45 research outputs found

    Conditional Image Synthesis by Generative Adversarial Modeling

    Get PDF
    Recent years, image synthesis has attracted more interests. This work explores the recovery of details (low-level information) from high-level features. The generative adversarial nets (GAN) has led to the explosion of image synthesis. Moving away from those application-oriented alternatives, this work investigates its intrinsic drawbacks and derives corresponding improvements in a theoretical manner.Based on GAN, this work further investigates the conditional image synthesis by incorporating an autoencoder (AE) to GAN. The GAN+AE structure has been demonstrated to be an effective framework for image manipulation. This work emphasizes the effectiveness of GAN+AE structure by proposing the conditional adversarial autoencoder (CAAE) for human facial age progression and regression. Instead of editing on the image level, i.e., explicitly changing the shape of face, adding wrinkle, etc., this work edits the high-level features which implicitly guide the recovery of images towards expected appearance.While GAN+AE being prevalent in image manipulation, its drawbacks lack exploration. For example, GAN+AE requires a weight to balance the effects of GAN and AE. An inappropriate weight would generate unstable results. This work provides an insight to such instability, which is due to the interaction between GAN and AE. Therefore, this work proposes the decoupled learning (GAN//AE) to avoid the interaction between them and achieve a robust and effective framework for image synthesis. Most existing works used GAN+AE structure could be easily adapted to the proposed GAN//AE structure to boost their robustness. Experimental results demonstrate the correctness and effectiveness of the provided derivation and proposed methods, respectively.In addition, this work extends the conditional image synthesis to the traditional area of image super-resolution, which recovers the high-resolution image according the low-resolution counterpart. Diverting from such traditional routine, this work explores a new research direction | reference-conditioned super-resolution, in which a reference image containing desired high-resolution texture details is used besides the low-resolution image. We focus on transferring the high-resolution texture from reference images to the super-resolution process without the constraint of content similarity between reference and target images, which is a key difference from previous example-based methods

    Active Inference in Simulated Cortical Circuits

    Get PDF

    Deep learning-based improvement for the outcomes of glaucoma clinical trials

    Get PDF
    Glaucoma is the leading cause of irreversible blindness worldwide. It is a progressive optic neuropathy in which retinal ganglion cell (RGC) axon loss, probably as a consequence of damage at the optic disc, causes a loss of vision, predominantly affecting the mid-peripheral visual field (VF). Glaucoma results in a decrease in vision-related quality of life and, therefore, early detection and evaluation of disease progression rates is crucial in order to assess the risk of functional impairment and to establish sound treatment strategies. The aim of my research is to improve glaucoma diagnosis by enhancing state of the art analyses of glaucoma clinical trial outcomes using advanced analytical methods. This knowledge would also help better design and analyse clinical trials, providing evidence for re-evaluating existing medications, facilitating diagnosis and suggesting novel disease management. To facilitate my objective methodology, this thesis provides the following contributions: (i) I developed deep learning-based super-resolution (SR) techniques for optical coherence tomography (OCT) image enhancement and demonstrated that using super-resolved images improves the statistical power of clinical trials, (ii) I developed a deep learning algorithm for segmentation of retinal OCT images, showing that the methodology consistently produces more accurate segmentations than state-of-the-art networks, (iii) I developed a deep learning framework for refining the relationship between structural and functional measurements and demonstrated that the mapping is significantly improved over previous techniques, iv) I developed a probabilistic method and demonstrated that glaucomatous disc haemorrhages are influenced by a possible systemic factor that makes both eyes bleed simultaneously. v) I recalculated VF slopes, using the retinal never fiber layer thickness (RNFLT) from the super-resolved OCT as a Bayesian prior and demonstrated that use of VF rates with the Bayesian prior as the outcome measure leads to a reduction in the sample size required to distinguish treatment arms in a clinical trial

    SYNTHESIZING DYSARTHRIC SPEECH USING MULTI-SPEAKER TTS FOR DSYARTHRIC SPEECH RECOGNITION

    Get PDF
    Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems may help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech is required, which is not readily available for dysarthric talkers. In this dissertation, we investigate dysarthric speech augmentation and synthesis methods. To better understand differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels, a comparative study between typical and dysarthric speech was conducted. These characteristics are important components for dysarthric speech modeling, synthesis, and augmentation. For augmentation, prosodic transformation and time-feature masking have been proposed. For dysarthric speech synthesis, this dissertation has introduced a modified neural multi-talker TTS by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. In addition, we have extended this work by using a label propagation technique to create more meaningful control variables such as a continuous Respiration, Laryngeal and Tongue (RLT) parameter, even for datasets that only provide discrete dysarthria severity level information. This approach increases the controllability of the system, so we are able to generate more dysarthric speech with a broader range. To evaluate their effectiveness for synthesis of training data, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has a significant impact on the dysarthric ASR systems

    Beyond PCA: Deep Learning Approaches for Face Modeling and Aging

    Get PDF
    Modeling faces with large variations has been a challenging task in computer vision. These variations such as expressions, poses and occlusions are usually complex and non-linear. Moreover, new facial images also come with their own characteristic artifacts greatly diverse. Therefore, a good face modeling approach needs to be carefully designed for flexibly adapting to these challenging issues. Recently, Deep Learning approach has gained significant attention as one of the emerging research topics in both higher-level representation of data and the distribution of observations. Thanks to the nonlinear structure of deep learning models and the strength of latent variables organized in hidden layers, it can efficiently capture variations and structures in complex data. Inspired by this motivation, we present two novel approaches, i.e. Deep Appearance Models (DAM) and Robust Deep Appearance Models (RDAM), to accurately capture both shape and texture of face images under large variations. In DAM, three crucial components represented in hierarchical layers are modeled using Deep Boltzmann Machines (DBM) to robustly capture the variations of facial shapes and appearances. DAM has shown its potential in inferencing a representation for new face images under various challenging conditions. An improved version of DAM, named Robust DAM (RDAM), is also introduced to better handle the occluded face areas and, therefore, produces more plausible reconstruction results. These proposed approaches are evaluated in various applications to demonstrate their robustness and capabilities, e.g. facial super-resolution reconstruction, facial off-angle reconstruction, facial occlusion removal and age estimation using challenging face databases: Labeled Face Parts in the Wild (LFPW), Helen and FG-NET. Comparing to classical and other deep learning based approaches, the proposed DAM and RDAM achieve competitive results in those applications, thus this showed their advantages in handling occlusions, facial representation, and reconstruction. In addition to DAM and RDAM that are mainly used for modeling single facial image, the second part of the thesis focuses on novel deep models, i.e. Temporal Restricted Boltzmann Machines (TRBM) and tractable Temporal Non-volume Preserving (TNVP) approaches, to further model face sequences. By exploiting the additional temporal relationships presented in sequence data, the proposed models have their advantages in predicting the future of a sequence from its past. In the application of face age progression, age regression, and age-invariant face recognition, these models have shown their potential not only in efficiently capturing the non-linear age related variance but also producing a smooth synthesis in age progression across faces. Moreover, the structure of TNVP can be transformed into a deep convolutional network while keeping the advantages of probabilistic models with tractable log-likelihood density estimation. The proposed approach is evaluated in terms of synthesizing age-progressed faces and cross-age face verification. It consistently shows the state-of-the-art results in various face aging databases, i.e. FG-NET, MORPH, our collected large-scale aging database named AginG Faces in the Wild (AGFW), and Cross-Age Celebrity Dataset (CACD). A large-scale face verification on Megaface challenge 1 is also performed to further show the advantages of our proposed approach

    Automated Rhythmic Transformation of Drum Recordings

    Get PDF
    Within the creative industries, music information retrieval techniques are now being applied in a variety of music creation and production applications. Audio artists incorporate techniques from music informatics and machine learning (e.g., beat and metre detection) for generative content creation and manipulation systems within the music production setting. Here musicians, desiring a certain sound or aesthetic influenced by the style of artists they admire, may change or replace the rhythmic pattern and sound characteristics (i.e., timbre) of drums in their recordings with those from an idealised recording (e.g., in processes of redrumming and mashup creation). Automated transformation systems for rhythm and timbre can be powerful tools for music producers, allowing them to quickly and easily adjust the different elements of a drum recording to fit the overall style of a song. The aim of this thesis is to develop systems for automated transformation of rhythmic patterns of drum recordings using a subset of techniques from deep learning called deep generative models (DGM) for neural audio synthesis. DGMs such as autoencoders and generative adversarial networks have been shown to be effective for transforming musical signals in a variety of genres as well as for learning the underlying structure of datasets for generation of new audio examples. To this end, modular deep learning-based systems are presented in this thesis with evaluations which measure the extent of the rhythmic modifications generated by different modes of transformation, which include audio style transfer, drum translation and latent space manipulation. The evaluation results underscore both the strengths and constraints of DGMs for transformation of rhythmic patterns as well as neural synthesis of drum sounds within a variety of musical genres. New audio style transfer (AST) functions were specifically designed for mashup-oriented drum recording transformation. The designed loss objectives lowered the computational demands of the AST algorithm and offered rhythmic transformation capabilities which adhere to a larger rhythmic structure of the input to generate music that is both creative and realistic. To extend the transformation possibilities of DGMs, systems based on adversarial autoencoders (AAE) were proposed for drum translation and continuous rhythmic transformation of bar-length patterns. The evaluations which investigated the lower dimensional representations of the latent space of the proposed system based on AAEs with a Gaussian mixture prior (AAE-GM) highlighted the importance of the structure of the disentangled latent distributions of AAE-GM. Furthermore, the proposed system demonstrated improved performance, as evidenced by higher reconstruction metrics, when compared to traditional autoencoder models. This implies that the system can more accurately recreate complex drum sounds, ensuring that the produced rhythmic transformation maintains richness of the source material. For music producers, this means heightened fidelity in drum synthesis and the potential for more expressive and varied drum tracks, enhancing the creativity in music production. This work also enhances neural drum synthesis by introducing a new, diverse dataset of kick, snare, and hi-hat drum samples, along with multiple drum loop datasets for model training and evaluation. Overall, the work in this thesis increased the profile of the field and hopefully will attract more attention and resources to the area, which will help drive future research and development of neural rhythmic transformation systems

    Advancing probabilistic and causal deep learning in medical image analysis

    Get PDF
    The power and flexibility of deep learning have made it an indispensable tool for tackling modern machine learning problems. However, this flexibility comes at the cost of robustness and interpretability, which can lead to undesirable or even harmful outcomes. Deep learning models often fail to generalise to real-world conditions and produce unforeseen errors that hinder wide adoption in safety-critical critical domains such as healthcare. This thesis presents multiple works that address the reliability problems of deep learning in safety-critical domains by being aware of its vulnerabilities and incorporating more domain knowledge when designing and evaluating our algorithms. We start by showing how close collaboration with domain experts is necessary to achieve good results in a real-world clinical task - the multiclass semantic segmentation of traumatic brain injuries (TBI) lesions in head CT. We continue by proposing an algorithm that models spatially coherent aleatoric uncertainty in segmentation tasks by considering the dependencies between pixels. The lack of proper uncertainty quantification is a robustness issue which is ubiquitous in deep learning. Tackling this issue is of the utmost importance if we want to deploy these systems in the real world. Lastly, we present a general framework for evaluating image counterfactual inference models in the absence of ground-truth counterfactuals. Counterfactuals are extremely useful to reason about models and data and to probe models for explanations or mistakes. As a result, their evaluation is critical for improving the interpretability of deep learning models.Open Acces
    corecore