This paper proposes a novel Non-Local Attention Optimized Deep Image
Compression (NLAIC) framework, which is built on top of the popular variational
auto-encoder (VAE) structure. Our NLAIC framework embeds non-local operations
in the encoders and decoders for both image and latent feature probability
information (known as hyperprior) to capture both local and global
correlations, and apply attention mechanism to generate masks that are used to
weigh the features for the image and hyperprior, which implicitly adapt bit
allocation for different features based on their importance. Furthermore, both
hyperpriors and spatial-channel neighbors of the latent features are used to
improve entropy coding. The proposed model outperforms the existing methods on
Kodak dataset, including learned (e.g., Balle2019, Balle2018) and conventional
(e.g., BPG, JPEG2000, JPEG) image compression methods, for both PSNR and
MS-SSIM distortion metrics