable threshold δ, δ� 1.

First, it is necessary to note that the standard deviation should be estimated for the crite-
rion in the expression (3.15) where all terms that do not contribute to the maximization
problem are still present. Let us denote this early form as S0 and the simplified selection
criterion expressed by (3.26) as S1. Then, recalling all applied simplifications, there is the
following relation:

S0 =
1

p(ξi)

(
S1 +

m

∑
j=1

p(c j)Tj
−1

∑
xr∈X j

K(ξi,xr) log
T−1

j p(c j)p(ξi)

T−1 p(c j,ξi)

)
,

As the standard deviation is not influenced by the additive term after S1, the standard
deviation of the estimated selection criterion S1 should be corrected just by multiplying
by 1

p(ξi)
.

In summary, ACMIFS stops when

σ

(
S1

p(ξi)

)
< δ, (4.10)

where σ(·) is the standard deviation and δ is an adjustable threshold.

We suggest that while setting δ one should take into account the overall accuracy and the
relative difference between ACMIFS and ATM observed for a certain dataset. Figure 4.15
supports our idea.

That is, the combined scheme with approximately the same accuracy as ACMIFS requires
different values of δ for the training sets with 30 and 300 training samples. Since we
observed that for T = 30 ACMIFS shows much better results than ATM (see Fig. 4.10),
it is not surprising that it makes sense to switch to ATM later, hence, using a smaller δ.
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Figure 4.15: Classification performance of ACMIFS and the combined schemes starting with
ACMIFS and switching to ATM according to the (4.10) for the different thresholds δ. The colored
vertical dash-dotted lines indicate the average number of the features selected by ACMIFS before
the switch; the color of these lines corresponds to the color of the error curve of the corresponding
setup. A: The black markers indicate iterations where ACMIFS is significantly better than the
combined scheme switched to ATM using δ = 0.01 (red and magenta error curves). B: The black
markers denote the iterations where ACMIFS significantly outperforms the combined scheme with
a switch to ATM using δ = 0.15 (red and blue error curves).

Though, for T = 300 the switch can occur already after about 15 iterations, these first
features selected by ACMIFS are still very important. This can be seen by comparing the
pure ATM and the combined scheme with δ = 0.2.

Table 4.1 provides an overview of switching behavior of the schemes presented on Fig-
ure 4.15. It is interesting to note the huge difference between the minimal and the maximal
number of the features before the switch. A small number of features before switching
usually indicated the cases when testing samples were unambiguously classified. Thus,
as few as only 3 features are necessary in order to reduce the uncertainty about the class
for the samples which are easy to classify. At the same time, for more complex samples, a
large number of the features appears to be informative enough according to the selection
criterion of ACMIFS , hence, the switch occurred much later.

Also note the values errsw in the table. They show the average error of our ACMIFS
before the switch. If this error rate is acceptable and the feature subsets of the variable
size are allowable, instead of switching to ATM one can stop the selection at all. Thus,
the switching rule can be turned to the stopping rule. Such stopping criterion would also
detect the situations when there is no uncertainty left about the class, as the conditional
mutual information will be zero for all remaining features.
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T = 30 T = 300
δ = 0.001 δ = 0.01 δ = 0.1 δ = 0.15 δ = 0.2

Nmin 3 3 3 Nmin 3 3
Nmax 413 382 71 Nmax 353 183
Nav 187.1 138.9 10 Nav 37 15.6

errsw 38.25 40.85 47.6 errsw 16.15 17.45

Table 4.1: Summary of the combined schemes with different values of δ for the training sets with
T = 30 and T = 300. Nmin, Nmax and Nav is the minimal, maximal and average number of the
features selected by ACMIFS before switching to ATM, respectively. errsw is the average error
rate of ACMIFS just before switching.

4.5 Conclusions

Feature selection is a standard technique to reduce data dimensionality. In high-dimensional
spaces, this can be an efficient way to cope with limited amounts of training data. Con-
ventional methods assume selecting features on the preprocessing step before the actual
classification. That is, one tries to find a small number of features that are discriminative
in all regions of the input space. However, in situations with heterogeneous data or in
the undersampled regime, it could be difficult to find a small subset of features that are
relevant for classification of all samples. As a solution, we have proposed to adapt the
selection process to every sample that has to be classified, that is to select few features
that are informative only for this particular sample.

As a result, in Chapter 3, we have proposed an algorithm that employs a selection criterion
based on mutual information. This choice is motivated by the connection of the resulted
criterion to such fundamental information-theoretical concepts like independence and un-
certainty reduction, as well as its use in classification, as was shown in Section 2.4. Ac-
cording to the adaptive scheme for sequential feedforward feature selection, each feature
is selected as maximizing the expected mutual information with the class conditioned on
the already selected features taking values observed on the testing sample.

Experimental investigations presented in this chapter provided evidence that adaptive fea-
ture selection robustly improves the classification performance despite the fact that esti-
mating mutual information in high-dimensional spaces is a difficult problem on its own,
as reviewed in Section 2.5. To estimate ACMIFS, we use a rather simple plug-in estimator
in combination with the kernel density estimates, which are easy applicable for probabil-
ity density functions with variable dimensionality due to its non-parametric nature. This
property allows to reestimate the mutual information of a class and a feature-candidate
conditioned on the growing set of selected features with the moderate computational ex-
penses. Parametric techniques, whose contemporary representatives show good accuracy
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in estimating mutual information, would need a complete retraining for every combination
of features in order to find parameters of the underlying probability distribution. Among
the non-parametric methods, the Kraskov estimator based on k nearest neighbors algo-
rithm [Kraskov et al., 2004] is quite popular, however, is not applicable to our framework
of the iterative selection and evaluation of features as it requires the knowledge about all
feature values to fix and then iteratively refine the neighborhood of the classified object.

In order to improve estimates of the adaptive selection criterion, we apply adaptive smooth-
ing to unreliable pdfs for extremely small datasets. In particular, we proposed to smooth
extremely small values of pdfs under the logarithm and suggested that smoothing values
should be adjusted both to the current dimensionality of smoothed pdfs and to the current
probability of a classified sample in order to avoid oversmoothing and degeneration of the
selection criterion.

Our results on both artificial and real-world data showed that a small number of adap-
tively selected features is sufficient to achieve good classification. In this sense, ACMIFS
outperforms the two related static and adaptive feature selectors, PWFS and ATM, respec-
tively. This fact suggests that the adaptive feature selection is indeed advantageous when
solving complex classification tasks in the undersampled regime, as well as efficiency of
the proposed estimation technique. Since the first few features can be reliably detected,
our method does not overfit and can even compensate for shortcomings of a classifier. I.
e., in case of limited training data, when a classifier is usually prone to overfitting, we
demonstrated that ACMIFS can even improve the error rate compared to using all avail-
able features.

Even though the algorithm is less advantageous on large datasets, we believe that this is
not a shortcoming, but merely shows that the need to select features is less pressing if
enough data are available. From the point of view of computational expenses, in order
to make ACMIFS more applicable to large amount of data, one has to think about an
approximate implementation which can cut down the computational complexity. Alterna-
tively, one can consider using some hybrid simplifying scheme, for example, starting with
ACMIFS and then after some iterations switching to ATM, which does not require esti-
mating multivariate densities and therefore is computationally cheaper. Then, by tuning
the switching criterion, one can reach a compromise between the quality of the selected
features and complexity of the selection algorithm.
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Chapter 5

Information-theoretical strategies of
selective attention

5.1 Introduction

Early visual perception in the human brain, which includes processing of primitive fea-
tures such as color, orientation, motion, is known to be massively parallel. However, later
processes like feature integration, object recognition and identification are more complex
and therefore separate parts of a visual scene have to be processed sequentially due to the
lack of computational resources [Rolls, 2008]. Obviously, in order to speed up high-level
visual processing, it is important for the brain to concentrate on the most relevant parts of
the input. Selection of relevant sources of the sensory information is exactly the function
of the external selective attention [Johnston & Dark, 1986]. In addition, it was suggested
to distinguish between the external and the so-called internal attention, which operates
upon the internal information such as long-term and working memory contents, task rules
etc [Chun et al., 2011]. However, here, we are interested in principles of the external
attention, therefore, further “attention” will refer to the external attention only.

It is well-established that there are two factors influencing the attention: visual stimuli
themselves and a task [van de Laar et al., 1997]. The stimuli-driven attentional mecha-
nism prefers salient objects, i. e. the objects that differ from their neighborhood. Thus,
saliency of a stimulus is defined based on its low-level characteristics or features like
color, luminance and orientation. Such characteristics are believed to be extracted in fast
preattentive manner via bottom-up circuits of the visual system. Then, according to the
feature integration theory developed by Treisman and Gelade [Treisman & Gelade, 1980],
only those parts of the visual scene that differ from neighboring regions are highlighted
by the attentional mechanism for further integration and processing. In spite of the fact
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that this theory received a lot of criticism, it remains quite influential and serves as the
basis for numerous computational models which predict salient image locations based on
their low-level features, e. g. [Koch & Ullman, 1985; Wolfe, 1994; Itti & Koch, 2000].

Although low-level image statistics undoubtedly affects shifts of the visual attention, as
was shown for example by [Ossandón et al., 2012], it is not the only influential factor.
Eye tracking experiments, which are widely used to study overt attention, i. e. attention
whose effects are characterized by physical movements, provided much evidence that a
saccade sequence differs depending on a task, see for example [Yarbus, 1967; Rothkopf
et al., 2007; Betz et al., 2010]. This fact suggests that people direct their attention to
locations that contain task-relevant information. For example, it was demonstrated that
while executing a task, subject fixations were directed to objects that were involved in
this task [Land et al., 1999; Hayhoe et al., 2003]. Therefore, contemporary models of
attentional selection use not only the low-level stimulus saliency but reweight it also with
the task-specific prior [Navalpakkam & Itti, 2005] and context information [Ehinger et al.,
2009; Torralba et al., 2006], whose influence is believed to be implemented via top-down
circuits in the visual system [van de Laar et al., 1997].

However, the question remains what kind of strategy people use to decide what is relevant
for a task. Do we use simple heuristics or complex algorithms based on the ideas of
information theory? Surprisingly, despite their computational complexity, statistical and
information-theoretical definitions of the task-relevance are the core of state-of-the-art
algorithms predicting eye movements. Let us look at some of them more closely. In order
to introduce them in the context of our selection framework, we will stay within our usual
notation.

5.1.1 Existing task-dependent strategies of selective attention

The widely accepted contextual guidance model combines the bottom-up saliency with
the class-specific contextual prior that are formed by outputs of local and global features,
respectively [Torralba et al., 2006]. The local features provide information on low-level
characteristics of an image like contrast, orientation, color etc. In turn, the global fea-
tures represent the statistics of integrated responses of the local features. Both type of
features are evaluated after first glance at the image. However, for a visual search task,
this information is not sharp enough for identifying a target immediately, therefore the
sequential search should be performed. According to the contextual guidance model of
Torralba and colleagues, for an image ξ, a location Fαi+1 selected on the (i+1)th iteration
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should maximize the posterior probability of the target C conditioned on the local and
global measurements of the image, ξL and ξG, respectively:

αi+1 = argmax
k
{p(c,Fk|ξL,ξG)}= argmax

k

{
p(Fk|c,ξG)

p(ξL|ξG)

}
, Fk ∈F \{Fα1, . . . ,Fαi},

(5.1)

where p(Fk|c,ξG) is the context-based prior and p(ξL|ξG) is the probability of observing
the local features given the global image statistics. However, one has to note that the
selection criterion is not explicitly influenced by the information gained at the attended
locations, as values of the global and local features are not updated after the fixation is
made. In this case, one can say that such model ranks all locations according to their task-
dependent saliency rather than predicting a subset of the informative locations sufficient
for executing a task.

In turn, it was suggested that while performing a visual search in the complex environment
with several targets c1, . . . ,cm, rewards associated with every target influence the selection
criterion as well [Navalpakkam et al., 2010]:

αi+1 = argmax
k

{
m

∑
j=1

r j p(c j,Fk|ξ)

}
, (5.2)

where r j is the reward of the jth target.

Alternatively, Kanan and colleagues proposed that the prior on the target appearance when
combined with the saliency can explain eye movements during the visual search [Kanan
et al., 2009]. The selection criterion, which they call the “pointwise mutual information”,
is also based on the class posterior but with respect to the location-candidate only:

αi+1 = argmax
k
{log p(c|Fk = ξk)}= argmax

k

{
log

p(Fk = ξk|c)
p(Fk = ξk)

}
, (5.3)

where ξk represents values of the local features in the location Fk and p(Fk = ξk|c) is the
likelihood of observing ξk for the class or target c, which is based on the knowledge of its
appearance.

Itti and Baldi suggested another definition of the task-dependent saliency, which uses a
notion of the so-called Bayesian surprise [Itti & Baldi, 2006]

αi+1 = argmax
k
{DKL(p(c|Fk = ξk)||p(c))} , (5.4)

where DKL(·) is the Kullback-Leibler divergence defined earlier in (2.40). This criterion
suggests that surprising and unexpected image locations with respect to the prior knowl-
edge are likely to be attended. Results of the eye-tracking experiment performed by the
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authors showed that such definition of the saliency can better explain human fixations than
the entropy-based version of their criterion, i. e. argmaxk {p(c,Fk = ξk) log p(c|Fk = ξk)}.

In addition to the above presented rankers, there are also models whose selection crite-
ria make use of information collected during the previously attended locations. This is
especially important in cases when a visual scene or its parts can change during the task
execution [Tatler et al., 2011].

For example, Najemnik and Geisler proposed two hypotheses about strategies that people
might use to select a next fixation while performing a search task [Najemnik & Geisler,
2005]. These are the maximum a posteriori and the ideal Bayesian search. Both strategies
are based on maximizing the posterior probability of a target being at the next location.
But the posterior is conditioned only on the value of the location-candidate Fk, which is
however integrated over the previous i fixations. This value for the location Fk will be
denoted as ξk(i). Obviously, the amount of information that can be gained about Fk while
fixating on another location depends on the distance between them. Then, the above-
mentioned posterior probability of a target C being at the location Fk after i fixations is:

p(c,Fk|ξk(i)) =
p(c,Fk)p(ξk(i)|c,Fk)

∑ j p(c,Fj)p(ξ j(i)|c,Fj)
, Fk ∈ F \{Fα1 , . . . ,Fαi}, Fj ∈ F . (5.5)

Using this definition, the selection criterion according to the maximum a posteriori search
(MAP) is

αi+1 = argmax
k
{p(c,Fk|ξk(i))} , Fk,∈ F \{Fα1, . . . ,Fαi} (5.6)

whereas the selection criterion of the ideal Bayesian searcher is the following:

αi+1 = argmax
k

{
∑

l
p(c,Fl|ξl(i))p(o|Fl,Fk)

}
, Fk ∈F \{Fα1, . . . ,Fαi}, Fl ∈F , (5.7)

where p(o|Fl,Fk) is the probability of observing the location Fl from Fk. That is, MAP
favors the location that has the maximum expected class posterior given the currently
available information about this location. However, the ideal searcher prefers locations
with the maximally informative neighborhood, i. e. with the visible neighbors that in
total have high expected posterior. The comparison of human saccade sequences with
those generated by MAP and the ideal searcher suggested that human behavior is more
compatible with the ideal Bayesian search despite the fact that it is more computationally
demanding than the greedy MAP.

In contrast, the model of Renninger and colleagues uses the information of the previously
attended locations fully and selects the next location as to minimize the entropy about the
class conditioned on the currently available information [Renninger et al., 2007]:

αi+1 = argmin
k

{
H(C|ξi,Fk)

}
, (5.8)
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where ξi are the values of all image locations, either sharp or of low-resolution, which are
estimated using the information collected during the previous i fixations. Eye-tracking
experiments performed by the authors revealed that human fixations are compatible with
the proposed model minimizing the local uncertainty, i. e. when candidates for the next
fixation are chosen from the vicinity.

Here, in our opinion, we presented the most prominent models that predict human fixa-
tions while performing a task. As one can notice, determining the task-relevant parts of
a visual scene is closely related to the problem of feature selection in machine learning.
Correspondingly, we would like to test to what extent human behavior can be explained in
terms of feature selection criteria, in particular information-theoretical feature selection
criteria.

It should be noted that our aim is not to predict eye movements but rather to test several
possible strategies of the task-dependent selective attention. Therefore, for simplification,
the considered strategies take into account only the task-dependent component of the
attentional selection.

5.2 Experimental setup

In order to test the strategies, we use a clicking experiment, which is a more constrained
setup than eye-tracking [Avdiyenko et al., 2012a]. During the experiment, a subject is
presented with a covered image and its patches can be uncovered by clicking at them.
The task is to uncover a minimal number of patches that, in the subject’s opinion, help to
identify the class of the image. The presentation stops when the class is unambiguously
identified. Therefore, if the information provided by the uncovered patches is enough to
classify the image, it is considered as unambiguously identified even if some patches are
still covered. The stopping point is defined externally by the ”computer” and not by a
subject, which is done in order to have the same stopping rule for all subjects. A single
stopping rule simplifies the experiment analysis reducing a number of free parameters.
Thus, as long as for a certain image all patches are selected according to the same strategy,
the corresponding patch sequences should be identical.

There are also time constraints saying that a subject should not spend more than 2-3
seconds to make a decision about the next click. One should note that subjects are just
instructed not to exceed this limit, however, no signal is given if it happens. In this way, we
hope to observe intuitive but nevertheless non-random behavior, which could be caused
by the strict time constraints on the decision time.

By keeping only the attended locations uncovered, one can simulate the simplified con-
ditions for studying a top-down component of the visual search alone. It means that only
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information observed at the uncovered locations are available to a subject for decision-
making. As location-candidates are not initialized with their values of low resolution,
there is no influence of low-level image features on the choice of the next fixation. Thus,
the attended locations are always chosen because of their informativeness for the task.

The advantage of the clicking setup is its obvious simplicity. We believe that findings
of our clicking experiment can be accepted as valid for the task-dependent attentional
mechanism. Although it is clear that time intervals between clicks are larger compared
to saccades, it is not crucial for our experiment as we are interested only in the precise
succession of the selected patches. Also one can hypothesize that a subject will click
where she would direct her visual attention as all hand movements are proven to be in the
gaze-centered coordinates and influenced by updates in the visual representation [Batista
et al., 1999; Henriques et al., 2002; Medendorp et al., 2003]. Moreover, researchers from
the field of information retrieval reported the strong correlation between eye movements
and computer mouse movements of humans while performing information search using a
search engine, e. g. [Navalpakkam et al., 2013].

In addition, we would like to comment on whether task-driven eye movements are con-
scious or unconscious actions. First of all, let us define what conscious and unconscious
perception is. According to definitions given in [Dijksterhuis & Aarts, 2010], people are
aware of results of conscious perception and can give a verbal report about them, whereas
unconscious processes stay “invisible” for them. Further, it is known that unconscious
processes are faster than conscious ones but also less stable [Breitmeyer & Tapia, 2011;
Mattler, 2005; Dehaene et al., 2006]. The reason for this is that the consciously formed
representation of a visual input is based on information integrated from different visual
areas involving interaction with working memory [Enns & Di Lollo, 2000; Macknik &
Martinez-Conde, 2008; Kiefer et al., 2011]. Further, what is the relation between con-
sciousness and task-dependent attention? Although for a long time consciousness and the
attentional control were considered to be very close processes [Posner & Petersen, 1990;
Chun & Wolfe, 2001; O’Regan & Noe, 2001], recent works argue that consciousness and
attention have different functions and they are realized via different neuronal mechanisms
[Koch, 2004; Dehaene et al., 2006; Kietzmann et al., 2011]. However, the top-down at-
tentional control can function in the unconscious mode only if a task is formulated before
a stimulus presentation and there is no need to react to a stimulus adaptively [Kiefer &
Martens, 2010].

A process of selecting a next saccade in presence of a task, which is discussed here, is
iterative. Therefore, it requires integration of bottom-up information about a stimulus with
top-down attentional instructions and it is likely to rely on the content of working memory
[de Fockert et al., 2001]. Moreover, as was shown above, task-dependent eye movements
are influenced by a visual scene, thus they are adaptive. As a result, we hypothesize that
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a process directing eye movements of people while performing a task is conscious since
all its listed properties conflict with the definition of unconscious perception.

5.3 Tested information-theoretical search strategies

In our setup, a feature F is an image patch, i. e. an oriented bar at the certain location. As
before, the variable C represents the classes of the images C = {c1,c2, ...,c10}. We would
like to emphasize that all above-presented models were tested for quite simple tasks like
search or discrimination that can be described by the binary class variable. In contrast, we
intend to have images that can belong to 10 different classes, which extremely increases
the complexity of estimating a selection criterion. Under such conditions, it is interesting
to see to which extent people are able to act optimally.

5.3.1 Mutual information

The first strategy is based on the Mutual Information selection criterion (MI), which was
earlier introduced as SMIM in (2.91). It is considered as a heuristic because it assumes
that features are independent. Therefore, it simply ranks all patches (features) according
to the mutual information they provide about the image class. Then, according to the MI
strategy, the informativeness of the patch Fk after i patches have been uncovered is:

IMI(Fk) = I(C;Fk) = ∑
C

∑
Fk

p(c, fk) log
p(c, fk)

p(c)p( fk)
, Fk ∈ F \{Fα1, . . . ,Fαi}, (5.9)

where Fα j is a patch selected or uncovered on the jth iteration.

5.3.2 Conditional mutual information

The second strategy is the Conditional Mutual Information selection criterion (CMI). In
contrast to MI, it takes into account high-order dependencies between features, i. e. se-
lects those that are both informative and non-redundant with respect to the already se-
lected features. Thus, according to CMI, the informativeness of the unattended patch Fk
after i steps is defined as follows:

ICMI(Fk) = I(C;Fk|Fα1, . . . ,Fαi) =

∑
C

∑
Fα1

· · ·∑
Fαi

∑
Fk

p(c, fk, fα1, . . . , fαi) log
p(c, fk| fα1, . . . , fαi)

p(c| fα1, . . . , fαi)p( fk| fα1, . . . , fαi)
,

(5.10)

where {Fα1, . . . ,Fαi} is the set of already uncovered patches.
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5.3.3 Adaptive conditional mutual information

The third strategy is the Adaptive conditional Mutual Information feature selection crite-
rion (AMI) proposed in this thesis in Section 3.5. This is an adaptive version of the CMI
criterion that takes also into account observed values of the already attended patches,
suggesting that every next decision depends on what one has seen in the previous steps.
Therefore, the informativeness of the image patch Fk after i patches have been uncovered
is expressed in the following form:

IAMI(Fk) = I(C;Fk|ξi) = ∑
C

∑
Fk

p(c, fk|ξi) log
p(c, fk|ξi)

p( fk|ξi)p(c|ξi)
, (5.11)

where ξi = {Fα1 = ξα1 , . . . ,Fαi = ξαi} is a shorthand for the set of values, which are
observed on the selected patches of the image ξ. As I(C;Fk|ξi) = H(C|ξi)−H(C|Fk,ξ

i)
and H(C|ξi) does not influence the argmax operator, this selection criterion is similar to
one used by Renninger and colleagues (5.8).

The first two strategies give a single sequence of informative patches for all images of the
given image set, therefore we call them static. One can make a parallel to the above pre-
sented strategies that do not update the task-relevance of possible locations with the infor-
mation gathered from previous saccades, though the formal definition of a task-relevance
criterion differs from ours [Torralba et al., 2006; Navalpakkam et al., 2010; Kanan et al.,
2009; Itti & Baldi, 2006]. The advantage of the static approach is that an informative se-
quence can be defined once and then used for classification of all images. In contrast, the
adaptive strategy defines an informative sequence for every image that is classified. One
can say that static criteria use only the prior knowledge about the relevance of features
for classification, whereas the adaptive strategy combines the prior with the information
acquired during the previous iterations. On the one hand, the information integration is
more computationally demanding and was shown to be difficult for people [Irwin, 1991;
Hayhoe et al., 1998], on the other hand, feature sequences selected adaptively are usually
on average shorter.

5.4 Sequence statistics

Once experimental data are collected, we have to analyze how good each of the information-
theoretical strategies explains the clicking behavior of every subject. It is necessary to
emphasize that we do not generalize over all subjects but rather analyze everyone individ-
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ually. For this, we adopt the Bayesian approach. Theoretically, we have to compare the
posterior probabilities of the strategies given the subject’s observed clicks:

p(s|Fξ1, . . . ,FξT ) =
p(Fξ1 , . . . ,FξT |s)

p(Fξ1, . . . ,FξT )p(s)
, (5.12)

where s is a certain strategy, T is a number of the presented images and the set Fξ j stands
for a sequence of the patches selected for the image ξ j by the currently analyzed subject.
Thus, Fξ j = {Fα1(ξ j), . . . ,FαK(ξ j)}, where Fαi(ξ j) is the ith selected patch while classi-
fying an image ξ j. Note that a presentation of the image is terminated when this image is
unambiguously identified. Therefore, the length of the patch sequence K j is not constant
(the subscript j for K j is omitted in FαK(ξ j) to avoid multilevel subscripts). It depends on
the amount of the remaining uncertainty about the image class, which is evaluated using
the information provided by the sequentially uncovered patches.

There is the problem that we do not know the set of all possible strategies s in order to
estimate the normalization factor in (5.12). Our analysis is limited to the information-
theoretical feature selection strategies, which probably constitute a small fraction of all
strategies people may use in their everyday life. However, since the normalization factor
p(Fξ1, . . . ,FξT ) is the same for all strategies and if we assume they are equiprobable a-
priori, we can just as well compare their marginal likelihood p(Fξ1, . . . ,FξT |s).

Assuming that the presented images are independent and identically distributed, the marginal
likelihood of all images given a strategy s is just a product of the likelihood of the single
images given this strategy:

p(Fξ1, . . . ,FξT |s) =
T

∏
j=1

p(Fξ j |s). (5.13)

5.4.1 Generative model

Here, we present a generative model that describes how an observed patch sequence is
generated for a single image. Basically, we suppose that parts of an image are uncovered
according to their mutual information, either unconditionally (MI), conditionally (CMI)
or adaptively (AMI) taking the already uncovered patches into account. Furthermore, we
assume that humans choose the next patch as the one softly maximizing the corresponding
information. Then, we propose the following generative model for a patch sequence:

p(Fξ j |s) = p(Fα1, . . . ,FαK |ξ j,s) =
K j

∏
i=1

p(Fαi|Fα1, . . . ,Fαi−1,ξ j,s), (5.14)

where K j is the length of the observed patch sequence. To simplify the notation, p(Fα1, . . . ,FαK |ξ j,s)
stands for p(Fα1(ξ j), . . . ,FαK(ξ j)|s).
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Finally, the likelihood of a single patch of the image ξ j being selected according to the
strategy s is:

p(Fαi|Fα1, . . . ,Fαi−1 ,ξ j,s,β) =
eβIs(Fαi)

∑q eβIs(Fq)
, β≥ 0,Fq ∈ F \{Fα1, . . . ,Fαi−1}, (5.15)

where β is a free parameter, Is(Fαi) is informativeness of the ith patch given by a strategy
s and Fq’s are the patches that could be selected instead Fαi on the ith iteration. The
expression (5.15) is in fact the softmax function. It expresses a probability of the patch
Fαi being selected from all candidates on the ith iteration if the choice was guided by the
informativeness of these patch-candidates Is(·). The parameter β shows how much of
the probability mass is concentrated on the highly informative patches. With β = 0, the
distribution is uniform and a completely random strategy, i. e. a random distribution on
patch sequences, is specified. When β→ ∞, only the best patch can be selected in each
step. Since the true value of β for each subject is unknown, it should be inferred from the
observed data.

Recall that only IAMI(·) takes into account the values of the already uncovered patches
ξi = {Fα1 = ξα1, . . . ,Fαk = ξαi}, see (5.9), (5.10) and (5.11). Therefore, the likelihood of
the patch sequence according to each considered strategy is of the following forms:

p(Fξ1, . . . ,FξT |s,β) =



T
∏
j=1

K j

∏
i=1

eβI(Fαi ;C)/∑q eβI(Fq;C), for sMI

T
∏
j=1

K j

∏
i=1

eβI(Fαi ;C|Fα1 ,...,Fαi−1)/∑q eβI(Fq;C|Fα1 ,...,Fαi−1), for sCMI

T
∏
j=1

K j

∏
i=1

eβI(Fαi ;C|ξ
i−1
j )/∑q eβI(Fq;C|ξi−1

j ), for sAMI

(5.16)

where Fq ∈ F \{Fα1, . . . ,Fαi−1}.

Ideally, the likelihood should also take into account a stopping model that tells when
the patch sequence should terminate. However, since we enforce an external stopping
criterion (the posterior of any class being equal to one), we know that it does not depend
on the strategy. In this case, for a certain sequence, the probabilities for the stopping
variable on every iteration p(ti) are multiplicative constants:

p(Fαi|Fα1, . . . ,Fαi−1 ,ξ j,s,β, t) = p(ti)p(Fαi|Fα1, . . . ,Fαi−1,ξ j,s,β), (5.17)

where p(ti) is formally the probability of the sequence being terminated after i uncov-
ered patches. Then, the stopping variable can be canceled when considering marginal
likelihood ratios like

p(Fξ1, . . . ,FξT |sAMI,β)

p(Fξ1, . . . ,FξT |sCMI,β)
.
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5.4.2 Base likelihood

Let the likelihood, which is achieved with the β = 0, be called the base log-likelihood. As
was already mentioned, in the case of β = 0, a value of feature informativeness Is(·) does
not have any influence on the probability of this feature to be chosen, which would agree
with the perfectly random behavior. Therefore, we call this strategy srand:

p(Fξ1, . . . ,FξT |srand) = p(Fξ1, . . . ,FξT |sany,β = 0) =
T

∏
j=1

K j

∏
i=1

e0

∑q e0 =
T

∏
j=1

K j

∏
i=1

1
K j− i+1

,

(5.18)

where (K j− i+ 1) is a number of the candidates for selection on the ith iteration. Note
that the base likelihood depends on the length of patch sequences. The shorter a sequence
is, the more likely is the random behavior. For example, if the sequence has 2 patches,
then its likelihood according to the random strategy srand is:

p(Fα1,Fα2|ξ j,srand) =
1
7
× 1

6
≈ 0.024, (5.19)

since there are 7 and 6 features to choose from on the first and the second iterations,
respectively. At the same time, the likelihood of srand for the sequence consisting of 4
patches is much smaller:

p(Fα1, . . . ,Fα4|ξ j,srand) =
1
7
× 1

6
× 1

5
× 1

4
≈ 0.001. (5.20)

Recall that the generative model of srand can be derived from the generative model of any
considered information-theoretical strategy using β = 0. Consequently, the maximum
likelihood of MI, CMI and AMI is by definition not lower than the base likelihood and its
absolute value alone does not tell us much. Hence, it makes sense to look at the ratio of
the maximum likelihood to the base likelihood, i. e. the likelihood of the random strategy.
For convenience, we will analyze the log-ratio:

r = log(
p(Fξ|s,β∗)
p(Fξ|srand)

) (5.21)

that shows to which extent the strategy s with its fitted parameter β∗ can better explain the
subject’s behavior compared to the random strategy.
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5.5 Experiment

5.5.1 Stimuli

In our clicking experiment, as stimuli we used images of clock digits, where every image
consists of seven patches. That is, the images are described by seven features and can
belong to one of the ten classes. We took this stimuli set assuming that all people know
them very good, so they do not need much time for learning in order to use fully the data
statistics to make complex decisions. Figure 5.1 shows images of the digits used in the
experiment. Examples of the covered, partially uncovered and unambiguously identified
and completely uncovered images for the considered data set can be seen on Figure 5.2.

Figure 5.1: Clock digits that are used as stimuli in the experiment.

A B C

Figure 5.2: Examples of stimuli. A: covered image, B: digit, which is partially uncovered and
unambiguously identified as ’7’, C: completely uncovered image.

Before the experiment, we generated a sequence of 80 clock digit images, i. e. 8 times the
data set. Then, every subject was presented with 50 images that were randomly picked
from this sequence. Though, the data set is considered to be familiar for all subjects, we
define a learning phase that lasts during the presentation of the first 20 images. Therefore,
the analysis is done on the last 30 images.
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5.5.2 Presentation software

The experiment is written and presented using FlashDot, a software for generating visual
presentations for experiments in psychophysics and vision [Elze, 2009].

For a FlashDot presentation, we defined a stimulus that consists of horizontally and ver-
tically oriented bars (image patches) located in the way to resemble a clock digit. Inter-
activity with a subject is implemented by responding to events like a mouse click on the
image patches and buttons.

While buttons are used to simply start a presentation of the next image if the current one
is already identified, the response to the mouse click on the certain bar is more complex.
Recall that at the beginning a subject is presented with the completely covered image. It
is achieved by displaying a gray template of the clock digit (see subplot A on Figure 5.2)
so that it is clear where the image patches are located. Roughly, one can think about this
gray outline as the blurred representation of the covered image formed by responses of
the low-level visual features. After a subject clicks on a certain patch, either a black or
a white patch appears at this location depending on the image. At the same time, the
presentation script checks whether the uncovered information is enough to classify the
image unambiguously. If it is true, the final presentation screen of the current image is
shown where the fully uncovered image is presented. At the same screen, a subject is
informed that the image is identified and she can proceed to the next image. Otherwise, a
subject sees the partially uncovered image and she should uncover the next patch. Screens
of the clicking presentation for the digit “3” can be seen in the Appendix A.3.

Experimental stimuli were presented on a 19 inch monitor with the resolution 1280×960
pixels. The distance between the monitor and subject eyes were approximately 65− 75
cm, which corresponds to the usual working conditions with a computer. The diameter of
an image patch on the screen was about 7 cm. Under such conditions, the diameter of the
visual field that falls on the fovea, the retinal region responsible for sharp vision, is about
2 cm. Thus, our patches fall also on the parafoveal region, which surrounds the fovea and
correspond approximately to the field with the 10 cm diameter. Ideally, one had to display
image patches whose size fits to the foveal region, so that when a human directs attention
and uncovers a patch, the visual information about this patch can be processed with high
resolution. However, we used larger patches to ease the clicking task. Moreover, in
contrast to the periphery, the parafoveal region has still a good resolution which should be
enough to unambiguously identify whether a patch is white or black after a first glance.
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5.5.3 Participants

There were 15 participants that took part in the experiment, 11 males and 4 females be-
tween 26 and 33 years old. Their average age is 28. All of them have normal or corrected-
to-normal vision. The participants were taken from PhD students and postdoctoral fellows
of the Max-Planck Institute for Mathematics in the Sciences. They did not receive any re-
ward for their participation but were willing to help. The subjects were told about the goal
of the experiment in general, i. e. that we would like to observe what kind of strategy they
use while selecting parts of images, which in their opinion can be useful for classifica-
tion. However, they were aware neither of three certain information-theoretical strategies,
which were tested, nor of our attempt to prove that people act adaptively. Moreover, not
all participants have backgrounds in information theory or machine learning. Therefore,
one can say that the subjects were naı̈ve about the experiment goal.

5.6 Results

First, we want to demonstrate the fact that the adaptive strategy leads to shorter patch
sequences on the clock digit data set. The Table 5.1 provides the information on the
necessary number of patches to classify every clock digit as well as its mean value K̄, if
the patches were selected according to each of the considered strategies. Therefore, our
hypothesis is that as subjects are instructed to select the shortest possible patch sequences,
evidence for the adaptive strategy should be the strongest compared to the static MI and
CMI.

In addition, Figure 5.3 provides examples of sequences for digits “1” and “5” that are
selected according to MI, CMI and AMI. For the AMI sequences (see the suplot C), note
that the choice of the second patch is adaptive and depends on whether the first patch is
white or black.

A: MI B: CMI C: AMI

Figure 5.3: Illustration of patch sequences selected according to MI (subplot A), CMI (subplot B)
and AMI (subplot C) strategies for the digits “1” and “5”.



5.6. RESULTS 121

Table 5.1: An average number of clicks K sufficient for classifying digits following one of the
strategies: MI, CMI or AMI

digit KMI KCMI KAMI
“0” 6 4 3
“1” 2 2 3
“2” 3 4 3
“3” 3 5 4
“4” 5 3 3
“5” 5 3 4
“6” 6 5 3
“7” 5 4 4
“8” 4 4 4
“9” 4 5 3
K̄ 4.3 3.9 3.4

5.6.1 Subject statistics

For every subject, we define the average log-likelihood of every strategy s per image:

log p(Fξ|s,β) =
1
T

log p(Fξ1 , . . . ,FξT |s,β) =
1
T

T

∑
j=1

K j

∑
i=1

log

[
eβIs(Fαi)

∑q eβIs(Fq)

]
, (5.22)

where T is a number of the analyzed images. Averaging is introduced in order to have the
possibility to compare more naturally the results for a certain image with the results for
the whole experiment to asses the stability of subject behavior.

Further, to analyze the strategies with respect to their explanatory power, the true values
of β∗AMI , β∗CMI and β∗MI for every subject are found by solving the maximum likelihood
problem for the expression (5.22). Finally, using the values of β∗, we calculate log-
ratios of the strategy maximum likelihood to the base likelihood for every subject. The
corresponding information is given in the Table 5.2.

First of all, one can see that values of β∗ and the log-ratios are highly correlated. To
demonstrate this formally, we calculate their correlation coefficients: ρ(β∗MI,rMI) = 0.99,
ρ(β∗CMI,rCMI) = 0.99, ρ(β∗AMI,rAMI) = 0.97. The reason for this is the following. If the
behavior of a subject can be explained by a strategy s with the high value of β∗, then on
every iteration one of the most informative patches is chosen, which leads to the high
likelihood of the patch sequence with respect to this strategy. Low values of β∗ make
the likelihood tend to the base likelihood. As a result, these concepts provide similar
information.
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Table 5.2: An average sequence length, β∗, log-ratios of the strategies likelihood to the base
likelihood for all subjects, entropy of the first two patches, clusters to which they belong and the
correlation coefficients ρ(β∗, K̄) and ρ(r, K̄).

subj. K̄ β∗MI rMI β∗CMI rCMI β∗AMI rAMI H(Fα1 ,Fα2) cluster
s1 4.7 0.59 0.01 0.32 0 0.32 0.02 3.73 none
s2 4.1 0 0 0 0 0.96 0.16 1.98 AMI
s3 4.5 1.55 0.15 1.91 0.23 1.35 0.33 1.53 AMI mix.
s4 3.8 3.55 0.49 2.88 0.43 3.46 1.58 0.92 AMI mix.
s5 4.4 0 0 0.48 0.01 1.18 0.25 2.69 AMI
s6 4.8 0 0 0.78 0.04 0.28 0.02 2.56 none
s7 4.4 0 0 0.19 0 0.83 0.14 2.68 AMI
s8 4 4.07 0.6 5.75 1.19 2.69 1 1.67 CMI mix.
s9 4.4 0 0 0 0 1.1 0.21 3.56 AMI
s10 4 0.89 0.05 0.89 0.05 2.04 0.54 0.56 AMI
s11 4.3 0.29 0.01 1.17 0.07 0.55 0.06 1.08 none
s12 4 3.09 0.39 4.36 0.85 1.66 0.49 2.4 CMI mix.
s13 4.2 2.51 0.31 3.31 0.67 1.91 0.62 0 CMI mix.
s14 4.1 2.69 0.38 2.51 0.36 1.45 0.38 1.35 CMI mix.
s15 4.5 0.59 0.03 0.45 0.01 0.03 0 1.18 none
ρ(·, K̄) -0.67 -0.69 -0.58 -0.56 -0.82 -0.77
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Inspecting the Table 5.2, one can notice the clear evidence against MI and CMI for some
subjects, which is indicated by β∗MI = 0 and β∗CMI = 0 (see for example s2 and s5). At
the same time, there are subjects with the relatively large values of β∗ and the log-ratio
r for the considered information-theoretical strategies, which suggests that their behavior
can be explained well by the corresponding strategies (see examples for AMI that marked
bold, e. g. s3, s4, s8). We consider β∗ > 1 to be a good indicator for a strategy s as it
means that the informativeness of a patch Is(F) in the softmax function (5.15) has the
weight > 1. Although there are subjects that show MI- and CMI-compatible behavior,
only for 4 out of 15 subjects we could not observe evidence for the adaptive strategy (see
s1, s6, s11 and s15 with very low β∗AMI and rAMI). Thus, we can conclude that most of the
people utilize AMI while selecting image patches that can be useful for classification.

As the Table 5.1 suggests, we expect that subjects who follow the adaptive strategy should
make fewer clicks compared to those that follow MI or CMI. The correlation coefficients
ρ(β∗AMI, K̄) and ρ(rAMI, K̄), which are given in the Table 5.2, reveal the expected regu-
larity, i. e. the subjects with high values of AMI log-ratio and β∗AMI produce on average
shorter patch sequences, e. g. s4, s8, s10, s12 (marked italic). To illustrate this fact graphi-
cally, Figure 5.4 provides two subplots A and B that show β∗AMI and AMI log-ratio plotted
against the average number of clicks, i. e. the average patch sequence. At the same time,
the dependence of K̄ on β∗ is weaker for other information-theoretical strategies (see sub-
plots C and D on the same figure), which means that it is more likely to produce short
patch sequences without following MI and CMI compared to the adaptive strategy. An
interesting case is the subject s2 who produced quite short sequences, however, there is
no strong evidence for any of the considered strategies. This fact suggests that s2 used
another efficient but unknown for us strategy to achieve such result.

5.6.2 Subject clusters

Depending on strategies with large values of log-ratios, we defined 4 clusters of the sub-
jects: “AMI”, “AMI mixture”, “CMI mixture” and “none” (see Table 5.2 for the assign-
ment1). Members of the “AMI” cluster show evidence almost only for the AMI strategy,
subjects belonging to the “AMI mixture” and “CMI mixture” clusters follow all consid-
ered here strategies but the evidence for AMI or CMI is larger, respectively. Finally, the
“none” cluster, as the name suggests, contains subjects whose behavior does not provide
evidence for any of three strategies. To illustrate the distinction between subjects from
the different clusters, we pick the representatives for each cluster and plot their average

1Although s14 should formally belong to “MI mixture” cluster, this subject was put in “CMI mixture” as
the difference between the corresponding β∗ and r is minimal and the cluster “MI mixture” would contain
only one subject.
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log-likelihood of AMI, CMI and MI against log10 β (see Figure 5.5). The log-likelihood
of all strategies for logβ =−2 corresponds approximately to the base log-likelihood.

All subjects within the AMI cluster except s10 produced rather long patch sequences,
which at first glance contradicts with the idea of efficiency of the adaptive behavior. Al-
though the values of β∗ are moderate, the values of the log-ratio are rather low. This
comes from the fact that there are many images where the subjects do not follow any of
the considered strategies. Thus, if one fits β∗ for every image, its value is not stable and
AMI is only on average better than CMI and MI.

Subjects belonging to the cluster “none” on average do not show evidence for the con-
sidered strategies. Note that their patch sequences are also long. Individual examina-
tion of every image for these subjects shows that a strategy with the maximum log-ratio
changes from image to image. This indicates instability with respect to the strategies of
our interest. To demonstrate this, we provide several subplots on Figure 5.6 where the
log-likelihood of MI, CMI and AMI is plotted against β for several individual images.
There is another peculiarity of this cluster: these subjects are the only who use particular
patch sequences, which are rather long, repeatedly. On the contrary, in case of failure
in producing a short patch sequence, subjects from other clusters tend to change their
behavior.

For both mixture clusters, i. e. “AMI mixture” and “CMI mixture”, there are two reasons
for observing enough evidence for all strategies. First, there are cases when for the same
subject some patch sequences can be better explained by one strategy and other sequences
by another strategy. However, there is also a second reason: the subjects utilize different
strategies for first and later clicks.

It was noticed that most subjects use several alternatives of the fixed start consisting of
2 patches, which were learned during the presentation. The Table 5.2 provides values of
the Shannon entropy of the first two uncovered patches estimated for every subject. Note
that the order of patches in the starting pair was not taken into account, i. e. the pairs
F1,F3 and F3,F1 are considered to be identical. The value of the highest possible entropy
corresponding to the uniform distribution is 4.39. To get the intuition for other values,
consider two following examples. The subject s15, who used 24 out of 30 times the same
starting pair, has H(Fα1,Fα2) = 1.18, while s6 with H(Fα1 ,Fα2) = 2.56 has 3 preferred
pairs that were used 9, 7 and 6 out of 30 times, respectively.

The reason for using the fixed start is the following. There are images which can be
classified using only 1 or 2 patches. However, this particular patch or patch pair may
be ineffective for classifying the rest of the images. The extreme example is the lower
right patch of the clock digit. This patch is the worst to start with according to its mutual
information with the class variable. Knowing its value, the initial number of classes can be
reduced to 9 or 1. Thus, it is useful only in 1 out of 10 cases for the digit “2”. Nevertheless,
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a lot of subjects use this patch at the beginning after successfully classifying the clock digit
“2” only with one click. Therefore, it seems that a bias towards a possibility to classify an
image uncovering the minimal number of patches is strong, even though this possibility
may be not very likely.

Interestingly, if the first clicks are assumed to be fixed, we can observe that the patches
uncovered afterwards are often chosen according to the adaptive strategy. The illustration
of this phenomenon is given on Figure 5.7 that plots the log-likelihood of MI, CMI and
AMI against log10 β for the full patch sequences and the sequences without considering
first two clicks. Note that though the likelihood of these first clicks is not considered (the
product over patches in (5.16) starts from i = 3), they are still used for conditioning in the
selection criteria of CMI and AMI.

The intuitive explanation for adaptivity in the rather later clicks is the computational com-
plexity of AMI. It requires the reestimation of its selection criterion for all candidates for
selection after observing a value of newly uncovered patch. But on the later iterations, a
number of possible classes as well as a number of the patch-candidates is smaller, thus,
the selection problem becomes easier. Thus, the observed behavior can be regarded as the
simplified version of the adaptive selection strategy.

5.7 Conclusions

There is experimental evidence that human saccades during visual search preferentially
target locations that contain task-relevant information. Here, we suggested that information-
theoretical feature selection criteria can be the underlying strategies of the task-dependent
attentional selection. In particular, we considered two static selection criteria based on
mutual information and conditional mutual information, as well as the criterion based
on the adaptive conditional mutual information, which was proposed earlier in this the-
sis. Both static strategies assume that only task-specific prior influence the probability of
the image location to be selected, whereas the adaptive selection criterion takes also into
account the information integrated over previously visited locations.

In order to test these strategies, we performed a psychophysical experiment where sub-
jects had to click and as a result uncover image patches, which in their opinion are relevant
for classification. First of all, our clicking experiment provides evidence that for a com-
plex visual classification task with 10 classes people are able to employ quite complicated
entropy-based search strategies. In addition, we found that, even though it is more com-
putationally demanding, most people act adaptively, i. e. take into account image-specific
information. The experimental results revealed also that many subjects tend to use the
so-called hybrid strategy while selecting the informative image patches. They start with
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the patches which can immediately classify some images and if it does not happen they
proceed selecting in the adaptive way. First, such behavior demonstrates a bias towards
the possibility to classify an image just with 1− 2 clicks, even if this is quite unlikely.
Second, by applying the adaptive selection strategy on the late iterations, people avoid
the high computational complexity of AMI at the beginning when a number of possible
classes to which an image can belong is large.

In the future, it would be interesting to combine the considered information-theoretical
strategies, which represent the top-down component of the attentional selection, with the
feedforward bottom-up attentional mechanism based on low-level saliency. The eye track-
ing setup is then the natural tool to test such extended models. Another possible improve-
ment concerns visual stimuli. On the one hand, one could draw better conclusions from
the experiment if the stimuli set was constructed in the way that patch sequences gener-
ated by the tested strategies had a minimal overlap. On the other hand, it would be good
to use natural scenes to make the experimental conditions maximally close to people’s
every day visual experience. Moreover, the recent trend in eye movement research is to
use dynamical scenes as our natural environment is not static [Dorr et al., 2010; Tatler
et al., 2011].
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Figure 5.4: A: Log-ratio of AMI maximum likelihood to the base likelihood rAMI of every subject
is plotted against their average number of clicks. B, C, D: β∗AMI , β∗CMI and β∗MI fitted for every
subject is plotted against their average number of clicks, respectively. Correlation coefficients ρ

between the considered concepts and K̄ are given on every subplot.
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Figure 5.5: The average log-likelihood of MI, CMI and AMI is plotted against the log10 β for
several subjects with typical behavior. A: There is strong evidence for AMI only. B, C: There is
evidence for all three strategies but the evidence for AMI and CMI is stronger, respectively. D:
There is no evidence for any of the considered strategies.
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Figure 5.6: The log-likelihood of MI, CMI and AMI for a certain image is plotted against the
log10 β for a subject s11 from the cluster “none”. A: There is strong evidence for AMI. B: There is
evidence for all three strategies. C: There is evidence for MI and AMI is extremely unlikely. D:
There is no evidence for any of the considered strategies.
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Figure 5.7: Log-likelihood of MI, CMI and AMI is plotted against the log10 β for a certain image
if the strategies were followed from the beginning (subplots A and C for subjects s5 and s3, respec-
tively) and if the first two clicks are fixed (subplots B and D for subjects s5 and s3, respectively).



Chapter 6

Discussion

Nature served as inspiration already for early machine learning algorithms. A good exam-
ple is artificial neural networks that utilize structural and functional principles of neural
circuits in the brain [McCulloch & Pitts, 1943; Rosenblatt, 1958]. The algorithm pro-
posed in this thesis is not an exception. Our inspiration comes from the visual system and
in particular from the numerous connections going backwards along the ventral or “what”
pathway, which is responsible for processing complex object characteristics. Though the
role of top-down connections is still a subject of debates, it is believed that the feedback
from the higher to lower visual areas enhances processing of object characteristics that
are useful for unambiguous identification of this object.

In analogy to such task-dependent attentional enhancement of relevant aspects of the vi-
sual input, we have proposed an adaptive sequential feature selection algorithm. The
concept of adaptivity is equivalent to the presence of feedback information flow in the
system. Systems having only feedforward circuits are “static” in our terminology.

The main idea of the algorithm is that it is possible to select a smaller number of features,
which are useful for classification of a certain object, if the selection process is influenced
by this object itself. As a result, the feature selection should be performed directly dur-
ing classification. Features are picked sequentially and once a feature is selected and its
value is evaluated, current hypotheses about a class of the recognized object are refined.
If it is not possible to assign the object to a single class, which would mean its unam-
biguous classification, the next feature will be selected as the one minimizing the current
uncertainty about the object class.

As described in the review presented in Chapter 2, there are plenty of selection criteria
that fit to the framework of iterative uncertainty reduction. However, in our algorithm,
we used Shannon entropy, which is a natural measure of uncertainty from information
theory. Then, minimizing the uncertainty corresponds to maximizing the mutual infor-
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mation of a class and a feature-candidate conditioned on previously selected features. In
addition to the information-theoretical soundness of the concept of mutual information,
features that are selected according to such a criterion are proved to be useful for classi-
fication. Though mutual information is an attractive selection criterion in theory, its esti-
mation is still considered to be a difficult task in spite of a rich number of related studies.
We solved the problem of estimating the adaptive conditional mutual information using a
non-parametric kernel density estimator. Unreliable pdf estimates in the high-dimensional
space were improved by the adaptive smoothing developed here. Undoubtedly, there is
room for improvement concerning quality of the estimates. Nevertheless, the adaptive
feature selection algorithm using the proposed estimation technique was successfully ap-
plied to problems where the number of features was much larger than the number of
training samples. As a result, we demonstrated some advantages of the adaptive approach
over its static counterpart.

In particular, experimental investigations of ACMIFS, which are described in Chapter 4,
showed that the adaptive feature selection is advantageous when a classification task is
difficult, for example, in case of an insufficient amount of trained data for good general-
ization. This result is in line with neurophysiological observations in the visual system.
A recognition of simple objects can be performed in a purely feedforward fashion, i. e.
using a static algorithm. Attentional feedback is first initiated when the information de-
livered by the first feedforward sweep does not suffice for unambiguous classification, i.
e. when a classification is not trivial. Moreover, this is also supported by results of our
psychophysical experiment, where people had to select image patches that as they think
are relevant for classification of these images. We found that many people become adap-
tive first on later iterations when few patches selected according to some static strategy
are not enough to classify an image.

Taking together such heuristic and the problem of computational complexity of the pro-
posed ACMIFS, a hybrid selection scheme seems to be a natural candidate for a simplified
adaptive feature selection algorithm. This would mean that instead of selecting only the
first feature prior to observing a testing sample as the most informative for the current
problem, one could use several statically preselected features. On the one hand, this
sounds like a clever compromise that helps to reduce computational costs of the adaptive
selection process but still leaves the possibility to make use of image-specific information
in order to enhance the quality of classification. On the other hand, the experimental in-
vestigations of ACMIFS showed that one can get much better results if the first features
are selected adaptively. The last fact inspired us to suggest a hybrid scheme that starts
selecting features according to ACMIFS and then switches to ATM. ATM is also an adap-
tive algorithm that however assumes features being class-conditionally independent, thus,
its estimation is computationally cheaper. Whereas the latter hybrid scheme will produce
a smaller subset of informative features, the former is definitely computationally cheaper.



133

The results of our psychophysical clicking experiment provided evidence that ACMIFS
proposed here, despite its complexity, can explain the behavior of many people while they
perform a visual classification task. This fact indicates that we are on the right way to un-
derstand the concept of task-relevance utilized by the brain. However, the next interesting
question appears: how the exactly estimation of the adaptive selection criterion is imple-
mented in the visual system. There are many neural models that propose a framework
for interactions of bottom-up and top-down process, e. g. [Raizada & Grossberg, 2003;
Lee & Mumford, 2003], however, the process of estimating the next target for attentional
modulation is not well-studied.

A detailed neural implementation of the proposed adaptive feature selection algorithm
would be a good continuation of the current work. Here, we would like to describe just
a sketch of it in order to show that such scheme can be implemented in the brain and
therefore it can serve as the underlying strategy of task-dependent attentional selection.

Thus, the neural implementation could be based on the idea of self-organizing maps
(SOM) [Kohonen, 1982], an unsupervised technique that is trained to produce a low-
dimensional representation of the input, which is called a map. This rather early compu-
tational algorithm is closely related to models of cortical maps in the visual cortex [Ol-
shausen & Field, 1996; Obermayer & Sejnowski, 2001]. As a result of self-organization,
neurons within one map that have similar characteristics form clusters. Short-range exci-
tatory connections inside one cluster make all neurons fire simultaneously, whereas long-
range inhibitory connections exist between the clusters and are involved in their compe-
tition for representation [Sirosh & Miikkulainen, 1994; Bosking et al., 1997]. One can
think about such clusters as features extracted from the visual input. The complexity
of these features is defined by the area where the map is located. Then, the role of the
task-dependent attentional modulation is to bias the competition for representation within
one layer towards task-relevant features. First, the feedback modulates very abstract and
complex representations, i. e. building blocks of categories to which a recognized object
can belong. This modulation is transmitted further to neurons on the lower levels that re-
spond to features, which constitute the modulated high-level representations. As a result,
the enhanced features are processed with higher acuity which is reflected in the updated
activity of the corresponding maps. In turn, this update causes changes in the activity of
neurons responding to possible object categories.

Within such a framework, implementation of the selection criterion requires estimation
of class-conditional joint probabilities of the abstract features. In fact, SOM performs
vector quantization, i. e. it models a probability density function by distribution of clus-
ters, which are evolved on the map as a result of learning. Thus, activity on the map
represents the joint pdfs of features conditioned on the input signal. If every neuron on
the low-dimensional map has a Gaussian activation function, the obtained model is noth-
ing but a Gaussian mixture. Note that the kernel density estimator with Gaussian kernels
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used earlier is also a mixture of Gaussians. The only difference is that KDE uses Gaus-
sian functions that have some predefined width and are centered around training samples,
rather than learning these parameters. Therefore, analogously to KDE, one can learn sep-
arate maps to model joint probability functions of features given every class using for
example an expectation-maximization algorithm [Heskes, 2001] or a Bayesian approach
[Yin & Allinson, 2001]. Further, having the class-conditional pdfs of features, we still
need to estimate the mutual information. Recall that the ACMIFS criterion can be rewrit-
ten using the definition of the Kullback-Leibler divergence weighted by class posteriors.
A posterior of a class can be represented by activation of a neuron or a group of neurons
that respond to this class in the higher visual areas. However, the estimation of Kullback-
Leibler divergence between the class-conditional and marginal probability distributions is
not trivial as it requires integration over the feature space. A standard approach to such
problem is to sample from both distributions and then estimate the divergence between
them. This approach is especially attractive because its biological plausibility was already
suggested by various researches. It is hypothesized that neural activity can be viewed as a
representation of samples from the posterior distribution [Hoyer & Hyvärinen, 2002; Fiser
et al., 2010]. Thus, the brain is likely to implement the sampling mechanism. Although
a full neuronal model has to be worked out in detail and experimentally tested and some
proposed aspects are likely to be inaccurate, we believe that the brain implements some
approximated version of ACMIFS in order to decide which features are really relevant to
classify a new visual scene.

Despite the connection of the developed scheme to principles of visual processing, the
major part of this work is dedicated to the development of the machine learning algo-
rithm. Therefore, we would like to comment on its applicability to different classification
tasks. One the one hand, the adaptive feature selection presented here is of the filter type
and therefore can be used with any kind of classifier. On the other hand, as feature se-
lection is performed online during classification, a classifier should be able to produce a
fast prediction of the object class given a varying subset of features. For this purpose,
one can use the probabilistic estimator of ACMIFS itself because the class posteriors are
intrinsic components of the selection criterion. Another possible candidate is a represen-
tative of the so-called lazy learners, i. e. classifiers that do not require any learning like
k-nn. Alternatively, one can again get inspiration from nature. The adaptive selection
scheme functions within the hierarchical framework in the visual system. Thus, com-
plex mapping of the visual input to classes is distributed through the hierarchy of feature
layers of growing complexity, resulting in simple linear relationships between the levels.
Then, parallel feedforward-feedback interactions in such architecture allows to perform
fast probabilistic inference. Therefore, in order to solve complex classification tasks, we
suggest to use ACMIFS for selecting features in systems with a hierarchical architecture.
Moreover, we demonstrated efficiency of the adaptive feature selection in the hierarchical



135

system on the example of convolutional networks used for classifying handwritten digits
from the MNIST database.
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Figure A.1: Visual cortex, from [Rosa, 2002].
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A.2 Artificial dataset

Figure A.2: Original images of the artificial dataset.
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A.3 Example of the clicking presentation

Figure A.3: Introduction screen.
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Figure A.4: First screen of the image presentation.
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Figure A.5: Second screen of the image presentation.
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Figure A.6: Third screen of the image presentation.
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Figure A.7: Fourth screen of the image presentation.
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Figure A.8: Fifth screen of the image presentation.
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Figure A.9: Seventh screen of the image presentation.
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Figure A.10: Eighth screen of the image presentation.
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Figure A.11: Final screen of the image presentation.
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Gini, C. (1912). Variabilitá e Mutabilitá (Variability and Mutability). C. Cuppini,
Bologna.

Grassberger, P. (1988). Finite sample corrections to entropy and dimension estimates.
Physics Letters A, 128(6–7), 369–373.

Grassberger, P. (2003). Entropy estimates from insufficient samplings. arXiv.org eprint
physics/0307138.



156 BIBLIOGRAPHY

Grassberger, P. & Procaccia, I. (1983). Measuring the strangeness of strange attractors.
Physica D: Nonlinear Phenomena, 9(1–2), 189–208.

Grieve, K. L. & Sillito, A. M. (1995). Differential properties of cells in the feline primary
visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and
visual claustrum. Journal of Neuroscience, 15(7 Pt 1), 4868–4874.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I. Parallel
development and coding of neural feature detectors. Biological Cybernetics, 23(3),
121–134.

Guo, B. & Nixon, M. S. (2009). Gait feature subset selection by mutual information.
IEEE Transactions on Systems, Man, and Cybernetics, Part A, 39(1), 36–46.

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection. Jour-
nal of Machine Learning Research, 3, 1157–1182.

Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L., Eds. (2006). Feature Extraction, Foun-
dations and Applications. Series Studies in Fuzziness and Soft Computing, Physica-
Verlag, Springer.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classi-
fication using support vector machines. Machine Learning, 46(1-3), 389–422.

Guyon, I. M., Gunn, S. R., Ben-Hur, A., & Dror, G. (2004). Result analysis of the
NIPS 2003 feature selection challenge. In Advances in Neural Information Processing
Systems.

Györfi, L. & van der Meulen, E. C. (1987). Density-free convergence properties of various
estimators of entropy. Computational Statistics & Data Analysis, 5(4), 425–436.

Hacine-Gharbi, A., Ravier, P., Harba, R., & Mohamadi, T. (2012). Low bias histogram-
based estimation of mutual information for feature selection. Pattern Recognition Let-
ters, 33(10), 1302–1308.

Hall, M. A. (1999). Correlation-base feature selection for machine learning. PhD thesis,
Department of Computer Science, University of Waikato, New Zealand.

Hall, P. & Morton, S. C. (1993). On the estimation of entropy. Annals of the Institute of
Statistical Mathematics, 45(1), 69–88.

Hall, P., Sheather, S. J., Jones, M. C., & Marron, J. S. (1991). On optimal data-based
bandwidth selection in kernel density estimation. Biometrika, 78(2), 263–269.

Harris, B. (1975). The statistical estimation of entropy in the non-parametric case. Uni-
versity of Wisconsin-Madison, Mathematics Research Center.



BIBLIOGRAPHY 157

Hart, A. E. (1985). Experience in the use of an inductive system in knowledge engineer-
ing. In M. A. Bramer (Ed.), Research and Development in Expert Systems. Cambridge,
UK: Cambridge University Press.

Hayhoe, M. M., Bensinger, D. G., & Ballard, D. H. (1998). Task constraints in visual
working memory. Vision Research, 38, 125–137.

Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B. (2003). Visual memory and
motor planning in a natural task. Journal of Vision, 3(1), 49–63.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall.

Hellman, M. & Raviv, J. (1970). Probability of error, equivocation, and the Chernoff
bound. IEEE Transactions on Information Theory, 16(4), 368–372.

Henriques, D. Y. P., Medendorp, W. P., Khan, A. Z., & Crawford, J. D. (2002). Vi-
suomotor transformations for eye-hand coordination. In D. M. W. H. J. Hyona & R.
Radach (Eds.), The Brain’s Eye: Neurobiological and Clinical Aspects of Oculomotor
Research, volume 140 of Progress in Brain Research (pp. 329 – 340). Elsevier.

Herd, S. A., Banich, M. T., & O’Reilly, R. C. (2006). Neural mechanisms of cognitive
control: An integrative model of stroop task performance and fMRI data. Journal of
Cognitive Neuroscience, 18(1), 22–32.

Heskes, T. (2001). Self-organizing maps, vector quantization, and mixture modeling.
IEEE Transactions on Neural Networks, 12(6), 1299–1305.

Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Bio-
metrics, 32.

Holste, D., Grosse, I., & Herzel, H. (1998). Bayes’ estimators of generalized entropies.

Hoyer, P. O. & Hyvärinen, A. (2002). Interpreting neural response variability as Monte
Carlo sampling of the posterior. In Advances in Neural Information Processing Sys-
tems, volume 15.

Hu, S., Poskitt, D. S., & Zhang, X. (2012). Bayesian adaptive bandwidth kernel den-
sity estimation of irregular multivariate distributions. Computational Statistics & Data
Analysis, 56(3), 732–740.

Hubel, D. & Wiesel, T. (2005). Brain and visual perception: the story of a 25-year
collaboration. Oxford University Press US. p. 106.

Hupe, J. M., James, A. C., Girard, P., Lombber, S. G., Payne, B. R., & Bullier, J. (2001).
Feedback connections act on the early part of the responses in monkey visual cortex.
Journal of Neurophysiology, 85, 134–145.



158 BIBLIOGRAPHY

Hyvärinen, A., Karhunen, J., & Oja, E. (2004). Independent Component Analysis. Adap-
tive and learning systems for signal processing, communications and control series.
Wiley.

Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive
Psychology, 23(3), 420 – 456.

Itti, L. & Baldi, P. F. (2006). Bayesian surprise attracts human attention. In Advances
in Neural Information Processing Systems 19 (pp. 547–554). Cambridge, MA: MIT
Press.

Itti, L. & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts
of visual attention. Vision Research, 40, 1489–1506.

Ivanov, A. V. & Rozhkova, M. N. (1981). Properties of the statistical estimate of the
entropy of a random vector with a probability density. Problems of Information Trans-
mission, 17, 171–178. in Russian.

Jain, A. & Zongker, D. (1997). Feature selection: Evaluation, application, and small
sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(2), 153–158.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.
Proceedings of the Royal Society A: Mathematical, physical & engineering sciences,
186, 453–461.

Jeffreys, H. (1948). Theory of probability. Clarendon Press, Oxford, second edition.

Jelinek, F. & Mercer, R. L. (1980). Interpolated estimation of Markov source parameters
from sparse data. In In Proceedings of the Workshop on Pattern Recognition in Practice
(pp. 381–397). Amsterdam, The Netherlands.

Jiang, H. (2008). Adaptive Feature Selection in Pattern Recognition and Ultra-Wideband
Radar Signal Analysis. PhD thesis, California Institute of Technology.

Joe, H. (1989). On the estimation of entropy and other fuunctionals of a multivariate
density. Annals of the Institute of Statistical Mathematics, 41, 683–697.

Johnson, W. E. (1932). Probability: deductive and inductive problems. Mind, 41, 421–
423.

Johnston, W. A. & Dark, V. J. (1986). Selective attention. Annual Review of Psychology,
37(1), 43–75.

Jolliffe, I. T. (1986). Principal Components Analysis. Springer-Verlag.



BIBLIOGRAPHY 159

Jones, H. E., Andolina, I. M., Oakely, N. M., Murphy, P. C., & Sillito, A. M. (2000).
Spatial summation in lateral geniculate nucleus and visual cortex. Experimental Brain
Research, 135, 279–284.

Jost, J. (2004). External and internal complexity of complex adaptive systems. Theory
Bioscience, 123, 69–88.

Kanan, C., Tong, M. H., Zhang, L., & Cottrell, G. W. (2009). SUN: Top-down saliency
using natural statistics. Visual Cognition, 17(6), 979–1003.

Khan, S., Bandyopadhyay, S., Ganguly, A. R., Saigal, S., Erickson, D. J., Protopopescu,
V., & Ostrouchov, G. (2007). Relative performance of mutual information estimation
methods for quantifying the dependence among short and noisy data. Physical Review
E, 76, 026209.

Kiefer, M., Ansorge, U., Haynes, J.-D., Hamker, F., Mattler, U., Verleger, R., &
Niedeggen, M. (2011). Neuro-cognitive mechanisms of conscious and unconscious
visual perception: From a plethora of phenomena to general principles. Advances in
Cognitive Psychology, 7, 55–67.

Kiefer, M. & Martens, U. (2010). Attentional sensitization of unconscious cognition: task
sets modulate subsequent masked semantic priming. Journal of experimental psychol-
ogy. General, 139(3), 464–89.

Kietzmann, T. C., Geuter, S., & König, P. (2011). Overt visual attention as a causal factor
of perceptual awareness. PLoS ONE, 6(7), e22614.

Kira, K. & Rendell, L. A. (1992). A practical approach to feature selection. In Proceed-
ings of the Ninth International Workshop on Machine Learning, ML92 (pp. 249–256).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach. Roberts
and Co.

Koch, C. & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying
neural circuitry. Human Neurobiology, 4, 219–227.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the 14th international joint conference on Artificial
intelligence - Volume 2, IJCAI’95 (pp. 1137–1143). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Kohavi, R. & John, G. (1997). Wrapper for feature subset selection. Artificial Intelligence,
97(nos. 1-2), 273–324.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Bi-
ological Cybernetics, 43(1), 59–69.



160 BIBLIOGRAPHY

Koivisto, M., Railo, H., Revonsuo, A., Vanni, S., & Salminen-Vaparanta, N. (2011). Re-
current processing in V1/V2 contributes to categorization of natural scenes. The Jour-
nal of Neuroscience, 31(7), 2488–2492.

Kolb, H. (2011). Feedback loops. In H. Kolb, R. Nelson, E. Fernandez, &
B. Jones (Eds.), Webvision. The Organization of the Retina and Visual System.
http://webvision.med.utah.edu/book/part-iii-retinal-circuits/feedback-loops/. accessed
30/11/2012.

Koller, D. & Sahami, M. (1996). Toward optimal feature selection. In Proceedings of the
13th International Conference on Machine Learning (ICML-96) (pp. 284–292).

Kozachenko, L. F. & Leonenko, N. N. (1987). On statistical estimation of entropy of
random vector. Problems of Information Transmission, 23(2), 9–16. in Russian.
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oder unveröffentlichten Schriften entnommen wurden, und alle Angaben, die auf mündlichen
Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind alle von anderen Per-
sonen bereitgestellten Materialien oder erbrachten Dienstleistungen als solche gekennze-
ichnet.

Leipzig, den 31. Januar 2014

. . . . . . . . . . . . . . . . . . . . . . . . . . .
(Liliya Avdiyenko)



BIBLIOGRAPHY

Daten zum Autor

Name: Liliya Avdiyenko
Geburtsdatum: 28.01.1985
Geburtsort: Charkiw, Ukraine

09/2002 - 06/2006 Bachelor of Science, Informatik
Nationale Universität für Radioelektronik Charkiw, Ukraine
Titel der Arbeit: “Datenverarbeitung mittels ontogenischen
neuronalen Netze”

09/2006 - 06/2007 Master of Science, Informatik
Nationale Universität für Radioelektronik Charkiw, Ukraine
Titel der Arbeit: “Intelligente Verarbeitung der Zeitreihen
mittels hybriden neuronalen Netze”

10/2006 - 09/2009 Master of Philosophy, Informatik
Fernstudium mit Präsenzphase
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