105 research outputs found

    Conditional Minimum Volume Ellipsoid with Application to Multiclass Discrimination

    Get PDF
    In this paper, we present a new formulation for constructing an n-dimensional ellipsoid by generalizing the computation of the minimum volume covering ellipsoid. The proposed ellipsoid construction is associated with a user-defined parameter β ∈ [0, 1), and formulated as a convex optimization based on the CVaR minimization technique proposed by Rockafellarand Uryasev [15]. An interior point algorithm for the solution is developed by modifying the DRN algorithm of Sun and Freund [19] for the minimum volume covering ellipsoid. By exploiting the solution structure, the associated parametric computation can be performed in an efficient manner. Also, the maximization of the normal likelihood function can be characterized in the context of the proposed ellipsoid construction, and the likelihood maximization can be generalized with parameter β. Motivated by this fact, the new ellipsoid construction is examined through a multiclass discrimination problem. Numerical results are given, showing the nice computational efficiency of the interior point algorithm and the capability of the proposed generalization

    Vacuum ultraviolet laser induced breakdown spectroscopy (VUV-LIBS) for pharmaceutical analysis

    Get PDF
    Laser induced breakdown spectroscopy (LIBS) allows quick analysis to determine the elemental composition of the target material. Samples need little\no preparation, removing the risk of contamination or loss of analyte. It is minimally ablative so negligible amounts of the sample is destroyed, while allowing quantitative and qualitative results. Vacuum ultraviolet (VUV)-LIBS, due to the abundance of transitions at shorter wavelengths, offers improvements over LIBS in the visible region, such as achieving lower limits of detection for trace elements and extends LIBS to elements\samples not suitable to visible LIBS. These qualities also make VUV-LIBS attractive for pharmaceutical analysis. Due to success in the pharmaceutical sector molecules representing the active pharmaceutical ingredients (APIs) have become increasingly complex. These organic compounds reveal spectra densely populated with carbon and oxygen lines in the visible and infrared regions, making it increasingly difficult to identify an inorganic analyte. The VUV region poses a solution as there is much better spacing between spectral lines. VUV-LIBS experiments were carried out on pharmaceutical samples. This work is a proof of principle that VUV-LIBS in conjunction with machine learning can tell pharmaceuticals apart via classification. This work will attempt to test this principle in two ways. Firstly, by classifying pharmaceuticals that are very different from one another i.e., having different APIs. This first test will gauge the efficacy of separating into different classes analytes that are essentially carbohydrates with distinctly different APIs apart from one another using their VUV emission spectra. Secondly, by classifying two different brands of the same pharmaceutical, i.e., paracetamol. The second test will investigate of the ability of machine learning to abstract and identify the differences in the spectra of two pharmaceuticals with the same API and separate them. This second test presents the application of VUV-LIBS combined with machine learning as a solution for at-line analysis of similar analytes e.g., quality control. The machine learning techniques explored in this thesis were convolutional neural networks (CNNs), support vector machines, self-organizing maps and competitive learning. The motivation for the application of principal component analysis (PCA) and machine learning is for the classification of analytes, allowing us to distinguish pharmaceuticals from one another based on their spectra. PCA and the machine learning techniques are compared against one another in this thesis. Several innovations were made; this work is the first in LIBS to implement the use of a short-time Fourier transform (STFT) method to generate input images for a CNN for VUV-LIBS spectra. This is also believed to be the first work in LIBS to carry out the development and application of an ellipsoidal classifier based on PCA. The results of this work show that by lowering the pulse energy it is possible to gather more useful spectra over the surface of a sample. Although this yields spectra with poorer signal-to-noise, the samples can still be classified using the machine learning analytics. The results in this thesis indicate that, of all the machine learning techniques evaluated, CNNs have the best classification accuracy combined with the fastest run time. Prudent data augmentation can significantly reduce experimental workloads, without reducing classification rates

    Object detection and segmentation using discriminative learning

    Get PDF
    Object detection and segmentation algorithms need to use prior knowledge of objects' shape and appearance to guide solutions to correct ones. A promising way of obtaining prior knowledge is to learn it directly from expert annotations by using machine learning techniques. Previous approaches commonly use generative learning approaches to achieve this goal. In this dissertation, I propose a series of discriminative learning algorithms based on boosting principles to learn prior knowledge from image databases with expert annotations. The learned knowledge improves the performance of detection and segmentation, leading to fast and accurate solutions. For object detection, I present a learning procedure called a Probabilistic Boosting Network (PBN) suitable for real-time object detection and pose estimation. Based on the law of total probability, PBN integrates evidence from two building blocks, namely a multiclass classifier for pose estimation and a detection cascade for object detection. Both the classifier and detection cascade employ boosting. By inferring the pose parameter, I avoid the exhaustive scan over pose parameters, which hampers real-time detection. I implement PBN using a graph-structured network that alternates the two tasks of object detection and pose estimation in an effort to reject negative cases as quickly as possible. Compared with previous approaches, PBN has higher accuracy in object localization and pose estimation with noticeable reduced computation. For object segmentation, I cast deformable object segmentation as optimizing the conditional probability density function p(C|I), where I is an image and C is a vector of model parameters describing the object shape. I propose a regression approach to learn the density p(C|I) discriminatively based on boosting principles. The learned density p(C|I) possesses a desired unimodal, smooth shape, which can be used by optimization algorithms to efficiently estimate a solution. To handle the high-dimensional learning challenges, I propose a multi-level approach and a gradient-based sampling strategy to learn regression functions efficiently. I show that the regression approach consistently outperforms state-of-the-art methods on a variety of testing datasets. Finally, I present a comparative study on how to apply three discriminative learning approaches - classification, regression, and ranking - to deformable shape segmentation. I discuss how to extend the idea of the regression approach to build discriminative models using classification and ranking. I propose sampling strategies to collect training examples from a high-dimensional model space for the classification and the ranking approach. I also propose a ranking algorithm based on Rankboost to learn a discriminative model for segmentation. Experimental results on left ventricle and left atrium segmentation from ultrasound images and facial feature localization demonstrate that the discriminative models outperform generative models and energy minimization methods by a large margin

    Calibration-free Pedestrian Partial Pose Estimation Using a High-mounted Kinect

    Get PDF
    Les applications de l’analyse du comportement humain ont subit de rapides développements durant les dernières décades, tant au niveau des systèmes de divertissements que pour des applications professionnelles comme les interfaces humain-machine, les systèmes d’assistance de conduite automobile ou des systèmes de protection des piétons. Cette thèse traite du problème de reconnaissance de piétons ainsi qu’à l’estimation de leur orientation en 3D. Cette estimation est faite dans l’optique que la connaissance de cette orientation est bénéfique tant au niveau de l’analyse que de la prédiction du comportement des piétons. De ce fait, cette thèse propose à la fois une nouvelle méthode pour détecter les piétons et une manière d’estimer leur orientation, par l’intégration séquentielle d’un module de détection et un module d’estimation d’orientation. Pour effectuer cette détection de piéton, nous avons conçu un classificateur en cascade qui génère automatiquement une boîte autour des piétons détectés dans l’image. Suivant cela, des régions sont extraites d’un nuage de points 3D afin de classifier l’orientation du torse du piéton. Cette classification se base sur une image synthétique grossière par tramage (rasterization) qui simule une caméra virtuelle placée immédiatement au-dessus du piéton détecté. Une machine à vecteurs de support effectue la classification à partir de cette image de synthèse, pour l’une des 10 orientations discrètes utilisées lors de l’entrainement (incréments de 30 degrés). Afin de valider les performances de notre approche d’estimation d’orientation, nous avons construit une base de données de référence contenant 764 nuages de points. Ces données furent capturées à l’aide d’une caméra Kinect de Microsoft pour 30 volontaires différents, et la vérité-terrain sur l’orientation fut établie par l’entremise d’un système de capture de mouvement Vicon. Finalement, nous avons démontré les améliorations apportées par notre approche. En particulier, nous pouvons détecter des piétons avec une précision de 95.29% et estimer l’orientation du corps (dans un intervalle de 30 degrés) avec une précision de 88.88%. Nous espérons ainsi que nos résultats de recherche puissent servir de point de départ à d’autres recherches futures.The application of human behavior analysis has undergone rapid development during the last decades from entertainment system to professional one, as Human Robot Interaction (HRI), Advanced Driver Assistance System (ADAS), Pedestrian Protection System (PPS), etc. Meanwhile, this thesis addresses the problem of recognizing pedestrians and estimating their body orientation in 3D based on the fact that estimating a person’s orientation is beneficial in determining their behavior. In this thesis, a new method is proposed for detecting and estimating the orientation, in which the result of a pedestrian detection module and a orientation estimation module are integrated sequentially. For the goal of pedestrian detection, a cascade classifier is designed to draw a bounding box around the detected pedestrian. Following this, extracted regions are given to a discrete orientation classifier to estimate pedestrian body’s orientation. This classification is based on a coarse, rasterized depth image simulating a top-view virtual camera, and uses a support vector machine classifier that was trained to distinguish 10 orientations (30 degrees increments). In order to test the performance of our approach, a new benchmark database contains 764 sets of point cloud for body-orientation classification was captured. For this benchmark, a Kinect recorded the point cloud of 30 participants and a marker-based motion capture system (Vicon) provided the ground truth on their orientation. Finally we demonstrated the improvements brought by our system, as it detected pedestrian with an accuracy of 95:29% and estimated the body orientation with an accuracy of 88:88%.We hope it can provide a new foundation for future researches

    A survey on online active learning

    Full text link
    Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in the context of online active learning. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research. Our review aims to provide a comprehensive and up-to-date overview of the field and to highlight directions for future work

    Image Partitioning based on Semidefinite Programming

    Full text link
    Many tasks in computer vision lead to combinatorial optimization problems. Automatic image partitioning is one of the most important examples in this context: whether based on some prior knowledge or completely unsupervised, we wish to find coherent parts of the image. However, the inherent combinatorial complexity of such problems often prevents to find the global optimum in polynomial time. For this reason, various approaches have been proposed to find good approximative solutions for image partitioning problems. As an important example, we will first consider different spectral relaxation techniques: based on straightforward eigenvector calculations, these methods compute suboptimal solutions in short time. However, the main contribution of this thesis is to introduce a novel optimization technique for discrete image partitioning problems which is based on a semidefinite programming relaxation. In contrast to approximation methods employing annealing algorithms, this approach involves solving a convex optimization problem, which does not suffer from possible local minima. Using interior point techniques, the solution of the relaxation can be found in polynomial time, and without elaborate parameter tuning. High quality solutions to the original combinatorial problem are then obtained with a randomized rounding technique. The only potential drawback of the semidefinite relaxation approach is that the number of variables of the optimization problem is squared. Nevertheless, it can still be applied to problems with up to a few thousand variables, as is demonstrated for various computer vision tasks including unsupervised segmentation, perceptual grouping and image restoration. Concerning problems of higher dimensionality, we study two different approaches to effectively reduce the number of variables. The first one is based on probabilistic sampling: by considering only a small random fraction of the pixels in the image, our semidefinite relaxation method can be applied in an efficient way while maintaining a reliable quality of the resulting segmentations. The second approach reduces the problem size by computing an over-segmentation of the image in a preprocessing step. After that, the image is partitioned based on the resulting "superpixels" instead of the original pixels. Since the real world does not consist of pixels, it can even be argued that this is the more natural image representation. Initially, our semidefinite relaxation method is defined only for binary partitioning problems. To derive image segmentations into multiple parts, one possibility is to apply the binary approach in a hierarchical way. Besides this natural extension, we also discuss how multiclass partitioning problems can be solved in a direct way based on semidefinite relaxation techniques

    Multi-Class Classification for Identifying JPEG Steganography Embedding Methods

    Get PDF
    Over 725 steganography tools are available over the Internet, each providing a method for covert transmission of secret messages. This research presents four steganalysis advancements that result in an algorithm that identifies the steganalysis tool used to embed a secret message in a JPEG image file. The algorithm includes feature generation, feature preprocessing, multi-class classification and classifier fusion. The first contribution is a new feature generation method which is based on the decomposition of discrete cosine transform (DCT) coefficients used in the JPEG image encoder. The generated features are better suited to identifying discrepancies in each area of the decomposed DCT coefficients. Second, the classification accuracy is further improved with the development of a feature ranking technique in the preprocessing stage for the kernel Fisher s discriminant (KFD) and support vector machines (SVM) classifiers in the kernel space during the training process. Third, for the KFD and SVM two-class classifiers a classification tree is designed from the kernel space to provide a multi-class classification solution for both methods. Fourth, by analyzing a set of classifiers, signature detectors, and multi-class classification methods a classifier fusion system is developed to increase the detection accuracy of identifying the embedding method used in generating the steganography images. Based on classifying stego images created from research and commercial JPEG steganography techniques, F5, JP Hide, JSteg, Model-based, Model-based Version 1.2, OutGuess, Steganos, StegHide and UTSA embedding methods, the performance of the system shows a statistically significant increase in classification accuracy of 5%. In addition, this system provides a solution for identifying steganographic fingerprints as well as the ability to include future multi-class classification tools

    Statistical learning methods for functional data with applications to prediction, classification and outlier detection

    Get PDF
    In the era of big data, Functional Data Analysis has become increasingly important insofar as it constitutes a powerful tool to tackle inference problems in statistics. In particular in this thesis we have proposed several methods aimed to solve problems of prediction of time series, classification and outlier detection from a functional approach. The thesis is organized as follows: In Chapter 1 we introduce the concept of functional data and state the overview of the thesis. In Chapter 2 of this work we present the theoretical framework used to we develop the proposed methodologies. In Chapters 3 and 4 two new ordering mappings for functional data are proposed. The first is a Kernel depth measure, which satisfies the corresponding theoretical properties, while the second is an entropy measure. In both cases we propose a parametric and non-parametric estimation method that allow us to define an order in the data set at hand. A natural application of these measures is the identification of atypical observations (functions). In Chapter 5 we study the Functional Autoregressive Hilbertian model. We also propose a new family of basis functions for the estimation and prediction of the aforementioned model, which belong to a reproducing kernel Hilbert space. The properties of continuity obtained in this space allow us to construct confidence bands for the corresponding predictions in a detracted time horizon. In order to boost different classification methods, in Chapter 6 we propose a divergence measure for functional data. This metric allows us to determine in which part of the domain two classes of functional present divergent behavior. This methodology is framed in the field of domain selection, and it is aimed to solve classification problems by means of the elimination of redundant information. Finally in Chapter 7 the general conclusions of this work and the future research lines are presented.Financial support received from the Spanish Ministry of Economy and Competitiveness ECO2015-66593-P and the UC3M PIF scholarship for doctoral studies.Programa de Doctorado en Economía de la Empresa y Métodos Cuantitativos por la Universidad Carlos III de MadridPresidente: Santiago Velilla Cerdán; Secretario: Kalliopi Mylona; Vocal: Luis Antonio Belanche Muño

    Algorithms for Neural Prosthetic Applications

    Get PDF
    abstract: In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods.Dissertation/ThesisDoctoral Dissertation Bioengineering 201
    corecore