7,820 research outputs found

    Algebraic Methods of Classifying Directed Graphical Models

    Full text link
    Directed acyclic graphical models (DAGs) are often used to describe common structural properties in a family of probability distributions. This paper addresses the question of classifying DAGs up to an isomorphism. By considering Gaussian densities, the question reduces to verifying equality of certain algebraic varieties. A question of computing equations for these varieties has been previously raised in the literature. Here it is shown that the most natural method adds spurious components with singular principal minors, proving a conjecture of Sullivant. This characterization is used to establish an algebraic criterion for isomorphism, and to provide a randomized algorithm for checking that criterion. Results are applied to produce a list of the isomorphism classes of tree models on 4,5, and 6 nodes. Finally, some evidence is provided to show that projectivized DAG varieties contain useful information in the sense that their relative embedding is closely related to efficient inference

    Selfadhesivity in Gaussian conditional independence structures

    Full text link
    Selfadhesivity is a property of entropic polymatroids which guarantees that the polymatroid can be glued to an identical copy of itself along arbitrary restrictions such that the two pieces are independent given the common restriction. We show that positive definite matrices satisfy this condition as well and examine consequences for Gaussian conditional independence structures. New axioms of Gaussian CI are obtained by applying selfadhesivity to the previously known axioms of structural semigraphoids and orientable gaussoids.Comment: 13 pages; v3: minor revisio

    Gaussoids are two-antecedental approximations of Gaussian conditional independence structures

    Full text link
    The gaussoid axioms are conditional independence inference rules which characterize regular Gaussian CI structures over a three-element ground set. It is known that no finite set of inference rules completely describes regular Gaussian CI as the ground set grows. In this article we show that the gaussoid axioms logically imply every inference rule of at most two antecedents which is valid for regular Gaussians over any ground set. The proof is accomplished by exhibiting for each inclusion-minimal gaussoid extension of at most two CI statements a regular Gaussian realization. Moreover we prove that all those gaussoids have rational positive-definite realizations inside every ε\varepsilon-ball around the identity matrix. For the proof we introduce the concept of algebraic Gaussians over arbitrary fields and of positive Gaussians over ordered fields and obtain the same two-antecedental completeness of the gaussoid axioms for algebraic and positive Gaussians over all fields of characteristic zero as a byproduct.Comment: 24 pages; v3: added Preliminaries section; corrected miscalculations in examples and added source code lin

    The geometry of Gaussian double Markovian distributions

    Full text link
    Gaussian double Markovian models consist of covariance matrices constrained by a pair of graphs specifying zeros simultaneously in the covariance matrix and its inverse. We study the semi-algebraic geometry of these models, in particular their dimension, smoothness and connectedness as well as algebraic and combinatorial properties.Comment: 31 pages. v2: major revision; the new Theorem 3.23 unified some earlier results; the numbers in Remark 3.33 have been correcte

    Duality in Graphical Models

    Full text link
    Graphical models have proven to be powerful tools for representing high-dimensional systems of random variables. One example of such a model is the undirected graph, in which lack of an edge represents conditional independence between two random variables given the rest. Another example is the bidirected graph, in which absence of edges encodes pairwise marginal independence. Both of these classes of graphical models have been extensively studied, and while they are considered to be dual to one another, except in a few instances this duality has not been thoroughly investigated. In this paper, we demonstrate how duality between undirected and bidirected models can be used to transport results for one class of graphical models to the dual model in a transparent manner. We proceed to apply this technique to extend previously existing results as well as to prove new ones, in three important domains. First, we discuss the pairwise and global Markov properties for undirected and bidirected models, using the pseudographoid and reverse-pseudographoid rules which are weaker conditions than the typically used intersection and composition rules. Second, we investigate these pseudographoid and reverse pseudographoid rules in the context of probability distributions, using the concept of duality in the process. Duality allows us to quickly relate them to the more familiar intersection and composition properties. Third and finally, we apply the dualization method to understand the implications of faithfulness, which in turn leads to a more general form of an existing result

    Contribution of František Matúš to the research on conditional independence

    Get PDF
    summary:An overview is given of results achieved by F. Matúš on probabilistic conditional independence (CI). First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled and his contribution to the theory of semigraphoids is mentioned as well. Finally, his results on the characterization of probabilistic CI structures induced by four discrete random variables and by four regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned

    No eleventh conditional Ingleton inequality

    Full text link
    A rational probability distribution on four binary random variables X,Y,Z,UX, Y, Z, U is constructed which satisfies the conditional independence relations [X \mathrel{\text{\perp\mkern-10mu\perp}} Y], [X \mathrel{\text{\perp\mkern-10mu\perp}} Z \mid U], [Y \mathrel{\text{\perp\mkern-10mu\perp}} U \mid Z] and [Z \mathrel{\text{\perp\mkern-10mu\perp}} U \mid XY] but whose entropy vector violates the Ingleton inequality. This settles a recent question of Studen\'y (IEEE Trans. Inf. Theory vol. 67, no. 11) and shows that there are, up to symmetry, precisely ten inclusion-minimal sets of conditional independence assumptions on four discrete random variables which make the Ingleton inequality hold.Comment: 7 pages, 1 figur
    corecore