1,364 research outputs found

    C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds

    Get PDF
    Flow-based generative models have highly desirable properties like exact log-likelihood evaluation and exact latent-variable inference, however they are still in their infancy and have not received as much attention as alternative generative models. In this paper, we introduce C-Flow, a novel conditioning scheme that brings normalizing flows to an entirely new scenario with great possibilities for multi-modal data modeling. C-Flow is based on a parallel sequence of invertible mappings in which a source flow guides the target flow at every step, enabling fine-grained control over the generation process. We also devise a new strategy to model unordered 3D point clouds that, in combination with the conditioning scheme, makes it possible to address 3D reconstruction from a single image and its inverse problem of rendering an image given a point cloud. We demonstrate our conditioning method to be very adaptable, being also applicable to image manipulation, style transfer and multi-modal image-to-image mapping in a diversity of domains, including RGB images, segmentation maps, and edge masks

    PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows

    Full text link
    Point cloud upsampling aims to generate dense point clouds from given sparse ones, which is a challenging task due to the irregular and unordered nature of point sets. To address this issue, we present a novel deep learning-based model, called PU-Flow, which incorporates normalizing flows and weight prediction techniques to produce dense points uniformly distributed on the underlying surface. Specifically, we exploit the invertible characteristics of normalizing flows to transform points between Euclidean and latent spaces and formulate the upsampling process as ensemble of neighbouring points in a latent space, where the ensemble weights are adaptively learned from local geometric context. Extensive experiments show that our method is competitive and, in most test cases, it outperforms state-of-the-art methods in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency. The source code will be publicly available at https://github.com/unknownue/pu-flow

    Discrete Point Flow Networks for Efficient Point Cloud Generation

    Get PDF
    Generative models have proven effective at modeling 3D shapes and their statistical variations. In this paper we investigate their application to point clouds, a 3D shape representation widely used in computer vision for which, however, only few generative models have yet been proposed. We introduce a latent variable model that builds on normalizing flows with affine coupling layers to generate 3D point clouds of an arbitrary size given a latent shape representation. To evaluate its benefits for shape modeling we apply this model for generation, autoencoding, and single-view shape reconstruction tasks. We improve over recent GAN-based models in terms of most metrics that assess generation and autoencoding. Compared to recent work based on continuous flows, our model offers a significant speedup in both training and inference times for similar or better performance. For single-view shape reconstruction we also obtain results on par with state-of-the-art voxel, point cloud, and mesh-based methods.Comment: In ECCV'2

    Flow-based GAN for 3D Point Cloud Generation from a Single Image

    Get PDF
    Generating a 3D point cloud from a single 2D image is of great importance for 3D scene understanding applications. To reconstruct the whole 3D shape of the object shown in the image, the existing deep learning based approaches use either explicit or implicit generative modeling of point clouds, which, however, suffer from limited quality. In this work, we aim to alleviate this issue by introducing a hybrid explicit-implicit generative modeling scheme, which inherits the flow-based explicit generative models for sampling point clouds with arbitrary resolutions while improving the detailed 3D structures of point clouds by leveraging the implicit generative adversarial networks (GANs). We evaluate on the large-scale synthetic dataset ShapeNet, with the experimental results demonstrating the superior performance of the proposed method. In addition, the generalization ability of our method is demonstrated by performing on cross-category synthetic images as well as by testing on real images from PASCAL3D+ dataset.Comment: 13 pages, 5 figures, accepted to BMVC202
    • …
    corecore