18,614 research outputs found

    Non-local Attention Optimized Deep Image Compression

    Full text link
    This paper proposes a novel Non-Local Attention Optimized Deep Image Compression (NLAIC) framework, which is built on top of the popular variational auto-encoder (VAE) structure. Our NLAIC framework embeds non-local operations in the encoders and decoders for both image and latent feature probability information (known as hyperprior) to capture both local and global correlations, and apply attention mechanism to generate masks that are used to weigh the features for the image and hyperprior, which implicitly adapt bit allocation for different features based on their importance. Furthermore, both hyperpriors and spatial-channel neighbors of the latent features are used to improve entropy coding. The proposed model outperforms the existing methods on Kodak dataset, including learned (e.g., Balle2019, Balle2018) and conventional (e.g., BPG, JPEG2000, JPEG) image compression methods, for both PSNR and MS-SSIM distortion metrics

    Practical Full Resolution Learned Lossless Image Compression

    Full text link
    We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model for adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.Comment: Updated preprocessing and Table 1, see A.1 in supplementary. Code and models: https://github.com/fab-jul/L3C-PyTorc

    Excitation Dropout: Encouraging Plasticity in Deep Neural Networks

    Full text link
    We propose a guided dropout regularizer for deep networks based on the evidence of a network prediction defined as the firing of neurons in specific paths. In this work, we utilize the evidence at each neuron to determine the probability of dropout, rather than dropping out neurons uniformly at random as in standard dropout. In essence, we dropout with higher probability those neurons which contribute more to decision making at training time. This approach penalizes high saliency neurons that are most relevant for model prediction, i.e. those having stronger evidence. By dropping such high-saliency neurons, the network is forced to learn alternative paths in order to maintain loss minimization, resulting in a plasticity-like behavior, a characteristic of human brains too. We demonstrate better generalization ability, an increased utilization of network neurons, and a higher resilience to network compression using several metrics over four image/video recognition benchmarks
    corecore