1,177 research outputs found

    Conditional Random Fields and Supervised Learning in Automated Skin Lesion Diagnosis

    Get PDF
    Many subproblems in automated skin lesion diagnosis (ASLD) canbe unified under a single generalization of assigning a label, from an predefinedset, to each pixel in an image. We first formalize this generalizationand then present two probabilistic models capable of solving it. The firstmodel is based on independent pixel labeling using maximum a-posteriori(MAP) estimation. The second model is based on conditional randomfields (CRFs), where dependencies between pixels are defined using agraph structure. Furthermore, we demonstrate how supervised learningand an appropriate training set can be used to automatically determineall model parameters. We evaluate both models\u27 ability to segment achallenging dataset consisting of 116 images and compare our results to5 previously published methods

    Conditional Random Fields and Supervised Learning in Automated Skin Lesion Diagnosis

    Get PDF
    Many subproblems in automated skin lesion diagnosis (ASLD) can be unified under a single generalization of assigning a label, from an predefined set, to each pixel in an image. We first formalize this generalization and then present two probabilistic models capable of solving it. The first model is based on independent pixel labeling using maximum a-posteriori (MAP) estimation. The second model is based on conditional random fields (CRFs), where dependencies between pixels are defined using a graph structure. Furthermore, we demonstrate how supervised learning and an appropriate training set can be used to automatically determine all model parameters. We evaluate both models' ability to segment a challenging dataset consisting of 116 images and compare our results to 5 previously published methods

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions

    Full text link
    Medical Image Analysis is currently experiencing a paradigm shift due to Deep Learning. This technology has recently attracted so much interest of the Medical Imaging community that it led to a specialized conference in `Medical Imaging with Deep Learning' in the year 2018. This article surveys the recent developments in this direction, and provides a critical review of the related major aspects. We organize the reviewed literature according to the underlying Pattern Recognition tasks, and further sub-categorize it following a taxonomy based on human anatomy. This article does not assume prior knowledge of Deep Learning and makes a significant contribution in explaining the core Deep Learning concepts to the non-experts in the Medical community. Unique to this study is the Computer Vision/Machine Learning perspective taken on the advances of Deep Learning in Medical Imaging. This enables us to single out `lack of appropriately annotated large-scale datasets' as the core challenge (among other challenges) in this research direction. We draw on the insights from the sister research fields of Computer Vision, Pattern Recognition and Machine Learning etc.; where the techniques of dealing with such challenges have already matured, to provide promising directions for the Medical Imaging community to fully harness Deep Learning in the future

    Generative Adversarial Networks based Skin Lesion Segmentation

    Full text link
    Skin cancer is a serious condition that requires accurate identification and treatment. One way to assist clinicians in this task is by using computer-aided diagnosis (CAD) tools that can automatically segment skin lesions from dermoscopic images. To this end, a new adversarial learning-based framework called EGAN has been developed. This framework uses an unsupervised generative network to generate accurate lesion masks. It consists of a generator module with a top-down squeeze excitation-based compound scaled path and an asymmetric lateral connection-based bottom-up path, and a discriminator module that distinguishes between original and synthetic masks. Additionally, a morphology-based smoothing loss is implemented to encourage the network to create smooth semantic boundaries of lesions. The framework is evaluated on the International Skin Imaging Collaboration (ISIC) Lesion Dataset 2018 and outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and Accuracy of 90.1%, 83.6%, and 94.5%, respectively. This represents a 2% increase in Dice Coefficient, 1% increase in Jaccard Index, and 1% increase in Accuracy

    Stacked fully convolutional networks with multi-channel learning: application to medical image segmentation

    Get PDF
    The automated segmentation of regions of interest (ROIs) in medical imaging is the fundamental requirement for the derivation of high-level semantics for image analysis in clinical decision support systems. Traditional segmentation approaches such as region-based depend heavily upon hand-crafted features and a priori knowledge of the user. As such, these methods are difficult to adopt within a clinical environment. Recently, methods based on fully convolutional networks (FCN) have achieved great success in the segmentation of general images. FCNs leverage a large labeled dataset to hierarchically learn the features that best correspond to the shallow appearance as well as the deep semantics of the images. However, when applied to medical images, FCNs usually produce coarse ROI detection and poor boundary definitions primarily due to the limited number of labeled training data and limited constraints of label agreement among neighboring similar pixels. In this paper, we propose a new stacked FCN architecture with multi-channel learning (SFCN-ML). We embed the FCN in a stacked architecture to learn the foreground ROI features and background non-ROI features separately and then integrate these different channels to produce the final segmentation result. In contrast to traditional FCN methods, our SFCN-ML architecture enables the visual attributes and semantics derived from both the fore- and background channels to be iteratively learned and inferred. We conducted extensive experiments on three public datasets with a variety of visual challenges. Our results show that our SFCN-ML is more effective and robust than a routine FCN and its variants, and other state-of-the-art methods

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces
    corecore